The present invention relates generally to the field of indexing and classifying different geographical locations and in particularly relates to methods and systems for determining Liveability and Health Index of a geographical location.
Generally, the value of a geographical location value is dependent upon the nature of facilities and enmities available in and around that geographical location. The value of geographical location may not be seen only in the light of commercial aspects but also in the light of requirements of an individual willing to stay in that area. For instance, a location having health clinics and hospitals in and around nearby may have greater importance and value for a person who is medically not fit. For such a person, a locality with a commercially higher value but having no ease of access to health clinics or hospitals may not fulfil his requirements. In another instance, a locality having high commercial value but having excess traffic problems may not attract an individual. Thus, the value of location may vary from one individual to another.
Several manual surveys are conducted by city planning companies and forums to classify geographical locations. Such manual surveys include, but not limited to, identifying various issues prevailing in various geographical locations, amenities existing in the location, etc. However, such surveys have a disadvantage that the data once captured cannot be updated and corrected in real time or on automatic basis. A second periodic manual survey needs to be conducted to update the data. Moreover, such surveys are conducted at a very generic level, and may not provide any assistance on an individual basis. In other words, the surveys are not conducted to fulfil the requirements of a particular individual.
Accordingly, there exists a need to develop methods and systems that can analyze various parameters, environmental conditions, civic amenities etc and accordingly identify a liveability and health index for a user in respect of a geographical location.
In an embodiment, a method of determining a liveability index of a geographical location is provided. The method includes the steps of: monitoring, using a smart device, environmental conditions and one or more activities of a user in a geographical location; identifying a first set of data values relating to one or more first parameters based on said monitoring of environmental conditions and one or more activities of said user in said geographical location; fetching, from a memory location, a second set of data values relating to one or more of second parameters corresponding to said geographical location; transmitting said first set of data values and second set of data values relating to one or more first parameters and second parameters to a server; classifying each data value based on type of associated parameter, time of monitoring, location co-ordinates of said geographical location; comparing each of classified data values with predefined data values; computing a liveability index of said geographical location based on comparison of each of classified data values with predefined data values and weightage assigned to each parameter associated with said data values; creating a liveability map based on computed liveability index; and rendering said liveability map along with liveability index to a user device.
To further clarify advantages and features of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof, which is illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail with the accompanying drawings.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
Further, skilled artisans will appreciate that elements in the drawings are illustrated for simplicity and may not have been necessarily been drawn to scale. For example, the flow charts illustrate the method in terms of the most prominent steps involved to help to improve understanding of aspects of the present invention. Furthermore, in terms of the construction of the device, one or more components of the device may have been represented in the drawings by conventional symbols, and the drawings may show only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the drawings with details that will be readily apparent to those of ordinary skill in the art having benefit of the description herein.
For the purpose of promoting an understanding of the principles of the invention, reference will now be made to the embodiment illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated system, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates.
It will be understood by those skilled in the art that the foregoing general description and the following detailed description are exemplary and explanatory of the invention and are not intended to be restrictive thereof.
Reference throughout this specification to “an aspect”, “another aspect” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrase “in an embodiment”, “in another embodiment” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
The terms “comprises”, “comprising”, or any other variations thereof, are intended to cover a non-exclusive inclusion, such that a process or method that comprises a list of steps does not include only those steps but may include other steps not expressly listed or inherent to such process or method. Similarly, one or more devices or sub-systems or elements or structures or components proceeded by “comprises . . . a” does not, without more constraints, preclude the existence of other devices or other sub-systems or other elements or other structures or other components or additional devices or additional sub-systems or additional elements or additional structures or additional components.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The system, methods, and examples provided herein are illustrative only and not intended to be limiting. Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
The method 100 further includes step 106 of fetching a second set of data values relating to one or more second parameters corresponding to said geographical location. The second set of parameters generally includes those parameters that may not be solely monitored using the activities of the user. The data relating to such parameters is generally fetched using the database of the third party service providers. The one or more second parameters relate to, but not limited to, number of hospitals, quality of water, number of bore-wells, average age of the population in the geographical location, number of trees, number of schools and colleges and so on. Generally, the data values relating to such parameters are fetched from the third party service providers. However, it is to be noted that the data values captured using the smart wearable device and/or the mobile device connected to the smart wearable device may also be used to determine the data values relating one or more second parameters. The data values captured using the smart wearable device and/or the mobile device may also be used to update the data previously captured by third party service providers. For instance, the details relating to presence of Traffic signal may be captured using GPS device of the smart wearable device and/or mobile device, the online services, and Government police traffic signal database. The present invention intends to cover the maximum data that can be assessed using the user devices and the third party service providers either alone or in any combination thereof. The first and second set of data values include, but not limited to, to the below first and second parameters:
Once the first set and second of data values are determined, the first set of data values and second set of data values relating to one or more first parameters and second parameters respectively are transmitted to a server in step 108. The first and second set of data values are processed, classified and structured in step 110 based on type of associated parameter, time of monitoring, location co-ordinates of said geographical location etc. The data is primarily categorized into three types, optimal data, Threshold data and Real time data. The processed data is encrypted and securely stored in the database for various other purposes. Each of the processed and classified data value is further compared with corresponding pre-defined values in step 112 to determine whether the processed and classified data value falls within the optimal range or not. Generally, different range values (threshold range) are pre-defined based on the impact factor of each parameter.
In an embodiment, a data dependency factor is automatically determined by the system. For example, in the above case (traffic signal), dependency factor may be 50% for user devices (having GPS), 25% for online services and other 25% for Government traffic signal database. Further, the data dependency factor (in the traffic signal scenario) is determined through various factors that include but not limited to traffic data (past, present), traffic movement (past, present), availability of traffic data from user devices, online services and Government traffic signal database. In another embodiment, each parameter may have data dependency factor.
The method 100 further includes step 114 of computing a liveability index of said geographical location based on comparison of each of classified data values with predefined data values and weightage assigned to each parameter associated with said data values. Each parameter is assigned a weighable value depending upon its impact on the liveability and health of an individual. For instance, water availability may be given higher weightage of excess traffic when it comes to computing the liveability index in a geographical location. Similarly, seismic data may be given higher weightage in comparison to noise levels for computing the liveability index in a geographical location. Based on the computed liveability index, a liveability map is created in step 116 and rendered along with liveability index to a user device in step 118. Based on the liveability index and liveability map, the use gets a fair idea as to whether the geographical location is worth staying or not.
In another embodiment, the method 100 includes: providing a list of parameters to user for selection; receiving from a user a list of one or more selected parameters; and computing liveability index based on data values corresponding to said one or more selected parameters and creating liveability map thereof.
In another embodiment, the method 100 includes: analyzing a pre-stored profile of the user; determining one or more parameters based on analysis of pre-stored profile the user; computing liveability index based on data values corresponding one or more parameters based on a pre-stored profile the user and creating liveability map thereof. The profile of the user includes details pertaining to income bracket of said user, family size, living style, past health history related details, and others.
In another embodiment, the method 100 includes: creating list of parameters essential for computing a liveability index of any geographical location; assigning weightages to each of said parameters essential for computing liveability index of geographical location. In an implementation, the weightages to each of said parameters may be assigned automatically based on profile of the user. In an implementation, the weightages to each of said parameters are assigned manually by the user.
In another embodiment, the method 100 includes: recommending a user to perform one or more activities, wherein said one or more activities is essential for identifying data values related to one or more first or second parameters. In an implementation, the user may be provided with step by step instructions to perform said one or more recommended activities.
In an implementation, the method 100 further includes receiving manual inputs from the user in respect of first and second data values associated with said one or more first and second parameters respectively.
In another implementation, the method 100 includes computing health index based on the parameters relating specifically those parameters that may impact health of an individual. Such health parameters include, but not limited to, quality of air, quality of water, noise levels, access to nearby hospitals, weather related data etc.
Referring to
A liveability index computing unit 218 is further provided for computing a liveability index of said geographical location based on comparison of each of classified data values with predefined data values and weightage assigned to each parameter associated with said data values; and a liveability map generation unit 220 creating a liveability map based on computed liveability index. The liveability map (along with liveability index details) is rendered on to the user's display device 222. The liveability map may be configured to be stored onto user's mobile device 204.
In an embodiment, the mobile device 204 operates independently tracks the activities of the user without the smart device 202. The details of the activities monitored by the smart device 202 are transmitted and stored in the database 216 of the application server 206.
In an implementation, the system 200 is further configured to receive inputs (with respect to that location) from the user in the form of feedbacks, suggestions, comments, and favourites etc., to improve and update the data in the database 216. The application server 206 is configured to identify false alarm, invalid/irrelevant location data. The application server 206 may also be configured with a real-time alert module, a suggestion module.
In an implementation, the system 200 includes a recommendation unit 224 that is configured to recommend the user to perform one or more activities, wherein said one or more activities is essential for identifying data values related to one or more first or second parameters. In an implementation, the user may be provided with step by step instructions to perform said one or more recommended activities by the recommendation unit 224. The instructions may be sent in a step by step manner or may be sent at once.
Referring to
Referring to
Referring to
Referring to table illustrated in
The drawings and the forgoing description give examples of embodiments. Those skilled in the art will appreciate that one or more of the described elements may well be combined into a single functional element. Alternatively, certain elements may be split into multiple functional elements. Elements from one embodiment may be added to another embodiment. For example, orders of processes described herein may be changed and are not limited to the manner described herein. Moreover, the actions of any flow diagram need not be implemented in the order shown; nor do all of the acts necessarily need to be performed. Also, those acts that are not dependent on other acts may be performed in parallel with the other acts. The scope of embodiments is by no means limited by these specific examples. Numerous variations, whether explicitly given in the specification or not, such as differences in structure, dimension, and use of material, are possible. The scope of embodiments is at least as broad as given by the following claims.
Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any component(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature or component of any or all the claims.
Number | Date | Country | Kind |
---|---|---|---|
10201801748Y | Mar 2018 | SG | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SG2019/050116 | 3/1/2019 | WO | 00 |