The present disclosure relates generally to the analysis of multimedia content items, and more specifically to a method for determining the size dimensions of objects shown in a multimedia content item.
With the abundance of multimedia content made available through various means in general and the Internet in particular, there is also a need to provide effective ways of analyzing such multimedia content. Multimedia content analysis is a challenging task, as it requires processing of a plurality of graphical elements (e.g., multimedia elements).
Several prior art solutions can be used to analyze multimedia content items. As a result of the analysis, relevant multimedia elements may be extracted from a multimedia content item. However, a problem may occur while trying to identify information regarding the extracted multimedia elements using additional multimedia content items that may be useful, for example, multimedia content items containing similar characteristics to the characteristics of the extracted multimedia content.
Typically, while analyzing the characteristics of the multimedia content item, the complexity of a multimedia content item leads to inefficient identification of common patterns. Furthermore, the analysis as known these days may be inefficient because of lack of correlation between the multimedia elements extracted from the multimedia content item.
It would be therefore advantageous to provide an efficient solution to analyze multimedia content items. It would be further advantageous if such solution would enable identification of several multimedia elements in the multimedia content based on already identified multimedia elements.
A summary of several exemplary embodiments of the disclosure follows. This summary is provided for the convenience of the reader to provide a basic understanding of such embodiments and does not wholly define the breadth of the disclosure. This summary is not an extensive overview of all contemplated embodiments, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all embodiments. Its sole purpose is to present some concepts of one or more embodiments in a simplified form as a prelude to the more detailed description that is presented later. For convenience, the term some embodiments may be used herein to refer to a single embodiment or multiple embodiments of the disclosure.
Certain exemplary embodiments disclosed herein include a method for determining at least a size dimension of objects shown in multimedia content items. The method comprises receiving an input multimedia content item; identifying a plurality of objects shown in the input multimedia content item; generating at least a first signature for at least a first object of the plurality of objects and at least a second signature for at least a second object of the plurality of objects; identifying at least one concept that matches the at least a first object, wherein the identification is performed using the at least a first signature; determining an actual size of the at least a first object respective of the match to the at least one concept, wherein the actual size of the at least a first object is determined respective of an actual size of the at least one concept maintained in a data warehouse; determining a size scale between the at least a first object and the at least a second object of the plurality of objects using the at least a first signature and the at least a second signature; and determining the at least size dimension of the at least a second object of the plurality of objects respective of the size scale and the actual size of the first object.
Certain exemplary embodiments disclosed herein include a system for determining at least a size dimension of objects shown in a multimedia content item containing a plurality of objects. The system comprises an interface to a network for receiving an input multimedia content item; a processing unit; and a memory connected to the processing unit and configured to contain a plurality of instructions that when executed by the processor configure the system to: identify a plurality of objects shown in the input multimedia content item; identify at least one concept that matches at least a first object, wherein the identification is performed using at least a first signature; determine an actual size of the at least a first object respective of the match to the at least one concept, wherein the actual size of the at least a first object is determined respective of an actual size of the at least one concept maintained in a data warehouse; determine a size scale between the at least a first object and at least a second object of the plurality of objects using the at least a first signature and at least a second signature; and determine the at least size dimension of the at least a second object of the plurality of objects respective of the size scale and the actual size of the at least a first object.
The subject matter disclosed herein is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the disclosed embodiments will be apparent from the following detailed description taken in conjunction with the accompanying drawings.
It is important to note that the embodiments disclosed herein are only examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed embodiments. Moreover, some statements may apply to some inventive features but not to others. In general, unless otherwise indicated, singular elements may be in plural and vice versa with no loss of generality. In the drawings, like numerals refer to like parts through several views.
Certain exemplary embodiments disclosed herein include a method and system for determination of at least a size dimension of an object shown in a multimedia content item (e.g., an image, a graphic, and a photograph). The multimedia content item is received from a user device. Signatures are generated for the objects shown in the multimedia content item and a ratio between the signatures' sizes is analyzed to determine a size scale between the objects. The generated signature(s) are matched to concepts maintained in a data warehouse. Upon identifying a match between at least one signature generated for an object and at least one concept, the actual size of the identified object is retrieved from a data warehouse. The size dimensions of the other objects are determined respective of the size scale and the actual size of the identified object. According to an embodiment, the size scale between the objects is determined respective of the distance of each object from a reference point.
Further connected to the network 110 is a user device 120 configured to execute at least one application (app) 125. The application 125 may be, for example, a web browser, a script, an add-on, a mobile application (“app”), or any application programmed to interact with a server 130. In an embodiment, the server 130 may be connected to the network 110. The user device 120 may be, but is not limited to, a personal computer (PC), a personal digital assistant (PDA), a mobile phone, a smart phone, a tablet computer, a laptop, a wearable computing device, or another kind of computing device equipped with browsing, viewing, listening, filtering, and managing capabilities that is enabled as further discussed herein below. It should be noted that one user device 120 and one application 125 are illustrated in
The network system 100 also includes a data warehouse 160 configured to store multimedia content items, previously generated signatures for objects shown in the multimedia content items, previously generated signatures for concepts or concept structures, the concepts' size, and the like. The data warehouse 160 may be connected to the network 110. In the embodiment illustrated in
The various embodiments disclosed herein are realized using the server 130, a signature generator system (SGS) 140 and a deep-content-classification (DCC) system 150. The SGS 140 may be connected to the server 130 directly or through the network 110. The DCC system 150 may be connected to the network 110. The server 130 is configured to receive and serve the at least one multimedia content item in which the objects are shown and cause the SGS 140 to generate at least one signature respective thereof and query the DCC system 150. To this end, the server 130 is communicatively connected to the SGS 140 and the DCC system 150.
The DCC system 150 is configured to generate concept structures (or concepts) and to identify concepts that match the multimedia content item and/or the objects shown within. A concept is a collection of signatures representing an object and metadata describing the concept. The collection is a signature reduced cluster generated by inter-matching the signatures generated for the many objects, clustering the inter-matched signatures, and providing a reduced cluster set of such clusters. As a non-limiting example, a ‘Superman concept’ is a signature reduced cluster of signatures describing elements (such as objects) related to, e.g., a Superman cartoon: a set of metadata including textual representations of the Superman concept. A cluster reduction process is performed. Specifically, the purpose of the operation is to ensure that in the cluster there remains the minimal number of signatures that still identify all of the MMDEs that are associated with the signature reduced cluster (SRC). This can be performed, for example, by attempting to match the signatures of each of the MMDEs associated with the SRC having one or more signatures removed there from. In one embodiment of the invention the process of cluster reduction for the purpose of generating SRCs is performed in parallel and independently of the process described herein above.
Techniques for generating concepts and concept structures are also described in the U.S. Pat. No. 8,266,185 (hereinafter the '185 patent) to Raichelgauz, et al., which is assigned to a common assignee, and is incorporated by reference herein for all that it contains. In an embodiment, the DCC system 150 is configured and operates as the DCC system discussed in the '185 patent. The process of generating the signatures in the SGS 140 is explained in more detail below with respect to
It should be noted that each of the server 130, the SGS 140, and the DCC system 150 typically comprise a processing unit, such as a processor (not shown) or an array of processors coupled to a memory. In one embodiment, the processing unit may be realized through architecture of computational cores described in detail below. The memory contains instructions that can be executed by the processing unit. The instructions, when executed by the processing unit, cause the processing unit to perform the various functions described herein. The one or more processors may be implemented with any combination of general-purpose microprocessors, multi-core processors, microcontrollers, digital signal processors (DSPs), field programmable gate array (FPGAs), programmable logic devices (PLDs), controllers, state machines, gated logic, discrete hardware components, dedicated hardware finite state machines, or any other suitable entities that can perform calculations or other manipulations of information. In certain implementations, the server 130 also includes an interface (not shown) to the network 110.
According to the disclosed embodiments, the server 130 is configured to receive a multimedia content item showing a plurality of objects from the user device 120. An object may be any element shown in the multimedia content item, for example, a tree, a car, a person, a table, and the like. The multimedia content item may be, but is not limited to, an image, a graphic, video frame, a photograph, and/or combinations thereof and portions thereof. In one embodiment, the server 130 is configured to receive a uniform resource locator (URL) of a webpage viewed by the user device 120 and accessed by the application 125. The webpage is processed to extract the multimedia content item contained therein.
The request to analyze the multimedia content item can be sent by a script executed in the webpage, such as when the application 125 (e.g., a web server or a publisher server) requests to upload one or more multimedia content items to the webpage. Such a request may include a URL of the webpage or a copy of the webpage. The application 125 can also send a picture taken by a user of the user device 120 to the server 130.
The server 130, in response to receiving the multimedia content item, is configured to return information respective of the size dimensions of the objects shown in the multimedia content item. To this end, the server 130 is configured to analyze the multimedia content item to identify the objects shown in the multimedia content item. As an example, an image showing Central Park in New York is analyzed to identify the objects of a carriage way, a car, a streetlight, and a person.
With this aim, at least one signature is generated for each object using the SGS 140. The generated signature(s) may be robust to noise and distortion as discussed below. Upon identifying, for example, a ratio between the signatures' sizes, a size scale between the objects is determined. According to an embodiment, parameters such as distance of each object from a reference point may be taken in account to determine the size scale.
In one embodiment, using the generated signature(s), the DCC system 150 is queried to determine if there is a match to at least one concept. The DCC system 150 is configured to return, for each matching concept, a concept's signature (or a signature reduced cluster (SRC)) and optionally the concept's metadata. It should be understood that a match exists when the signature of the concept overlaps with the signature(s) of the object above a predetermined threshold level.
Upon identification of a match, the server 130 is configured to retrieve the actual size of the identified object from the data warehouse 160. For example, if the signature identified a person, a metadata may provide information about that person's actual height. If a car was identified, its actual height or actual length may be retrieved from the data warehouse 160. After retrieving the actual size of the identified object, the server 130 is configured to determine the size dimensions of the other objects identified within the multimedia content item respective of the size scale between the objects. Such information is then sent to the user device 120.
One of ordinary skill in the art would readily appreciate that a more accurate determination of the size scale may be done by repeating the process on other identified objects, a process that can be repeated until the size scale value does not change beyond a predetermined threshold value from one identification to the other.
In another embodiment, the SGS 140 is configured to generate signatures for the received multimedia content item. The generated signatures are matched by the server 130 to previously generated signatures of concepts, maintained in the data warehouse 160, to identify a match to at least one object. Upon identification of a match, the server 130 is configured to retrieve the actual size of the identified object from the data warehouse 160. Upon identifying, for example, a ratio between the signatures' sizes, a size scale between the objects is determined. According to an embodiment, parameters such as distance of each object from a reference point may be taken in account to determine the size scale. The actual size of the identified object together with the size scale are used to determine the size dimensions of the other objects identified within the multimedia content item. Such information is then sent to the user device 120.
As a non-limiting example, when the server 130 receives an image of streets in Paris, signatures corresponding to each of the objects (e.g., different houses, Eiffel Tower, cars, and so on) shown in the image are generated. The generated signatures are matched by the server 130 to previously generated signatures of concepts stored in the data warehouse 160 to identify a match between at least a concept and at least one object, for example, the Eiffel Tower. Upon such identification, the server 130 is configured to retrieve the actual size of the Eiffel Tower from the data warehouse 160.
A size scale of the houses, the cars, the Eiffel Tower, etc., is determined by the server 130 respective of, for example, their signatures' size and their distance from a reference point. The size dimensions of the houses, the cars, etc., are determined respective of the size scale and the actual size of the Eiffel Tower.
In S210, a multimedia content item in which objects are shown is received. In an embodiment, the multimedia content item is received from the user device 120. In an embodiment, the multimedia content item is received together with a request to analyze the multimedia content item. Optionally, in S215, the received multimedia content item is analyzed to identify the objects. In an embodiment, the server 130 is configured to perform the analysis.
In S220, at least one signature is generated for at least two objects (e.g., a first object and a second object). The signatures are generated by the SGS 140 as described in greater detail below with respect to
In S230, a DCC system (e.g., DCC system 150) is queried to find a match between at least one concept and at least one object (e.g., the first object) using their respective signatures. In an embodiment, the signatures generated for an object is matched against the signature (signature reduced cluster (SRC)) of each concept maintained by the DCC system 150. According to an embodiment, the signatures generated for the concepts may be retrieved from a database (e.g., data warehouse 160). If the signature of the concept overlaps with the signatures of the object more than a predetermined threshold level, a match exists. Various techniques for determining matching concepts are discussed in the '185 patent. For each matching concept the respective object is determined to be identified and at least the concept signature (SRC) is returned.
For example, an image of a bowling lane may have a bowling ball, pins, and a bowler. The DCC system 150 is queried to find a match between the signatures of the pins and signatures of concepts maintained by the DCC system 150. The signature of the pins may overlap less than a predetermined threshold level with a signature of the concept “baseball” and may overlap more than a predetermined threshold level with a signature of the concept “bowling”. Therefore a match would exist for “bowling” and not “baseball”.
In S240, the actual size of the first object is determined respective of a match between the signatures of the concept and the first object. This is performed respective of the actual sizes of concepts or concepts structures maintained in the data warehouse 160. In another embodiment, if matching concepts are not found, the signatures generated in S220 are utilized to search the data warehouse 160.
In S250, a size scale of the objects shown in the multimedia content item is generated (e.g., the size scale of the first object and the second object). This is performed by identifying, for example, the ratio between the signature's sizes of the objects, the distance between each signature from a reference point, and so on.
In S260, at least a second size dimension of the second object shown in the multimedia content item is identified respective of the size scale and the determination made in S240 regarding the actual size of the first multimedia element.
According to an embodiment, the information respective of the size dimension of the second object is sent to the user device 120. According to another embodiment, such information is stored in the data warehouse 160 for further use (e.g., identification of the actual size of additional objects shown in additional multimedia content item). In S270, it is checked whether additional multimedia content items are received, and if so, execution continues with S210; otherwise, execution terminates.
The objects of a tree 510 and a persona 520 are identified in the drawing 500 and signatures are generated respective thereof. Such signatures are analyzed for determining the size scale between the tree 510 and the persona 520. The analyses include determining that the objects are found in the same distance from a reference point 530 and identifying the ratio between the signatures' sizes. The signatures are also matched to signatures of concepts maintained in a database, such as, data warehouse 160, and the actual size of the tree 510 is identified respective thereof. Now, the height of the person 520 can be determined by using the size scale and the actual size of the tree 510.
Video content segments 2 from a Master database (DB) 6 and a Target DB 1 are processed in parallel by a large number of independent computational Cores 3 that constitute an architecture for generating the Signatures (hereinafter the “Architecture”). Further details on the generation of computational Cores are provided below. The independent Cores 3 generate a database of Robust Signatures and Signatures 4 for Target content-segments 5 and a database of Robust Signatures and Signatures 7 for Master content-segments 8. An exemplary and non-limiting process of signature generation for an audio component is shown in detail in
To demonstrate an example of the signature generation process, it is assumed, merely for the sake of simplicity and without limitation on the generality of the disclosed embodiments, that the signatures are based on a single frame, leading to certain simplification of the computational cores generation. The Matching System is extensible for signatures generation capturing dynamics in-between the frames.
The Signatures' generation process is now described with reference to
In order to generate Robust Signatures, i.e., Signatures that are robust to additive noise L (where L is an integer equal to or greater than 1) by the Computational Cores 3 a frame ‘i’ is injected into all the Cores 3. Then, Cores 3 generate two binary response vectors: {right arrow over (S)}, which is a Signature vector, and {right arrow over (RS)} which is a Robust Signature vector.
For generation of signatures robust to additive noise, such as White-Gaussian-Noise, scratch, etc., but not robust to distortions, such as crop, shift and rotation, etc., a core Ci={ni} (1≤i≤L) may consist of a single leaky integrate-to-threshold unit (LTU) node or more nodes. The node ni equations are:
where, is a Heaviside step function; wij is a coupling node unit (CNU) between node i and image component j (for example, grayscale value of a certain pixel j); kj is an image component ‘j’ (for example, grayscale value of a certain pixel j); Thx is a constant Threshold value, where ‘x’ is ‘S’ for Signature and ‘RS’ for Robust Signature; and Vi is a Coupling Node Value.
The Threshold values Thx are set differently for Signature generation than for Robust Signature generation. For example, for a certain distribution of Vi values (for the set of nodes), the thresholds for Signature (ThS) and Robust Signature (ThRS) are set apart, after optimization, according to at least one or more of the following criteria:
1: For: Vi>ThRS
2: p(Vi>ThRS)≈l/L
i.e., approximately l out of the total L nodes can be found to generate a Robust Signature according to the above definition.
3: Both Robust Signature and Signature are generated for certain frame i.
It should be understood that the generation of a signature is unidirectional, and typically yields lossless compression, where the characteristics of the compressed data are maintained but the uncompressed data cannot be reconstructed. Therefore, a signature can be used for the purpose of comparison to another signature without the need for comparison to the original data. The detailed description of the Signature generation can be found in U.S. Pat. Nos. 8,326,775 and 8,312,031, assigned to common assignee, which are hereby incorporated by reference for all the useful information they contain.
A Computational Core generation is a process of definition, selection, and tuning of the parameters of the cores for a certain realization in a specific system and application. The process is based on several design considerations, such as:
(a) The Cores should be designed so as to obtain maximal independence, i.e., the projection from a signal space should generate a maximal pair-wise distance between any two cores' projections into a high-dimensional space.
(b) The Cores should be optimally designed for the type of signals, i.e., the Cores should be maximally sensitive to the spatio-temporal structure of the injected signal, for example, and in particular, sensitive to local correlations in time and space. Thus, in some cases, a core represents a dynamic system, such as in state space, phase space, edge of chaos, etc., which is uniquely used herein to exploit its maximal computational power.
(c) The Cores should be optimally designed with regard to invariance to a set of signal distortions, of interest in relevant applications.
A detailed description of the Computational Core generation and the process for configuring such cores is discussed in more detail in U.S. Pat. No. 8,655,801 referenced above. The computational cores may be implemented in one or more integrated circuits.
The various embodiments disclosed herein can be implemented as hardware, firmware, software, or any combination thereof. Moreover, the software is preferably implemented as an application program tangibly embodied on a program storage unit or computer readable medium consisting of parts, or of certain devices and/or a combination of devices. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the machine is implemented on a computer platform having hardware such as one or more central processing units (“CPUs”), a memory, and input/output interfaces. The computer platform may also include an operating system and microinstruction code. The various processes and functions described herein may be either part of the microinstruction code or part of the application program, or any combination thereof, which may be executed by a CPU, whether or not such a computer or processor is explicitly shown. In addition, various other peripheral units may be connected to the computer platform such as an additional data storage unit and a printing unit. Furthermore, a non-transitory computer readable medium is any computer readable medium except for a transitory propagating signal.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the principles of the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
Number | Date | Country | Kind |
---|---|---|---|
171577 | Oct 2005 | IL | national |
173409 | Jan 2006 | IL | national |
185414 | Aug 2007 | IL | national |
This application claims the benefit of U.S. provisional application No. 62/030,085 filed on Jul. 29, 2014. This application is also a continuation-in-part (CIP) of U.S. patent application Ser. No. 14/096,865 filed Dec. 4, 2013 and also is a continuation-in-part (CIP) of U.S. patent application Ser. No. 13/624,397 filed on Sep. 21, 2012, now pending. The Ser. No. 13/624,397 application is a CIP of: (a) U.S. patent application Ser. No. 13/344,400 filed on Jan. 5, 2012, now pending, which is a continuation of U.S. patent application Ser. No. 12/434,221, filed May 1, 2009, now U.S. Pat. No. 8,112,376;(b) U.S. patent application Ser. No. 12/195,863, filed Aug. 21, 2008, now U.S. Pat. No. 8,326,775, which claims priority under 35 USC 119 from Israeli Application No. 185414, filed on Aug. 21, 2007, and which is also a continuation-in-part of the below-referenced U.S. patent application Ser. No. 12/084,150; and,(c) U.S. patent application Ser. No. 12/084,150 having a filing date of Apr. 7, 2009, now U.S. Pat. No. 8,655,801, which is the National Stage of International Application No. PCT/IL2006/001235, filed on Oct. 26, 2006, which claims foreign priority from Israeli Application No. 171577 filed on Oct. 26, 2005 and Israeli Application No. 173409 filed on 29 Jan. 2006. All of the applications referenced above are herein incorporated by reference for all that they contain.
Number | Name | Date | Kind |
---|---|---|---|
4733353 | Jaswa | Mar 1988 | A |
4932645 | Schorey et al. | Jun 1990 | A |
4972363 | Nguyen et al. | Nov 1990 | A |
5214746 | Fogel et al. | May 1993 | A |
5307451 | Clark | Apr 1994 | A |
5412564 | Ecer | May 1995 | A |
5436653 | Ellis | Jul 1995 | A |
5568181 | Greenwood et al. | Oct 1996 | A |
5638425 | Meador et al. | Jun 1997 | A |
5745678 | Herzberg et al. | Apr 1998 | A |
5763069 | Jordan | Jun 1998 | A |
5806061 | Chaudhuri et al. | Sep 1998 | A |
5852435 | Vigneaux et al. | Dec 1998 | A |
5870754 | Dimitrova et al. | Feb 1999 | A |
5873080 | Coden et al. | Feb 1999 | A |
5887193 | Takahashi et al. | Mar 1999 | A |
5978754 | Kumano | Nov 1999 | A |
5991306 | Burns et al. | Nov 1999 | A |
6052481 | Grajski et al. | Apr 2000 | A |
6070167 | Qian et al. | May 2000 | A |
6076088 | Paik et al. | Jun 2000 | A |
6122628 | Castelli et al. | Sep 2000 | A |
6128651 | Cezar | Oct 2000 | A |
6137911 | Zhilyaev | Oct 2000 | A |
6144767 | Bottou et al. | Nov 2000 | A |
6147636 | Gershenson | Nov 2000 | A |
6163510 | Lee et al. | Dec 2000 | A |
6243375 | Speicher | Jun 2001 | B1 |
6243713 | Nelson et al. | Jun 2001 | B1 |
6275599 | Adler et al. | Aug 2001 | B1 |
6329986 | Cheng | Dec 2001 | B1 |
6381656 | Shankman | Apr 2002 | B1 |
6411229 | Kobayashi | Jun 2002 | B2 |
6422617 | Fukumoto et al. | Jul 2002 | B1 |
6507672 | Watkins et al. | Jan 2003 | B1 |
6523046 | Liu et al. | Feb 2003 | B2 |
6524861 | Anderson | Feb 2003 | B1 |
6550018 | Abonamah et al. | Apr 2003 | B1 |
6557042 | He et al. | Apr 2003 | B1 |
6594699 | Sahai et al. | Jul 2003 | B1 |
6601026 | Appelt et al. | Jul 2003 | B2 |
6611628 | Sekiguchi et al. | Aug 2003 | B1 |
6618711 | Ananth | Sep 2003 | B1 |
6643620 | Contolini et al. | Nov 2003 | B1 |
6643643 | Lee et al. | Nov 2003 | B1 |
6665657 | Dibachi | Dec 2003 | B1 |
6681032 | Bortolussi et al. | Jan 2004 | B2 |
6704725 | Lee | Mar 2004 | B1 |
6732149 | Kephart | May 2004 | B1 |
6742094 | Igari | May 2004 | B2 |
6751363 | Natsev et al. | Jun 2004 | B1 |
6751613 | Lee et al. | Jun 2004 | B1 |
6754435 | Kim | Jun 2004 | B2 |
6763069 | Divakaran et al. | Jul 2004 | B1 |
6763519 | McColl et al. | Jul 2004 | B1 |
6774917 | Foote et al. | Aug 2004 | B1 |
6795818 | Lee | Sep 2004 | B1 |
6804356 | Krishnamachari | Oct 2004 | B1 |
6813395 | Kinjo | Nov 2004 | B1 |
6819797 | Smith et al. | Nov 2004 | B1 |
6845374 | Oliver et al. | Jan 2005 | B1 |
6877134 | Fuller et al. | Apr 2005 | B1 |
6901207 | Watkins | May 2005 | B1 |
6938025 | Lulich et al. | Aug 2005 | B1 |
6985172 | Rigney et al. | Jan 2006 | B1 |
7006689 | Kasutani | Feb 2006 | B2 |
7013051 | Sekiguchi et al. | Mar 2006 | B2 |
7020654 | Najmi | Mar 2006 | B1 |
7023979 | Wu et al. | Apr 2006 | B1 |
7043473 | Rassool et al. | May 2006 | B1 |
7047033 | Wyler | May 2006 | B2 |
7158681 | Persiantsev | Jan 2007 | B2 |
7199798 | Echigo et al. | Apr 2007 | B1 |
7215828 | Luo | May 2007 | B2 |
7260564 | Lynn et al. | Aug 2007 | B1 |
7277928 | Lennon | Oct 2007 | B2 |
7299261 | Oliver et al. | Nov 2007 | B1 |
7302117 | Sekiguchi et al. | Nov 2007 | B2 |
7313805 | Rosin et al. | Dec 2007 | B1 |
7340358 | Yoneyama | Mar 2008 | B2 |
7340458 | Vaithilingam et al. | Mar 2008 | B2 |
7353224 | Chen et al. | Apr 2008 | B2 |
7376672 | Weare | May 2008 | B2 |
7376722 | Sim et al. | May 2008 | B1 |
7433895 | Li et al. | Oct 2008 | B2 |
7464086 | Black et al. | Dec 2008 | B2 |
7526607 | Singh et al. | Apr 2009 | B1 |
7529659 | Wold | May 2009 | B2 |
7536417 | Walsh et al. | May 2009 | B2 |
7574668 | Nunez et al. | Aug 2009 | B2 |
7577656 | Kawai et al. | Aug 2009 | B2 |
7657100 | Gokturk et al. | Feb 2010 | B2 |
7660468 | Gokturk et al. | Feb 2010 | B2 |
7660737 | Lim et al. | Feb 2010 | B1 |
7694318 | Eldering et al. | Apr 2010 | B2 |
7697791 | Chan et al. | Apr 2010 | B1 |
7769221 | Shakes et al. | Aug 2010 | B1 |
7788132 | Desikan et al. | Aug 2010 | B2 |
7836054 | Kawai et al. | Nov 2010 | B2 |
7837111 | Yang et al. | Nov 2010 | B2 |
7860895 | Scofield | Dec 2010 | B1 |
7904503 | De | Mar 2011 | B2 |
7920894 | Wyler | Apr 2011 | B2 |
7921107 | Chang et al. | Apr 2011 | B2 |
7933407 | Keidar et al. | Apr 2011 | B2 |
7974881 | Culver et al. | Jul 2011 | B2 |
7974994 | Li et al. | Jul 2011 | B2 |
7987194 | Walker et al. | Jul 2011 | B1 |
7987217 | Long et al. | Jul 2011 | B2 |
7991715 | Schiff et al. | Aug 2011 | B2 |
8000655 | Wang et al. | Aug 2011 | B2 |
8023739 | Hohimer et al. | Sep 2011 | B2 |
8036893 | Reich | Oct 2011 | B2 |
8098934 | Vincent | Jan 2012 | B2 |
8112376 | Raichelgauz et al. | Feb 2012 | B2 |
8266185 | Raichelgauz et al. | Sep 2012 | B2 |
8312031 | Raichelgauz et al. | Nov 2012 | B2 |
8315442 | Gokturk et al. | Nov 2012 | B2 |
8316005 | Moore | Nov 2012 | B2 |
8326646 | Schwarzberg et al. | Dec 2012 | B2 |
8326775 | Raichelgauz et al. | Dec 2012 | B2 |
8345982 | Gokturk et al. | Jan 2013 | B2 |
8457827 | Ferguson et al. | Jun 2013 | B1 |
8495489 | Everingham | Jul 2013 | B1 |
8548828 | Longmire | Oct 2013 | B1 |
8635531 | Graham et al. | Jan 2014 | B2 |
8655801 | Raichelgauz et al. | Feb 2014 | B2 |
8655878 | Kulkarni et al. | Feb 2014 | B1 |
8677377 | Cheyer et al. | Mar 2014 | B2 |
8682667 | Haughay | Mar 2014 | B2 |
8688446 | Yanagihara | Apr 2014 | B2 |
8706503 | Cheyer et al. | Apr 2014 | B2 |
8775442 | Moore et al. | Jul 2014 | B2 |
8799195 | Raichelgauz et al. | Aug 2014 | B2 |
8799196 | Raichelquaz et al. | Aug 2014 | B2 |
8818916 | Raichelgauz et al. | Aug 2014 | B2 |
8868619 | Raichelgauz et al. | Oct 2014 | B2 |
8868861 | Shimizu et al. | Oct 2014 | B2 |
8880539 | Raichelgauz et al. | Nov 2014 | B2 |
8880566 | Raichelgauz et al. | Nov 2014 | B2 |
8886648 | Procopio et al. | Nov 2014 | B1 |
8898568 | Bull et al. | Nov 2014 | B2 |
8922414 | Raichelgauz et al. | Dec 2014 | B2 |
8959037 | Raichelgauz et al. | Feb 2015 | B2 |
8990125 | Raichelgauz et al. | Mar 2015 | B2 |
8990199 | Ramesh et al. | Mar 2015 | B1 |
9009086 | Raichelgauz et al. | Apr 2015 | B2 |
9031999 | Raichelgauz et al. | May 2015 | B2 |
9087049 | Raichelgauz et al. | Jul 2015 | B2 |
9104747 | Raichelgauz et al. | Aug 2015 | B2 |
9165406 | Gray et al. | Oct 2015 | B1 |
9191626 | Raichelgauz et al. | Nov 2015 | B2 |
9197244 | Raichelgauz et al. | Nov 2015 | B2 |
9218606 | Raichelgauz et al. | Dec 2015 | B2 |
9235557 | Raichelgauz et al. | Jan 2016 | B2 |
9256668 | Raichelgauz et al. | Feb 2016 | B2 |
9323754 | Ramanathan et al. | Apr 2016 | B2 |
9330189 | Raichelgauz et al. | May 2016 | B2 |
9384196 | Raichelgauz et al. | Jul 2016 | B2 |
9438270 | Raichelgauz et al. | Sep 2016 | B2 |
9466068 | Raichelgauz et al. | Oct 2016 | B2 |
9646006 | Raichelgauz et al. | May 2017 | B2 |
9679062 | Schillings et al. | Jun 2017 | B2 |
9807442 | Bhatia et al. | Oct 2017 | B2 |
9875445 | Amer et al. | Jan 2018 | B2 |
9984369 | Li et al. | May 2018 | B2 |
20010019633 | Tenze | Sep 2001 | A1 |
20010038876 | Anderson | Nov 2001 | A1 |
20010056427 | Yoon et al. | Dec 2001 | A1 |
20020010682 | Johnson | Jan 2002 | A1 |
20020010715 | Chinn et al. | Jan 2002 | A1 |
20020019881 | Bokhari et al. | Feb 2002 | A1 |
20020019882 | Bokhani | Feb 2002 | A1 |
20020032677 | Morgenthaler et al. | Mar 2002 | A1 |
20020037010 | Yamauchi | Mar 2002 | A1 |
20020038299 | Zernik et al. | Mar 2002 | A1 |
20020042914 | Walker et al. | Apr 2002 | A1 |
20020059580 | Kalker et al. | May 2002 | A1 |
20020072935 | Rowse et al. | Jun 2002 | A1 |
20020087530 | Smith et al. | Jul 2002 | A1 |
20020099870 | Miller et al. | Jul 2002 | A1 |
20020107827 | Benitez-Jimenez et al. | Aug 2002 | A1 |
20020113812 | Walker et al. | Aug 2002 | A1 |
20020123928 | Eldering et al. | Sep 2002 | A1 |
20020126872 | Brunk et al. | Sep 2002 | A1 |
20020129140 | Peled et al. | Sep 2002 | A1 |
20020129296 | Kwiat et al. | Sep 2002 | A1 |
20020143976 | Barker et al. | Oct 2002 | A1 |
20020147637 | Kraft et al. | Oct 2002 | A1 |
20020152267 | Lennon | Oct 2002 | A1 |
20020157116 | Jasinschi | Oct 2002 | A1 |
20020159640 | Vaithilingam et al. | Oct 2002 | A1 |
20020161739 | Oh | Oct 2002 | A1 |
20020163532 | Thomas | Nov 2002 | A1 |
20020174095 | Lulich et al. | Nov 2002 | A1 |
20020178410 | Haitsma et al. | Nov 2002 | A1 |
20020184505 | Mihcak et al. | Dec 2002 | A1 |
20030005432 | Ellis et al. | Jan 2003 | A1 |
20030028660 | Igawa et al. | Feb 2003 | A1 |
20030041047 | Chang et al. | Feb 2003 | A1 |
20030050815 | Seigel et al. | Mar 2003 | A1 |
20030078766 | Appelt et al. | Apr 2003 | A1 |
20030086627 | Berriss et al. | May 2003 | A1 |
20030089216 | Birmingham et al. | May 2003 | A1 |
20030093790 | Logan et al. | May 2003 | A1 |
20030101150 | Agnihotri | May 2003 | A1 |
20030105739 | Essafi et al. | Jun 2003 | A1 |
20030115191 | Copperman et al. | Jun 2003 | A1 |
20030126147 | Essafi et al. | Jul 2003 | A1 |
20030182567 | Barton et al. | Sep 2003 | A1 |
20030184598 | Graham | Oct 2003 | A1 |
20030191764 | Richards | Oct 2003 | A1 |
20030200217 | Ackerman | Oct 2003 | A1 |
20030217335 | Chung et al. | Nov 2003 | A1 |
20030229531 | Beckerman et al. | Dec 2003 | A1 |
20040003394 | Ramaswamy | Jan 2004 | A1 |
20040025180 | Begeja et al. | Feb 2004 | A1 |
20040068510 | Hayes et al. | Apr 2004 | A1 |
20040095376 | Graham et al. | May 2004 | A1 |
20040098671 | Graham et al. | May 2004 | A1 |
20040107181 | Rodden | Jun 2004 | A1 |
20040111432 | Adams et al. | Jun 2004 | A1 |
20040111465 | Chuang et al. | Jun 2004 | A1 |
20040117367 | Smith et al. | Jun 2004 | A1 |
20040117638 | Monroe | Jun 2004 | A1 |
20040128142 | Whitham | Jul 2004 | A1 |
20040128511 | Sun et al. | Jul 2004 | A1 |
20040133927 | Sternberg et al. | Jul 2004 | A1 |
20040153426 | Nugent | Aug 2004 | A1 |
20040215663 | Liu et al. | Oct 2004 | A1 |
20040249779 | Nauck et al. | Dec 2004 | A1 |
20040260688 | Gross | Dec 2004 | A1 |
20040267774 | Lin et al. | Dec 2004 | A1 |
20050021394 | Miedema et al. | Jan 2005 | A1 |
20050114198 | Koningstein et al. | May 2005 | A1 |
20050131884 | Gross et al. | Jun 2005 | A1 |
20050144455 | Haitsma | Jun 2005 | A1 |
20050163375 | Grady | Jul 2005 | A1 |
20050172130 | Roberts | Aug 2005 | A1 |
20050177372 | Wang et al. | Aug 2005 | A1 |
20050238198 | Brown et al. | Oct 2005 | A1 |
20050238238 | Xu et al. | Oct 2005 | A1 |
20050245241 | Durand et al. | Nov 2005 | A1 |
20050249398 | Khamene et al. | Nov 2005 | A1 |
20050256820 | Dugan et al. | Nov 2005 | A1 |
20050262428 | Little et al. | Nov 2005 | A1 |
20050281439 | Lange | Dec 2005 | A1 |
20050289163 | Gordon et al. | Dec 2005 | A1 |
20050289590 | Cheok et al. | Dec 2005 | A1 |
20060004745 | Kuhn et al. | Jan 2006 | A1 |
20060013451 | Haitsma | Jan 2006 | A1 |
20060020860 | Tardif et al. | Jan 2006 | A1 |
20060020958 | Allamanche et al. | Jan 2006 | A1 |
20060026203 | Tan et al. | Feb 2006 | A1 |
20060031216 | Semple et al. | Feb 2006 | A1 |
20060033163 | Chen | Feb 2006 | A1 |
20060041596 | Stirbu et al. | Feb 2006 | A1 |
20060048191 | Xiong | Mar 2006 | A1 |
20060064037 | Shalon et al. | Mar 2006 | A1 |
20060112035 | Cecchi et al. | May 2006 | A1 |
20060129822 | Snijder et al. | Jun 2006 | A1 |
20060143674 | Jones et al. | Jun 2006 | A1 |
20060153296 | Deng | Jul 2006 | A1 |
20060159442 | Kim et al. | Jul 2006 | A1 |
20060173688 | Whitham | Aug 2006 | A1 |
20060184638 | Chua et al. | Aug 2006 | A1 |
20060204035 | Guo et al. | Sep 2006 | A1 |
20060217818 | Fujiwara | Sep 2006 | A1 |
20060217828 | Hicken | Sep 2006 | A1 |
20060218191 | Gopalakrishnan | Sep 2006 | A1 |
20060224529 | Kermani | Oct 2006 | A1 |
20060236343 | Chang | Oct 2006 | A1 |
20060242130 | Sadri | Oct 2006 | A1 |
20060242139 | Butterfield et al. | Oct 2006 | A1 |
20060242554 | Gerace et al. | Oct 2006 | A1 |
20060247983 | Dalli | Nov 2006 | A1 |
20060248558 | Barton | Nov 2006 | A1 |
20060253423 | McLane et al. | Nov 2006 | A1 |
20060288002 | Epstein et al. | Dec 2006 | A1 |
20070019864 | Koyama et al. | Jan 2007 | A1 |
20070022374 | Huang et al. | Jan 2007 | A1 |
20070033163 | Epstein et al. | Feb 2007 | A1 |
20070038614 | Guha | Feb 2007 | A1 |
20070042757 | Jung et al. | Feb 2007 | A1 |
20070061302 | Ramer et al. | Mar 2007 | A1 |
20070067304 | Ives | Mar 2007 | A1 |
20070067682 | Fang | Mar 2007 | A1 |
20070071330 | Oostveen et al. | Mar 2007 | A1 |
20070074147 | Wold | Mar 2007 | A1 |
20070083611 | Farago et al. | Apr 2007 | A1 |
20070091106 | Moroney | Apr 2007 | A1 |
20070130159 | Gulli et al. | Jun 2007 | A1 |
20070156720 | Maren | Jul 2007 | A1 |
20070168413 | Barletta et al. | Jul 2007 | A1 |
20070179359 | Goodwin | Aug 2007 | A1 |
20070195987 | Rhoads | Aug 2007 | A1 |
20070220573 | Chiussi et al. | Sep 2007 | A1 |
20070244902 | Seide et al. | Oct 2007 | A1 |
20070253594 | Lu et al. | Nov 2007 | A1 |
20070255785 | Hayashi et al. | Nov 2007 | A1 |
20070294295 | Finkelstein et al. | Dec 2007 | A1 |
20070298152 | Baets | Dec 2007 | A1 |
20080040277 | DeWitt | Feb 2008 | A1 |
20080046406 | Seide et al. | Feb 2008 | A1 |
20080049629 | Morrill | Feb 2008 | A1 |
20080049789 | Vedantham et al. | Feb 2008 | A1 |
20080072256 | Boicey et al. | Mar 2008 | A1 |
20080079729 | Brailovsky | Apr 2008 | A1 |
20080091527 | Silverbrook et al. | Apr 2008 | A1 |
20080152231 | Gokturk et al. | Jun 2008 | A1 |
20080159622 | Agnihotri et al. | Jul 2008 | A1 |
20080163288 | Ghosal et al. | Jul 2008 | A1 |
20080165861 | Wen | Jul 2008 | A1 |
20080201299 | Lehikoinen et al. | Aug 2008 | A1 |
20080201314 | Smith et al. | Aug 2008 | A1 |
20080201361 | Castro et al. | Aug 2008 | A1 |
20080204706 | Magne et al. | Aug 2008 | A1 |
20080228995 | Tan et al. | Sep 2008 | A1 |
20080237359 | Silverbrook et al. | Oct 2008 | A1 |
20080253737 | Kimura | Oct 2008 | A1 |
20080263579 | Mears et al. | Oct 2008 | A1 |
20080270373 | Oostveen et al. | Oct 2008 | A1 |
20080307454 | Ahanger et al. | Dec 2008 | A1 |
20080313140 | Pereira et al. | Dec 2008 | A1 |
20090013414 | Washington et al. | Jan 2009 | A1 |
20090022472 | Bronstein et al. | Jan 2009 | A1 |
20090024641 | Quigley et al. | Jan 2009 | A1 |
20090043637 | Eder | Feb 2009 | A1 |
20090043818 | Raichelgauz et al. | Feb 2009 | A1 |
20090089587 | Brunk et al. | Apr 2009 | A1 |
20090119157 | Dulepet | May 2009 | A1 |
20090125529 | Vydiswaran et al. | May 2009 | A1 |
20090125544 | Brindley | May 2009 | A1 |
20090148045 | Lee et al. | Jun 2009 | A1 |
20090157575 | Schobben et al. | Jun 2009 | A1 |
20090172030 | Schiff et al. | Jul 2009 | A1 |
20090175538 | Bronstein et al. | Jul 2009 | A1 |
20090204511 | Tsang | Aug 2009 | A1 |
20090208106 | Dunlop et al. | Aug 2009 | A1 |
20090216639 | Kapczynski et al. | Aug 2009 | A1 |
20090216761 | Raichelgauz et al. | Aug 2009 | A1 |
20090220138 | Zhang et al. | Sep 2009 | A1 |
20090245573 | Saptharishi et al. | Oct 2009 | A1 |
20090245603 | Koruga et al. | Oct 2009 | A1 |
20090253583 | Yoganathan | Oct 2009 | A1 |
20090254572 | Redlich et al. | Oct 2009 | A1 |
20090277322 | Cai et al. | Nov 2009 | A1 |
20090282218 | Raichelgauz et al. | Nov 2009 | A1 |
20090297048 | Slotine et al. | Dec 2009 | A1 |
20100023400 | DeWitt | Jan 2010 | A1 |
20100042646 | Raichelgauz et al. | Feb 2010 | A1 |
20100082684 | Churchill et al. | Apr 2010 | A1 |
20100088321 | Solomon et al. | Apr 2010 | A1 |
20100104184 | Bronstein | Apr 2010 | A1 |
20100106857 | Wyler | Apr 2010 | A1 |
20100125569 | Nair | May 2010 | A1 |
20100153201 | Rubertis et al. | Jun 2010 | A1 |
20100153209 | Rubertis et al. | Jun 2010 | A1 |
20100162405 | Cook | Jun 2010 | A1 |
20100173269 | Puri et al. | Jul 2010 | A1 |
20100191567 | Lee et al. | Jul 2010 | A1 |
20100198626 | Cho et al. | Aug 2010 | A1 |
20100268524 | Nath et al. | Oct 2010 | A1 |
20100284604 | Chrysanthakopoulos | Nov 2010 | A1 |
20100306193 | Pereira et al. | Dec 2010 | A1 |
20100312736 | Kello | Dec 2010 | A1 |
20100318493 | Wessling | Dec 2010 | A1 |
20100322522 | Wang et al. | Dec 2010 | A1 |
20100325138 | Lee et al. | Dec 2010 | A1 |
20100325581 | Finkelstein et al. | Dec 2010 | A1 |
20110035289 | King et al. | Feb 2011 | A1 |
20110052063 | McAuley et al. | Mar 2011 | A1 |
20110055585 | Lee | Mar 2011 | A1 |
20110106782 | Ke et al. | May 2011 | A1 |
20110145068 | King et al. | Jun 2011 | A1 |
20110164180 | Lee | Jul 2011 | A1 |
20110164810 | Zang et al. | Jul 2011 | A1 |
20110202848 | Ismalon | Aug 2011 | A1 |
20110208822 | Rathod | Aug 2011 | A1 |
20110218946 | Stern et al. | Sep 2011 | A1 |
20110246566 | Kashef et al. | Oct 2011 | A1 |
20110251896 | Impollonia et al. | Oct 2011 | A1 |
20110276680 | Rimon | Nov 2011 | A1 |
20110296315 | Lin et al. | Dec 2011 | A1 |
20110313856 | Cohen et al. | Dec 2011 | A1 |
20120082362 | Diem et al. | Apr 2012 | A1 |
20120131454 | Shah | May 2012 | A1 |
20120150890 | Jeong et al. | Jun 2012 | A1 |
20120167133 | Carroll | Jun 2012 | A1 |
20120179642 | Sweeney et al. | Jul 2012 | A1 |
20120185445 | Borden et al. | Jul 2012 | A1 |
20120197857 | Huang | Aug 2012 | A1 |
20120221470 | Lyon | Aug 2012 | A1 |
20120227074 | Hill et al. | Sep 2012 | A1 |
20120239690 | Asikainen et al. | Sep 2012 | A1 |
20120239694 | Avner et al. | Sep 2012 | A1 |
20120299961 | Ramkumar et al. | Nov 2012 | A1 |
20120301105 | Rehg et al. | Nov 2012 | A1 |
20120330869 | Durham | Dec 2012 | A1 |
20120331011 | Raichelgauz et al. | Dec 2012 | A1 |
20130031489 | Gubin et al. | Jan 2013 | A1 |
20130066856 | Ong et al. | Mar 2013 | A1 |
20130067035 | Amanat et al. | Mar 2013 | A1 |
20130067364 | Berntson | Mar 2013 | A1 |
20130080433 | Raichelgauz et al. | Mar 2013 | A1 |
20130086499 | Dyor et al. | Apr 2013 | A1 |
20130089248 | Remiszewski | Apr 2013 | A1 |
20130104251 | Moore et al. | Apr 2013 | A1 |
20130159298 | Mason et al. | Jun 2013 | A1 |
20130173635 | Sanjeev | Jul 2013 | A1 |
20130226930 | Amgren et al. | Aug 2013 | A1 |
20130283401 | Pabla et al. | Oct 2013 | A1 |
20130325550 | Varghese et al. | Dec 2013 | A1 |
20130332951 | Gharaat et al. | Dec 2013 | A1 |
20140019264 | Wachman et al. | Jan 2014 | A1 |
20140025692 | Pappas | Jan 2014 | A1 |
20140125703 | Roveta | May 2014 | A1 |
20140147829 | Jerauld | May 2014 | A1 |
20140152698 | Kim et al. | Jun 2014 | A1 |
20140169681 | Drake | Jun 2014 | A1 |
20140176604 | Venkitaraman et al. | Jun 2014 | A1 |
20140188786 | Raichelgauz et al. | Jul 2014 | A1 |
20140193077 | Shiiyama et al. | Jul 2014 | A1 |
20140250032 | Huang et al. | Sep 2014 | A1 |
20140282655 | Roberts | Sep 2014 | A1 |
20140300722 | Garcia | Oct 2014 | A1 |
20140310825 | Raichelgauz et al. | Oct 2014 | A1 |
20140330830 | Raichelgauz et al. | Nov 2014 | A1 |
20140341476 | Kulick et al. | Nov 2014 | A1 |
20150100562 | Kohlmeier et al. | Apr 2015 | A1 |
20150120627 | Hunzinger et al. | Apr 2015 | A1 |
20150154189 | Raichelgauz et al. | Jun 2015 | A1 |
20150254344 | Kulkarni et al. | Sep 2015 | A1 |
20150286742 | Zhang | Oct 2015 | A1 |
20150289022 | Gross | Oct 2015 | A1 |
20150324356 | Gutierrez et al. | Nov 2015 | A1 |
20160007083 | Gurha | Jan 2016 | A1 |
20160026707 | Ong et al. | Jan 2016 | A1 |
20160239566 | Raichelgauz et al. | Aug 2016 | A1 |
20160306798 | Guo et al. | Oct 2016 | A1 |
20170017638 | Satyavarta et al. | Jan 2017 | A1 |
20170154241 | Shambik et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
1085464 | Jan 2007 | EP |
0231764 | Apr 2002 | WO |
0231764 | Apr 2002 | WO |
2003005242 | Jan 2003 | WO |
2003067467 | Aug 2003 | WO |
2004019527 | Mar 2004 | WO |
2005027457 | Mar 2005 | WO |
2007049282 | May 2007 | WO |
20070049282 | May 2007 | WO |
2014076002 | May 2014 | WO |
2014137337 | Sep 2014 | WO |
2016040376 | Mar 2016 | WO |
2016070193 | May 2016 | WO |
Entry |
---|
Chuan-Yu Cho, et al., “Efficient Motion-Vector-Based Video Search Using Query by Clip”, 2004, IEEE, Taiwan, pp. 1-4. |
Gomes et al., “Audio Watermaking and Fingerprinting: For Which Applications?” University of Rene Descartes, Paris, France, 2003. |
Ihab Al Kabary, et al., “SportSense: Using Motion Queries to Find Scenes in Sports Videos”, Oct. 2013, ACM, Switzerland, pp. 1-3. |
Jianping Fan et al., “Concept-Oriented Indexing of Video Databases: Towards Semantic Sensitive Retrieval and Browsing”, IEEE, vol. 13, No. 7, Jul. 2004, pp. 1-19. |
Shih-Fu Chang, et al., “VideoQ: A Fully Automated Video Retrieval System Using Motion Sketches”, 1998, IEEE, , New York, pp. 1-2. |
Wei-Te Li et al., “Exploring Visual and Motion Saliency for Automatic Video Object Extraction”, IEEE, vol. 22, No. 7, Jul. 2013, pp. 1-11. |
Zhu et al., Technology-Assisted Dietary Assessment. Computational Imaging VI, edited by Charles A. Bauman, Eric L. Miller, Ilya Pollak, Proc. of SPIE-IS&T Electronic Imaging, SPIE vol. 6814, 681411, Copyright 2008 SPIE-IS&T. pp. 1-10. |
Brecheisen, et al., “Hierarchical Genre Classification for Large Music Collections”, ICME 2006, pp. 1385-1388. |
Lau, et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications Year: 2008, pp. 98-103, DOI: 10.1109/CITISIA.2008.4607342 IEEE Conference Publications. |
McNamara, et al., “Diversity Decay in Opportunistic Content Sharing Systems”, 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks Year: 2011, pp. 1-3, DOI: 10.1109/WoWMoM.2011.5986211 IEEE Conference Publications. |
Santos, et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for Multimedia and e-Learning”, 2015 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCOM) Year: 2015, pp. 224-228, DOI: 10.1109/SOFTCOM.2015.7314122 IEEE Conference Publications. |
Wilk, et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, 2015 International Conference and Workshops on Networked Systems (NetSys) Year: 2015, pp. 1-5, DOI: 10.1109/NetSys.2015.7089081 IEEE Conference Publications. |
Clement, et al. “Speaker Diarization of Heterogeneous Web Video Files: A Preliminary Study”, Acoustics, Speech and Signal Processing (ICASSP), 2011, IEEE International Conference on Year: 2011, pp. 4432-4435, DOI: 10.1109/ICASSP.2011.5947337 IEEE Conference Publications, France. |
Gong, et al., “A Knowledge-based Mediator for Dynamic Integration of Heterogeneous Multimedia Information Sources”, Video and Speech Processing, 2004, Proceedings of 2004 International Symposium on Year: 2004, pp. 467-470, DOI: 10.1109/ISIMP.2004.1434102 IEEE Conference Publications, Hong Kong. |
Lin, et al., “Robust Digital Signature for Multimedia Authentication: A Summary”, IEEE Circuits and Systems Magazine, 4th Quarter 2003, pp. 23-26. |
Lin, et al., “Summarization of Large Scale Social Network Activity”, Acoustics, Speech and Signal Processing, 2009, ICASSP 2009, IEEE International Conference on Year 2009, pp. 3481-3484, DOI: 10.1109/ICASSP.2009.4960375, IEEE Conference Publications, Arizona. |
Nouza, et al., “Large-scale Processing, Indexing and Search System for Czech Audio-Visual Heritage Archives”, Mlultimedia Signal Processing (MMSP), 2012, pp. 337-342, IEEE 14th Intl. Workshop, DOI: 10.1109/MMSP.2012.6343465, Czech Republic. |
Li, et al., “Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature,” Proceedings of the Digital Imaging Computing: Techniques and Applications, Feb. 2005, vol. 0-7695-2467, Australia. |
May et al., “The Transputer”, Springer-Verlag, Berlin Heidelberg, 1989, teaches multiprocessing system. |
Nam, et al., “Audio Visual Content-Based Violent Scene Characterization”, Department of Electrical and Computer Engineering, Minneapolis, MN, 1998, pp. 353-357. |
Vailaya, et al., “Content-Based Hierarchical Classification of Vacation Images,” I.E.E.E.: Multimedia Computing and Systems, vol. 1, 1999, East Lansing, MI, pp. 518-523. |
Vallet, et al., “Personalized Content Retrieval in Context Using Ontological Knowledge,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, No. 3, Mar. 2007, pp. 336-346. |
Whitby-Strevens, “The Transputer”, 1985 IEEE, Bristol, UK. |
Yanai, “Generic Image Classification Using Visual Knowledge on the Web,” MM'03, Nov. 2-8, 2003, Tokyo, Japan, pp. 167-176. |
Liu, et al., “Instant Mobile Video Search With Layered Audio-Video Indexing and Progressive Transmission”, Multimedia, IEEE Transactions on Year: 2014, vol. 16, Issue: 8, pp. 2242-2255, DOI: 10.1109/TMM.2014.2359332 IEEE Journals & Magazines. |
Mladenovic, et al., “Electronic Tour Guide for Android Mobile Platform with Multimedia Travel Book”, Telecommunications Forum (TELFOR), 2012 20th Year: 2012, pp. 1460-1463, DOI: 10.1109/TELFOR.2012.6419494 IEEE Conference Publications. |
Park, et al., “Compact Video Signatures for Near-Duplicate Detection on Mobile Devices”, Consumer Electronics (ISCE 2014), The 18th IEEE International Symposium on Year: 2014, pp. 1-2, DOI: 10.1109/ISCE.2014.6884293 IEEE Conference Publications. |
Wang et al. “A Signature for Content-based Image Retrieval Using a Geometrical Transform”, ACM 1998, pp. 229-234. |
Zang, et al., “A New Multimedia Message Customizing Framework for Mobile Devices”, Multimedia and Expo, 2007 IEEE International Conference on Year: 2007, pp. 1043-1046, DOI: 10.1109/ICME.2007.4284832 IEEE Conference Publications. |
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995. |
Cernansky et al., “Feed-forward Echo State Networks”; Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005. |
Fathy et al., “A Parallel Design and Implementation for Backpropagation Neural Network Using NIMD Architecture”, 8th Mediterranean Electrotechnical Corsfe rersce, 19'96. MELECON '96, Date of Conference: May 13-16, 1996, vol. 3, pp. 1472-1475. |
Foote, Jonathan, et al. “Content-Based Retrieval of Music and Audio”, 1997 Institute of Systems Science, National University of Singapore, Singapore (Abstract). |
Howlett et al., “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International Journal of Knowledge-based Intelligent Engineering Systems, 4 (2). pp. 86-93, 133N 1327-2314; first submitted Nov. 30, 1999; revised version submitted Mar. 10, 2000. |
International Search Authority: “Written Opinion of the International Searching Authority” (PCT Rule 43bis.1) including International Search Report for International Patent Application No. PCT/US2008/073852; dated Jan. 28, 2009. |
International Search Authority: International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty) including “Written Opinion of the International Searching Authority” (PCT Rule 43bis. 1) for the corresponding International Patent Application No. PCT/IL2006/001235; dated Jul. 28, 2009. |
International Search Report for the corresponding International Patent Application PCT/IL2006/001235; dated Nov. 2, 2008. |
IPO Examination Report under Section 18(3) for corresponding UK application No. GB1001219.3, dated May 30, 2012. |
IPO Examination Report under Section 18(3) for corresponding UK application No. GB1001219.3, dated Sep. 12, 2011. |
Iwamoto, K.; Kasutani, E.; Yamada, A.: “Image Signature Robust to Caption Superimposition for Video Sequence Identification”; 2006 IEEE International Conference on Image Processing; pp. 3185-3188, Oct. 8-11, 2006; doi: 10.1109/ICIP.2006.313046. |
Jaeger, H.: “The “echo state” approach to analysing and training recurrent neural networks”, GMD Report, No. 148, 2001, pp. 1-43, XP002466251. German National Research Center for Information Technology. |
Lin, C.; Chang, S.: “Generating Robust Digital Signature for Image/Video Authentication”, Multimedia and Security Workshop at ACM Mutlimedia '98; Bristol, U.K., Sep. 1998; pp. 49-54. |
Lyon, Richard F.; “Computational Models of Neural Auditory Processing”; IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar. 1984, vol. 9, pp. 41-44. |
Maass, W. et al.: “Computational Models for Generic Cortical Microcircuits”, Institute for Theoretical Computer Science, Technische Universitaet Graz, Graz, Austria, published Jun. 10, 2003. |
Morad, T.Y. et al.: “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005 (Jul. 4, 2005), pp. 1-4, XP002466254. |
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on Control '96, Sep. 2-5, 1996, Conference 1996, Conference Publication No. 427, IEE 1996. |
Natsclager, T. et al.: “The “liquid computer”: A novel strategy for real-time computing on time series”, Special Issue on Foundations of Information Processing of Telematik, vol. 8, No. 1, 2002, pp. 39-43, XP002466253. |
Ortiz-Boyer et al., “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005) 1-48 Submitted Nov. 2004; published Jul. 2005. |
Raichelgauz, I. et al.: “Co-evolutionary Learning in Liquid Architectures”, Lecture Notes in Computer Science, [Online] vol. 3512, Jun. 21, 2005 (Jun. 21, 2005), pp. 241-248, XP019010280 Springer Berlin / Heidelberg ISSN: 1611-3349 ISBN: 978-3-540-26208-4. |
Ribert et al. “An Incremental Hierarchical Clustering”, Visicon Interface 1999, pp. 586-591. |
Scheper et al, “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publi, ISBN 2-930307-06-4. |
Theodoropoulos et al, “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996. PDP '96. |
Verstraeten et al., “Isolated word recognition with the Liquid State Machine: a case study”; Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available online Jul. 14, 2005. |
Verstraeten et al.: “Isolated word recognition with the Liquid State Machine: a case study”, Information Processing Letters, Amsterdam, NL, vol. 95, No. 6, Sep. 30, 2005 (Sep. 30, 2005), pp. 521-528, XP005028093 ISSN: 0020-0190. |
Xian-Sheng Hua et al.: “Robust Video Signature Based on Ordinal Measure” In: 2004 International Conference on Image Processing, ICIP '04; Microsoft Research Asia, Beijing, China; published Oct. 24-27, 2004, pp. 685-688. |
Zeevi, Y. et al.: “Natural Signal Classification by Neural Cliques and Phase-Locked Attractors”, IEEE World Congress on Computational Intelligence, IJCNN2006, Vancouver, Canada, Jul. 2006 (Jul. 2006), XP002466252. |
Zhou et al., “Ensembling neural networks: Many could be better than all”; National Laboratory for Novel Software Technology, Nanjing Unviersirty, Hankou Road 22, Nanjing 210093, PR China; Available online Mar. 12, 2002. |
Zhou et al., “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”; IEEE Transactions on Information Technology in Biomedicine, vol. 7, Issue: 1, pp. 37-42, Date of Publication: Mar. 2003. |
Cococcioni, et al, “Automatic Diagnosis of Defects of Rolling Element Bearings Based on Computational Intelligence Techniques”, University of Pisa, Pisa, Italy, 2009. |
Emami, et al, “Role of Spatiotemporal Oriented Energy Features for Robust Visual Tracking in Video Surveillance, University of Queensland”, St. Lucia, Australia, 2012. |
Guo et al, “AdOn: An Intelligent Overlay Video Advertising System”, SIGIR, Boston, Massachusetts, Jul. 19-23, 2009. |
Mandhaoui, et al, “Emotional Speech Characterization Based on Multi-Features Fusion for Face-to-Face Interaction”, Universite Pierre et Marie Curie, Paris, France, 2009. |
Marti, et al, “Real Time Speaker Localization and Detection System for Camera Steering in Multiparticipant Videoconferencing Environments”, Universidad Politecnica de Valencia, Spain, 2011. |
Mei, et al., “Contextual In-Image Advertising”, Microsoft Research Asia, pp. 439-448, 2008. |
Mei, et al., “VideoSense—Towards Effective Online Video Advertising”, Microsoft Research Asia, pp. 1075-1084, 2007. |
Semizarov et al. “Specificity of Short Interfering RNA Determined through Gene Expression Signatures”, PNAS, 2003, pp. 6347-6352. |
Odinaev, et al., “Cliques in Neural Ensembles as Perception Carriers”, Technion—Israel Institute of Technology, 2006 International Joint Conference on Neural Networks, Canada, 2006, pp. 285-292. |
The International Search Report and the Written Opinion for PCT/US2016/054634 dated Mar. 16, 2017, ISA/RU, Moscow, RU. |
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93, downloaded from http://proceedings.spiedigitallibrary.org/ on Aug. 2, 2017. |
Schneider, et. al., “A Robust Content Based Digital Signature for Image Authentication”, Proc. ICIP 1996, Laussane, Switzerland, Oct. 1996, pp. 227-230. |
Yanagawa, et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts.” Columbia University ADVENT technical report, 2007, pp. 222-2006-8. |
Johnson, John L., “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images.” Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253. |
The International Search Report and the Written Opinion for PCT/US2016/050471, ISA/RU, Moscow, RU, dated May 4, 2017. |
The International Search Report and the Written Opinion for PCT/US2017/015831, ISA/RU, Moscow, Russia, dated Apr. 20, 2017. |
Ma et el. (“Semantics modeling based image retrieval system using neural networks” 2005 (Year: 2005). |
Zhou et al, “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”, IEEE Transactions on Information Technology in Biomedicine, vol. 7, Issue: 1, Mar. 2003, pp. 37-42. |
Zhu et al., “Technology-Assisted Dietary Assesment”, Proc SPIE. Mar. 20, 2008, pp. 1-15. |
Zou et al., “A Content-Based Image Authentication System with Lossless Data Hiding”, ICME 2003, pp. 213-216. |
“Computer Vision Demonstration Website”, Electronics and Computer Science, University of Southampton, 2005, USA. |
Big Bang Theory Series 04 Episode 12, aired Jan. 6, 2011; [retrieved from Internet: ]. |
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995, pp. 1-14. |
Burgsteiner et al., “Movement Prediction from Real-World Images Using a Liquid State machine”, Innovations in Applied Artificial Intelligence Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence, LNCS, Springer-Verlag, BE, vol. 3533, Jun. 2005, pp. 121-130. |
Cernansky et al, “Feed-forward Echo State Networks”, Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005, pp. 1-4. |
Chinchor, Nancy A. et al.; Multimedia Analysis + Visual Analytics = Multimedia Analytics; IEEE Computer Society; 2010; pp. 52-60. (Year: 2010). |
Fathy et al, “A Parallel Design and Implementation for Backpropagation Neural Network Using MIMD Architecture”, 8th Mediterranean Electrotechnical Conference, 19'96. MELECON '96, Date of Conference: May 13-16, 1996, vol. 3 pp. 1472-1475, vol. 3. |
Freisleben et al, “Recognition of Fractal Images Using a Neural Network”, Lecture Notes in Computer Science, 1993, vol. 6861, 1993, pp. 631-637. |
Garcia, “Solving the Weighted Region Least Cost Path Problem Using Transputers”, Naval Postgraduate School, Monterey, California, Dec. 1989. |
Guo et al, AdOn: An Intelligent Overlay Video Advertising System (Year: 2009). |
Hogue, “Tree Pattern Inference and Matching for Wrapper Induction on the World Wide Web”, Master's Thesis, Massachusetts Institute of Technology, Jun. 2004, pp. 1-106. |
Howlett et al, “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International Journal of knowledge-based intelligent engineering systems, 4 (2). pp. 86-93, 133N 1327-2314. |
Hua et al., “Robust Video Signature Based on Ordinal Measure”, Image Processing, 2004, 2004 International Conference on Image Processing (ICIP), vol. 1, IEEE, pp. 685-688, 2004. |
International Search Report and Written Opinion for PCT/US2016/050471, ISA/RU, Moscow, RU, dated May 4, 2017. |
International Search Report and Written Opinion for PCT/US2016/054634, ISA/RU, Moscow, RU, dated Mar. 16, 2017. |
International Search Report and Written Opinion for PCT/US2017/015831, ISA/RU, Moscow, RU, dated Apr. 20, 2017. |
Johnson et al, “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images”, Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253. |
Lau et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, 2008, pp. 98-103. |
Li et al (“Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature” 2005) (Year: 2005). |
Lin et al., “Generating robust digital signature for image/video authentication”, Multimedia and Security Workshop at ACM Multimedia '98, Bristol, U.K., Sep. 1998, pp. 245-251. |
Lu et al, “Structural Digital Signature for Image Authentication: An Incidental Distortion Resistant Scheme”, IEEE Transactions on Multimedia, vol. 5, No. 2, Jun. 2003, pp. 161-173. |
Lyon, “Computational Models of Neural Auditory Processing”, IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar 1984, vol. 9, pp. 41-44. |
Marian Stewart B et al., “Independent component representations for face recognition”, Proceedings of the SPIE Symposium on Electronic Imaging: Science and Technology; Conference on Human Vision and Electronic Imaging III, San Jose, California, Jan. 1998, pp. 1-12. |
May et al, “The Transputer”, Springer-Verlag Berlin Heidelberg 1989, vol. 41. |
McNamara et al., “Diversity Decay in opportunistic Content Sharing Systems”, 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1-3. |
Morad et al., “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005, pp. 1-4, XP002466254. |
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on Control '96, Sep. 2-5, 1996, Conference Publication No. 427, IEE 1996. |
Natschlager et al., “The “Liquid Computer”: A novel strategy for real-time computing on time series”, Special Issue on Foundations of Information Processing of telematik, vol. 8, No.1, 2002, pp. 39-43, XP002466253. |
Odinaev et al, “Cliques in Neural Ensembles as Perception Carriers”, Technion—Institute of Technology, 2006 International Joint Conference on neural Networks, Canada, 2006, pp. 285-292. |
Ortiz-Boyer et al, “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005) Submitted Nov. 2004; published Jul. 2005, pp. 1-48. |
Pandya etal. A Survey on QR Codes: in context of Research and Application. International Journal of Emerging Technology and U Advanced Engineering. ISSN 2250-2459, ISO 9001:2008 Certified Journal, vol. 4, Issue 3, Mar. 2014 (Year: 2014). |
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93. |
Rui, Yong et al. “Relevance feedback: a power tool for interactive content-based image retrieval.” IEEE Transactions pn circuits and systems for video technology 8.5 (1998): 644-655. |
Santos et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for multimediaand E-Learning”, 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCom), 2015, pp. 224-228. |
Scheper et al, “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publication, ISBN 2-930307-06-4, pp. 1-12. |
Schneider et al, “A Robust Content based Digital Signature for Image Authentication”, Proc. ICIP 1996, Lausane, Switzerland, Oct. 1996, pp. 227-230. |
Srihari et al., “Intelligent Indexing and Semantic Retrieval of Multimodal Documents”, Kluwer Academic Publishers, May 2000, vol. 2, Issue 2-3, pp. 245-275. |
Srihari, Rohini K. “Automatic indexing and content-based retrieval of captioned images” Computer 0 (1995): 49-56. |
Stolberg et al (“Hibrid-Soc: A Multi-Core Soc Architecture for Multimedia Signal Processing” (2003). |
Stolberg et al, “Hibrid-Soc: A Mul Ti-Core Soc Architecture for Mul Timedia Signal Processing”, 2003 IEEE, pp. 189-194. |
Theodoropoulos et al, “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996. PDP '96, pp. 274-281. |
Vallet et al (“Personalized Content Retrieval in Context Using Ontological Knowledge” Mar. 2007) (Year: 2007). |
Verstraeten et al, “Isolated word recognition with the Liquid State Machine: a case study”, Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available onlline Jul. 14, 2005, pp. 521-528. |
Wang et al., “Classifying Objectionable Websites Based onImage Content”, Stanford University, pp. 1-12. |
Ware et al, “Locating and Identifying Components in a Robot's Workspace using a Hybrid Computer Architecture” Proceedings of the 1995 IEEE International Symposium on Intelligent Control, Aug. 27-29, 1995, pp. 139-144. |
Whitby-Strevens, “The transputer”, 1985 IEEE, pp. 292-300. |
Wilk et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, International Conference and Workshops on networked Systems (NetSys), 2015, pp. 1-5. |
Yanagawa et al, “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University ADVENT Technical Report # 222-2006-8, Mar. 20, 2007, pp. 1-17. |
Yanagawa et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University Advent Technical Report #222, 2007, pp. 2006-2008. |
Zhou et al, “Ensembling neural networks: Many could be better than all”, National Laboratory for Novel Software Technology, Nanjing University, Hankou Road 22, Nanjing 210093, PR China, Available online Mar. 12, 2002, pp. 239-263. |
Number | Date | Country | |
---|---|---|---|
20150139569 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
62030085 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12434221 | May 2009 | US |
Child | 13344400 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14096865 | Dec 2013 | US |
Child | 14608880 | US | |
Parent | 13624397 | Sep 2012 | US |
Child | 14096865 | US | |
Parent | 13344400 | Jan 2012 | US |
Child | 13624397 | US | |
Parent | 12195863 | Aug 2008 | US |
Child | 13624397 | US | |
Parent | 12084150 | US | |
Child | 12195863 | US |