Method and system for determining the dimensions of an object shown in a multimedia content item

Information

  • Patent Grant
  • 10607355
  • Patent Number
    10,607,355
  • Date Filed
    Thursday, January 29, 2015
    10 years ago
  • Date Issued
    Tuesday, March 31, 2020
    4 years ago
Abstract
A method and system for determining at least a size dimension of objects shown in multimedia content items are presented. The method includes receiving an input multimedia content item; identifying objects shown in the multimedia content item; generating at least a first signature for at least a first object of the plurality of objects and at least a second signature for at least a second object; identifying at least one concept that matches the at least a first object; determining an actual size of the first object respective of the match to the at least one concept; determining a size scale between the first object and the second object using the at least a first signature and the at least a second signature; and determining the at least size dimension of the second object respective of the size scale and the actual size of the first object.
Description
TECHNICAL FIELD

The present disclosure relates generally to the analysis of multimedia content items, and more specifically to a method for determining the size dimensions of objects shown in a multimedia content item.


BACKGROUND

With the abundance of multimedia content made available through various means in general and the Internet in particular, there is also a need to provide effective ways of analyzing such multimedia content. Multimedia content analysis is a challenging task, as it requires processing of a plurality of graphical elements (e.g., multimedia elements).


Several prior art solutions can be used to analyze multimedia content items. As a result of the analysis, relevant multimedia elements may be extracted from a multimedia content item. However, a problem may occur while trying to identify information regarding the extracted multimedia elements using additional multimedia content items that may be useful, for example, multimedia content items containing similar characteristics to the characteristics of the extracted multimedia content.


Typically, while analyzing the characteristics of the multimedia content item, the complexity of a multimedia content item leads to inefficient identification of common patterns. Furthermore, the analysis as known these days may be inefficient because of lack of correlation between the multimedia elements extracted from the multimedia content item.


It would be therefore advantageous to provide an efficient solution to analyze multimedia content items. It would be further advantageous if such solution would enable identification of several multimedia elements in the multimedia content based on already identified multimedia elements.


SUMMARY

A summary of several exemplary embodiments of the disclosure follows. This summary is provided for the convenience of the reader to provide a basic understanding of such embodiments and does not wholly define the breadth of the disclosure. This summary is not an extensive overview of all contemplated embodiments, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all embodiments. Its sole purpose is to present some concepts of one or more embodiments in a simplified form as a prelude to the more detailed description that is presented later. For convenience, the term some embodiments may be used herein to refer to a single embodiment or multiple embodiments of the disclosure.


Certain exemplary embodiments disclosed herein include a method for determining at least a size dimension of objects shown in multimedia content items. The method comprises receiving an input multimedia content item; identifying a plurality of objects shown in the input multimedia content item; generating at least a first signature for at least a first object of the plurality of objects and at least a second signature for at least a second object of the plurality of objects; identifying at least one concept that matches the at least a first object, wherein the identification is performed using the at least a first signature; determining an actual size of the at least a first object respective of the match to the at least one concept, wherein the actual size of the at least a first object is determined respective of an actual size of the at least one concept maintained in a data warehouse; determining a size scale between the at least a first object and the at least a second object of the plurality of objects using the at least a first signature and the at least a second signature; and determining the at least size dimension of the at least a second object of the plurality of objects respective of the size scale and the actual size of the first object.


Certain exemplary embodiments disclosed herein include a system for determining at least a size dimension of objects shown in a multimedia content item containing a plurality of objects. The system comprises an interface to a network for receiving an input multimedia content item; a processing unit; and a memory connected to the processing unit and configured to contain a plurality of instructions that when executed by the processor configure the system to: identify a plurality of objects shown in the input multimedia content item; identify at least one concept that matches at least a first object, wherein the identification is performed using at least a first signature; determine an actual size of the at least a first object respective of the match to the at least one concept, wherein the actual size of the at least a first object is determined respective of an actual size of the at least one concept maintained in a data warehouse; determine a size scale between the at least a first object and at least a second object of the plurality of objects using the at least a first signature and at least a second signature; and determine the at least size dimension of the at least a second object of the plurality of objects respective of the size scale and the actual size of the at least a first object.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter disclosed herein is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the disclosed embodiments will be apparent from the following detailed description taken in conjunction with the accompanying drawings.



FIG. 1 is a schematic block diagram of a network system utilized to describe the various embodiments disclosed;



FIG. 2 is a flowchart describing a method for determination of the size dimensions of an object shown in a multimedia content item containing a plurality of objects according to an embodiment;



FIG. 3 is a schematic diagram for demonstrating the operation of the method discussed in FIG. 2;



FIG. 4 is a block diagram depicting the basic flow of information in a signature generator system;



FIG. 5 is a diagram showing the flow of patches generation, response vector generation, and signature generation in a large-scale speech-to-text system.





DETAILED DESCRIPTION

It is important to note that the embodiments disclosed herein are only examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed embodiments. Moreover, some statements may apply to some inventive features but not to others. In general, unless otherwise indicated, singular elements may be in plural and vice versa with no loss of generality. In the drawings, like numerals refer to like parts through several views.


Certain exemplary embodiments disclosed herein include a method and system for determination of at least a size dimension of an object shown in a multimedia content item (e.g., an image, a graphic, and a photograph). The multimedia content item is received from a user device. Signatures are generated for the objects shown in the multimedia content item and a ratio between the signatures' sizes is analyzed to determine a size scale between the objects. The generated signature(s) are matched to concepts maintained in a data warehouse. Upon identifying a match between at least one signature generated for an object and at least one concept, the actual size of the identified object is retrieved from a data warehouse. The size dimensions of the other objects are determined respective of the size scale and the actual size of the identified object. According to an embodiment, the size scale between the objects is determined respective of the distance of each object from a reference point.



FIG. 1 shows an exemplary and non-limiting schematic diagram of a network system 100 utilized to describe the various embodiments disclosed herein. A network 110 is used to communicate between different parts of the network system 100. The network 110 may be the Internet, the world-wide-web (WWW), a local area network (LAN), a wide area network (WAN), a metro area network (MAN), and the like.


Further connected to the network 110 is a user device 120 configured to execute at least one application (app) 125. The application 125 may be, for example, a web browser, a script, an add-on, a mobile application (“app”), or any application programmed to interact with a server 130. In an embodiment, the server 130 may be connected to the network 110. The user device 120 may be, but is not limited to, a personal computer (PC), a personal digital assistant (PDA), a mobile phone, a smart phone, a tablet computer, a laptop, a wearable computing device, or another kind of computing device equipped with browsing, viewing, listening, filtering, and managing capabilities that is enabled as further discussed herein below. It should be noted that one user device 120 and one application 125 are illustrated in FIG. 1 only for the sake of simplicity and without limitation on the generality of the disclosed embodiments.


The network system 100 also includes a data warehouse 160 configured to store multimedia content items, previously generated signatures for objects shown in the multimedia content items, previously generated signatures for concepts or concept structures, the concepts' size, and the like. The data warehouse 160 may be connected to the network 110. In the embodiment illustrated in FIG. 1, the server 130 is communicatively connected to the data warehouse 160 through the network 110. In other non-limiting configurations, the server 130 is directly connected to the data warehouse 160.


The various embodiments disclosed herein are realized using the server 130, a signature generator system (SGS) 140 and a deep-content-classification (DCC) system 150. The SGS 140 may be connected to the server 130 directly or through the network 110. The DCC system 150 may be connected to the network 110. The server 130 is configured to receive and serve the at least one multimedia content item in which the objects are shown and cause the SGS 140 to generate at least one signature respective thereof and query the DCC system 150. To this end, the server 130 is communicatively connected to the SGS 140 and the DCC system 150.


The DCC system 150 is configured to generate concept structures (or concepts) and to identify concepts that match the multimedia content item and/or the objects shown within. A concept is a collection of signatures representing an object and metadata describing the concept. The collection is a signature reduced cluster generated by inter-matching the signatures generated for the many objects, clustering the inter-matched signatures, and providing a reduced cluster set of such clusters. As a non-limiting example, a ‘Superman concept’ is a signature reduced cluster of signatures describing elements (such as objects) related to, e.g., a Superman cartoon: a set of metadata including textual representations of the Superman concept. A cluster reduction process is performed. Specifically, the purpose of the operation is to ensure that in the cluster there remains the minimal number of signatures that still identify all of the MMDEs that are associated with the signature reduced cluster (SRC). This can be performed, for example, by attempting to match the signatures of each of the MMDEs associated with the SRC having one or more signatures removed there from. In one embodiment of the invention the process of cluster reduction for the purpose of generating SRCs is performed in parallel and independently of the process described herein above.


Techniques for generating concepts and concept structures are also described in the U.S. Pat. No. 8,266,185 (hereinafter the '185 patent) to Raichelgauz, et al., which is assigned to a common assignee, and is incorporated by reference herein for all that it contains. In an embodiment, the DCC system 150 is configured and operates as the DCC system discussed in the '185 patent. The process of generating the signatures in the SGS 140 is explained in more detail below with respect to FIGS. 4 and 5.


It should be noted that each of the server 130, the SGS 140, and the DCC system 150 typically comprise a processing unit, such as a processor (not shown) or an array of processors coupled to a memory. In one embodiment, the processing unit may be realized through architecture of computational cores described in detail below. The memory contains instructions that can be executed by the processing unit. The instructions, when executed by the processing unit, cause the processing unit to perform the various functions described herein. The one or more processors may be implemented with any combination of general-purpose microprocessors, multi-core processors, microcontrollers, digital signal processors (DSPs), field programmable gate array (FPGAs), programmable logic devices (PLDs), controllers, state machines, gated logic, discrete hardware components, dedicated hardware finite state machines, or any other suitable entities that can perform calculations or other manipulations of information. In certain implementations, the server 130 also includes an interface (not shown) to the network 110.


According to the disclosed embodiments, the server 130 is configured to receive a multimedia content item showing a plurality of objects from the user device 120. An object may be any element shown in the multimedia content item, for example, a tree, a car, a person, a table, and the like. The multimedia content item may be, but is not limited to, an image, a graphic, video frame, a photograph, and/or combinations thereof and portions thereof. In one embodiment, the server 130 is configured to receive a uniform resource locator (URL) of a webpage viewed by the user device 120 and accessed by the application 125. The webpage is processed to extract the multimedia content item contained therein.


The request to analyze the multimedia content item can be sent by a script executed in the webpage, such as when the application 125 (e.g., a web server or a publisher server) requests to upload one or more multimedia content items to the webpage. Such a request may include a URL of the webpage or a copy of the webpage. The application 125 can also send a picture taken by a user of the user device 120 to the server 130.


The server 130, in response to receiving the multimedia content item, is configured to return information respective of the size dimensions of the objects shown in the multimedia content item. To this end, the server 130 is configured to analyze the multimedia content item to identify the objects shown in the multimedia content item. As an example, an image showing Central Park in New York is analyzed to identify the objects of a carriage way, a car, a streetlight, and a person.


With this aim, at least one signature is generated for each object using the SGS 140. The generated signature(s) may be robust to noise and distortion as discussed below. Upon identifying, for example, a ratio between the signatures' sizes, a size scale between the objects is determined. According to an embodiment, parameters such as distance of each object from a reference point may be taken in account to determine the size scale.


In one embodiment, using the generated signature(s), the DCC system 150 is queried to determine if there is a match to at least one concept. The DCC system 150 is configured to return, for each matching concept, a concept's signature (or a signature reduced cluster (SRC)) and optionally the concept's metadata. It should be understood that a match exists when the signature of the concept overlaps with the signature(s) of the object above a predetermined threshold level.


Upon identification of a match, the server 130 is configured to retrieve the actual size of the identified object from the data warehouse 160. For example, if the signature identified a person, a metadata may provide information about that person's actual height. If a car was identified, its actual height or actual length may be retrieved from the data warehouse 160. After retrieving the actual size of the identified object, the server 130 is configured to determine the size dimensions of the other objects identified within the multimedia content item respective of the size scale between the objects. Such information is then sent to the user device 120.


One of ordinary skill in the art would readily appreciate that a more accurate determination of the size scale may be done by repeating the process on other identified objects, a process that can be repeated until the size scale value does not change beyond a predetermined threshold value from one identification to the other.


In another embodiment, the SGS 140 is configured to generate signatures for the received multimedia content item. The generated signatures are matched by the server 130 to previously generated signatures of concepts, maintained in the data warehouse 160, to identify a match to at least one object. Upon identification of a match, the server 130 is configured to retrieve the actual size of the identified object from the data warehouse 160. Upon identifying, for example, a ratio between the signatures' sizes, a size scale between the objects is determined. According to an embodiment, parameters such as distance of each object from a reference point may be taken in account to determine the size scale. The actual size of the identified object together with the size scale are used to determine the size dimensions of the other objects identified within the multimedia content item. Such information is then sent to the user device 120.


As a non-limiting example, when the server 130 receives an image of streets in Paris, signatures corresponding to each of the objects (e.g., different houses, Eiffel Tower, cars, and so on) shown in the image are generated. The generated signatures are matched by the server 130 to previously generated signatures of concepts stored in the data warehouse 160 to identify a match between at least a concept and at least one object, for example, the Eiffel Tower. Upon such identification, the server 130 is configured to retrieve the actual size of the Eiffel Tower from the data warehouse 160.


A size scale of the houses, the cars, the Eiffel Tower, etc., is determined by the server 130 respective of, for example, their signatures' size and their distance from a reference point. The size dimensions of the houses, the cars, etc., are determined respective of the size scale and the actual size of the Eiffel Tower.



FIG. 2 depicts an exemplary and non-limiting flowchart 200 describing a method for identifying the size dimensions of objects shown in a multimedia content item. The method may be performed by the server 130.


In S210, a multimedia content item in which objects are shown is received. In an embodiment, the multimedia content item is received from the user device 120. In an embodiment, the multimedia content item is received together with a request to analyze the multimedia content item. Optionally, in S215, the received multimedia content item is analyzed to identify the objects. In an embodiment, the server 130 is configured to perform the analysis.


In S220, at least one signature is generated for at least two objects (e.g., a first object and a second object). The signatures are generated by the SGS 140 as described in greater detail below with respect to FIGS. 3 and 4.


In S230, a DCC system (e.g., DCC system 150) is queried to find a match between at least one concept and at least one object (e.g., the first object) using their respective signatures. In an embodiment, the signatures generated for an object is matched against the signature (signature reduced cluster (SRC)) of each concept maintained by the DCC system 150. According to an embodiment, the signatures generated for the concepts may be retrieved from a database (e.g., data warehouse 160). If the signature of the concept overlaps with the signatures of the object more than a predetermined threshold level, a match exists. Various techniques for determining matching concepts are discussed in the '185 patent. For each matching concept the respective object is determined to be identified and at least the concept signature (SRC) is returned.


For example, an image of a bowling lane may have a bowling ball, pins, and a bowler. The DCC system 150 is queried to find a match between the signatures of the pins and signatures of concepts maintained by the DCC system 150. The signature of the pins may overlap less than a predetermined threshold level with a signature of the concept “baseball” and may overlap more than a predetermined threshold level with a signature of the concept “bowling”. Therefore a match would exist for “bowling” and not “baseball”.


In S240, the actual size of the first object is determined respective of a match between the signatures of the concept and the first object. This is performed respective of the actual sizes of concepts or concepts structures maintained in the data warehouse 160. In another embodiment, if matching concepts are not found, the signatures generated in S220 are utilized to search the data warehouse 160.


In S250, a size scale of the objects shown in the multimedia content item is generated (e.g., the size scale of the first object and the second object). This is performed by identifying, for example, the ratio between the signature's sizes of the objects, the distance between each signature from a reference point, and so on.


In S260, at least a second size dimension of the second object shown in the multimedia content item is identified respective of the size scale and the determination made in S240 regarding the actual size of the first multimedia element.


According to an embodiment, the information respective of the size dimension of the second object is sent to the user device 120. According to another embodiment, such information is stored in the data warehouse 160 for further use (e.g., identification of the actual size of additional objects shown in additional multimedia content item). In S270, it is checked whether additional multimedia content items are received, and if so, execution continues with S210; otherwise, execution terminates.



FIG. 5 shows an exemplary and non-limiting schematic diagram of a drawing 500 utilized to describe the determination of the size dimension of an object according to an embodiment. Such determination may be performed by the server 130.


The objects of a tree 510 and a persona 520 are identified in the drawing 500 and signatures are generated respective thereof. Such signatures are analyzed for determining the size scale between the tree 510 and the persona 520. The analyses include determining that the objects are found in the same distance from a reference point 530 and identifying the ratio between the signatures' sizes. The signatures are also matched to signatures of concepts maintained in a database, such as, data warehouse 160, and the actual size of the tree 510 is identified respective thereof. Now, the height of the person 520 can be determined by using the size scale and the actual size of the tree 510.



FIGS. 3 and 4 illustrate the generation of signatures for the multimedia content elements by the SGS 140 according to one embodiment. An exemplary high-level description of the process for large scale matching is depicted in FIG. 3. In this example, the matching is conducted based on video content.


Video content segments 2 from a Master database (DB) 6 and a Target DB 1 are processed in parallel by a large number of independent computational Cores 3 that constitute an architecture for generating the Signatures (hereinafter the “Architecture”). Further details on the generation of computational Cores are provided below. The independent Cores 3 generate a database of Robust Signatures and Signatures 4 for Target content-segments 5 and a database of Robust Signatures and Signatures 7 for Master content-segments 8. An exemplary and non-limiting process of signature generation for an audio component is shown in detail in FIG. 4. Finally, Target Robust Signatures and/or Signatures are effectively matched, by a matching algorithm 9, to Master Robust Signatures and/or Signatures database to find all matches between the two databases.


To demonstrate an example of the signature generation process, it is assumed, merely for the sake of simplicity and without limitation on the generality of the disclosed embodiments, that the signatures are based on a single frame, leading to certain simplification of the computational cores generation. The Matching System is extensible for signatures generation capturing dynamics in-between the frames.


The Signatures' generation process is now described with reference to FIG. 4. The first step in the process of signatures generation from a given speech-segment is to breakdown the speech-segment to K patches 14 of random length P and random position within the speech segment 12. The breakdown is performed by the patch generator component 21. The value of the number of patches K, random length P, and random position parameters is determined based on optimization, considering the tradeoff between accuracy rate and the number of fast matches required in the flow process of the server 130 and SGS 140. Thereafter, all the K patches are injected in parallel into all computational Cores 3 to generate K response vectors 22, which are fed into a signature generator system 23 to produce a database of Robust Signatures and Signatures 4.


In order to generate Robust Signatures, i.e., Signatures that are robust to additive noise L (where L is an integer equal to or greater than 1) by the Computational Cores 3 a frame ‘i’ is injected into all the Cores 3. Then, Cores 3 generate two binary response vectors: {right arrow over (S)}, which is a Signature vector, and {right arrow over (RS)} which is a Robust Signature vector.


For generation of signatures robust to additive noise, such as White-Gaussian-Noise, scratch, etc., but not robust to distortions, such as crop, shift and rotation, etc., a core Ci={ni} (1≤i≤L) may consist of a single leaky integrate-to-threshold unit (LTU) node or more nodes. The node ni equations are:









V
i

=



j








w
ij



k
j











n
i

=







Vi

-

Th
x




)




where, custom character is a Heaviside step function; wij is a coupling node unit (CNU) between node i and image component j (for example, grayscale value of a certain pixel j); kj is an image component ‘j’ (for example, grayscale value of a certain pixel j); Thx is a constant Threshold value, where ‘x’ is ‘S’ for Signature and ‘RS’ for Robust Signature; and Vi is a Coupling Node Value.


The Threshold values Thx are set differently for Signature generation than for Robust Signature generation. For example, for a certain distribution of Vi values (for the set of nodes), the thresholds for Signature (ThS) and Robust Signature (ThRS) are set apart, after optimization, according to at least one or more of the following criteria:


1: For: Vi>ThRS

    • 1−p(V>ThS)−1−(1−ε)l<<1


      i.e., given that l nodes (cores) constitute a Robust Signature of a certain image I, the probability that not all of these I nodes will belong to the Signature of same, but noisy image, Ĩ is sufficiently low (according to a system's specified accuracy).


2: p(Vi>ThRS)≈l/L


i.e., approximately l out of the total L nodes can be found to generate a Robust Signature according to the above definition.


3: Both Robust Signature and Signature are generated for certain frame i.


It should be understood that the generation of a signature is unidirectional, and typically yields lossless compression, where the characteristics of the compressed data are maintained but the uncompressed data cannot be reconstructed. Therefore, a signature can be used for the purpose of comparison to another signature without the need for comparison to the original data. The detailed description of the Signature generation can be found in U.S. Pat. Nos. 8,326,775 and 8,312,031, assigned to common assignee, which are hereby incorporated by reference for all the useful information they contain.


A Computational Core generation is a process of definition, selection, and tuning of the parameters of the cores for a certain realization in a specific system and application. The process is based on several design considerations, such as:


(a) The Cores should be designed so as to obtain maximal independence, i.e., the projection from a signal space should generate a maximal pair-wise distance between any two cores' projections into a high-dimensional space.


(b) The Cores should be optimally designed for the type of signals, i.e., the Cores should be maximally sensitive to the spatio-temporal structure of the injected signal, for example, and in particular, sensitive to local correlations in time and space. Thus, in some cases, a core represents a dynamic system, such as in state space, phase space, edge of chaos, etc., which is uniquely used herein to exploit its maximal computational power.


(c) The Cores should be optimally designed with regard to invariance to a set of signal distortions, of interest in relevant applications.


A detailed description of the Computational Core generation and the process for configuring such cores is discussed in more detail in U.S. Pat. No. 8,655,801 referenced above. The computational cores may be implemented in one or more integrated circuits.


The various embodiments disclosed herein can be implemented as hardware, firmware, software, or any combination thereof. Moreover, the software is preferably implemented as an application program tangibly embodied on a program storage unit or computer readable medium consisting of parts, or of certain devices and/or a combination of devices. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the machine is implemented on a computer platform having hardware such as one or more central processing units (“CPUs”), a memory, and input/output interfaces. The computer platform may also include an operating system and microinstruction code. The various processes and functions described herein may be either part of the microinstruction code or part of the application program, or any combination thereof, which may be executed by a CPU, whether or not such a computer or processor is explicitly shown. In addition, various other peripheral units may be connected to the computer platform such as an additional data storage unit and a printing unit. Furthermore, a non-transitory computer readable medium is any computer readable medium except for a transitory propagating signal.


All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the principles of the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.

Claims
  • 1. A method for determining at least a size dimension of objects shown in multimedia content items, comprising: receiving an input multimedia content item;identifying a plurality of objects shown in the input multimedia content item;generating at least one first signature for at least one first object of the plurality of objects and at least one second signature for at least one second object of the plurality of objects;identifying, using the at least one first signature, at least one matching concept, wherein each matching concept of the at least one matching concept includes at least one signature that matches the at least one first signature; wherein each matching concept comprises a cluster of signatures of multiple multimedia content items and metadata related to the multiple multimedia content items; wherein each matching concept undergoes a cluster reduction process that comprises reducing a number of signatures of the matching cluster while remaining a minimal number of signatures that still identify all of the multiple multimedia content items; wherein for each matching cluster the cluster reduction process comprises matching signatures of each of the multimedia content items associated with the matching cluster, with a reduced cluster having one or more signatures removed there from to provide results; and determining whether to remove the one or more signatures from the concept based on the results;determining an actual size of the at least one first object respective of the at least one matching concept, wherein the actual size of the at least one first object is determined respective of an actual size of the at least one matching concept maintained in a data warehouse;determining a size scale between the at least one first object and the at least one second object of the plurality of objects using the at least one first signature and the at least one second signature; anddetermining the at least size dimension of the at least one second object of the plurality of objects respective of the size scale and the actual size of the first object.
  • 2. The method of claim 1, further comprising: storing the determined size dimension of the at least one second object in the data warehouse.
  • 3. The method of claim 1, wherein identifying the at least one matching concept further comprises: querying, a deep content classification (DCC) system, using the at least one first signature to find the at least one matching concept.
  • 4. The method of claim 1, wherein the size scale between the at least one first object and the at least one second object of the plurality of objects is determined respective of at least one of: a ratio between the at least one first signature and the at least one second signature, and the distance of the at least one first object and the at least one second object from a reference point.
  • 5. The method of claim 1, wherein the at least one first signature for at least one first object represents a response of multiple leaky integrated-to-threshold unit nodes to the at least one first object.
  • 6. The method of claim 1, wherein the received multimedia content item is any one of: an image, a graphic, a video frame, and a photograph.
  • 7. A non-transitory computer readable medium having stored thereon instructions for causing one or more processing units to execute the method according to claim 1.
  • 8. A system for determining at least a size dimension of objects shown in a multimedia content item containing a plurality of objects, comprising: an interface to a network for receiving an input multimedia content item;a processing unit; anda memory connected to the processing unit and configured to contain a plurality of instructions that when executed by the processor configure the system to:identify a plurality of objects shown in the input multimedia content item; identify, using the at least one first signature, at least one matching concept; wherein each matching concept of the at least one matching concept includes at least one signature that matches the at least one first signature; wherein each matching concept comprises a cluster of signatures of multiple multimedia content items and metadata related to the multiple multimedia content items; wherein each matching concept undergoes a cluster reduction process that comprises reducing a number of signatures of the matching cluster while remaining a minimal number of signatures that still identify all of the multiple multimedia content items; wherein for each matching cluster the cluster reduction process comprises matching signatures of each of the multimedia content items associated with the matching cluster, with a reduced cluster having one or more signatures removed there from to provide results; and determining whether to remove the one or more signatures from the concept based on the results;determine an actual size of the at least one first object respective of the at least one matching concept, wherein the actual size of the at least one first object is determined respective of an actual size of the at least one matching concept maintained in a data warehouse;determine a size scale between the at least one first object and at least one second object of the plurality of objects using the at least one first signature and at least one second signature; anddetermine the at least size dimension of the at least one second object of the plurality of objects respective of the size scale and the actual size of the at least one first object.
  • 9. The system of claim 8, wherein the plurality of instructions further configure the system to: store the determined size dimension of the at least one second object in the data warehouse.
  • 10. The system of claim 8, further comprising: a deep content classification (DCC) system for querying the at least one first signature to find the at least one matching concept, wherein the DCC is communicatively connected to the system.
  • 11. The system of claim 8, wherein the signatures of each object are generated by a signature generator system (SGS), wherein the SGS is communicatively connected to the system.
  • 12. The system of claim 11, wherein the least one first signature for at least one first object represents a response of multiple leaky integrated-to-threshold unit nodes to the at least one first object.
  • 13. The system of claim 8, wherein the size scale between the at least one first object and the at least one second object of the plurality of objects is determined respective of at least one of: a ratio between the at least one first signature and the at least one second signature, and the distance of the at least one first object and the at least one second object from a reference point.
  • 14. The system of claim 8, wherein the received multimedia content item is any one of: an image, a graphic, a video frame, and a photograph.
  • 15. The method of claim 1, wherein the at least one first signature for at least one first object is generated by a plurality of at least partially statistically independent computational cores that comprise multiple leaky integrated-to-threshold unit nodes.
  • 16. The method of claim 15, wherein the plurality of at least partially statistically independent computational cores are implemented in one or more integrated circuits.
  • 17. The system of claim 8, wherein the at least one first signature for at least one first object is generated by a plurality of at least partially statistically independent computational cores of the SGS that comprise multiple leaky integrated-to-threshold unit nodes.
  • 18. The system of claim 17, wherein the plurality of at least partially statistically independent computational cores are implemented in one or more integrated circuits.
Priority Claims (3)
Number Date Country Kind
171577 Oct 2005 IL national
173409 Jan 2006 IL national
185414 Aug 2007 IL national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. provisional application No. 62/030,085 filed on Jul. 29, 2014. This application is also a continuation-in-part (CIP) of U.S. patent application Ser. No. 14/096,865 filed Dec. 4, 2013 and also is a continuation-in-part (CIP) of U.S. patent application Ser. No. 13/624,397 filed on Sep. 21, 2012, now pending. The Ser. No. 13/624,397 application is a CIP of: (a) U.S. patent application Ser. No. 13/344,400 filed on Jan. 5, 2012, now pending, which is a continuation of U.S. patent application Ser. No. 12/434,221, filed May 1, 2009, now U.S. Pat. No. 8,112,376;(b) U.S. patent application Ser. No. 12/195,863, filed Aug. 21, 2008, now U.S. Pat. No. 8,326,775, which claims priority under 35 USC 119 from Israeli Application No. 185414, filed on Aug. 21, 2007, and which is also a continuation-in-part of the below-referenced U.S. patent application Ser. No. 12/084,150; and,(c) U.S. patent application Ser. No. 12/084,150 having a filing date of Apr. 7, 2009, now U.S. Pat. No. 8,655,801, which is the National Stage of International Application No. PCT/IL2006/001235, filed on Oct. 26, 2006, which claims foreign priority from Israeli Application No. 171577 filed on Oct. 26, 2005 and Israeli Application No. 173409 filed on 29 Jan. 2006. All of the applications referenced above are herein incorporated by reference for all that they contain.

US Referenced Citations (442)
Number Name Date Kind
4733353 Jaswa Mar 1988 A
4932645 Schorey et al. Jun 1990 A
4972363 Nguyen et al. Nov 1990 A
5214746 Fogel et al. May 1993 A
5307451 Clark Apr 1994 A
5412564 Ecer May 1995 A
5436653 Ellis Jul 1995 A
5568181 Greenwood et al. Oct 1996 A
5638425 Meador et al. Jun 1997 A
5745678 Herzberg et al. Apr 1998 A
5763069 Jordan Jun 1998 A
5806061 Chaudhuri et al. Sep 1998 A
5852435 Vigneaux et al. Dec 1998 A
5870754 Dimitrova et al. Feb 1999 A
5873080 Coden et al. Feb 1999 A
5887193 Takahashi et al. Mar 1999 A
5978754 Kumano Nov 1999 A
5991306 Burns et al. Nov 1999 A
6052481 Grajski et al. Apr 2000 A
6070167 Qian et al. May 2000 A
6076088 Paik et al. Jun 2000 A
6122628 Castelli et al. Sep 2000 A
6128651 Cezar Oct 2000 A
6137911 Zhilyaev Oct 2000 A
6144767 Bottou et al. Nov 2000 A
6147636 Gershenson Nov 2000 A
6163510 Lee et al. Dec 2000 A
6243375 Speicher Jun 2001 B1
6243713 Nelson et al. Jun 2001 B1
6275599 Adler et al. Aug 2001 B1
6329986 Cheng Dec 2001 B1
6381656 Shankman Apr 2002 B1
6411229 Kobayashi Jun 2002 B2
6422617 Fukumoto et al. Jul 2002 B1
6507672 Watkins et al. Jan 2003 B1
6523046 Liu et al. Feb 2003 B2
6524861 Anderson Feb 2003 B1
6550018 Abonamah et al. Apr 2003 B1
6557042 He et al. Apr 2003 B1
6594699 Sahai et al. Jul 2003 B1
6601026 Appelt et al. Jul 2003 B2
6611628 Sekiguchi et al. Aug 2003 B1
6618711 Ananth Sep 2003 B1
6643620 Contolini et al. Nov 2003 B1
6643643 Lee et al. Nov 2003 B1
6665657 Dibachi Dec 2003 B1
6681032 Bortolussi et al. Jan 2004 B2
6704725 Lee Mar 2004 B1
6732149 Kephart May 2004 B1
6742094 Igari May 2004 B2
6751363 Natsev et al. Jun 2004 B1
6751613 Lee et al. Jun 2004 B1
6754435 Kim Jun 2004 B2
6763069 Divakaran et al. Jul 2004 B1
6763519 McColl et al. Jul 2004 B1
6774917 Foote et al. Aug 2004 B1
6795818 Lee Sep 2004 B1
6804356 Krishnamachari Oct 2004 B1
6813395 Kinjo Nov 2004 B1
6819797 Smith et al. Nov 2004 B1
6845374 Oliver et al. Jan 2005 B1
6877134 Fuller et al. Apr 2005 B1
6901207 Watkins May 2005 B1
6938025 Lulich et al. Aug 2005 B1
6985172 Rigney et al. Jan 2006 B1
7006689 Kasutani Feb 2006 B2
7013051 Sekiguchi et al. Mar 2006 B2
7020654 Najmi Mar 2006 B1
7023979 Wu et al. Apr 2006 B1
7043473 Rassool et al. May 2006 B1
7047033 Wyler May 2006 B2
7158681 Persiantsev Jan 2007 B2
7199798 Echigo et al. Apr 2007 B1
7215828 Luo May 2007 B2
7260564 Lynn et al. Aug 2007 B1
7277928 Lennon Oct 2007 B2
7299261 Oliver et al. Nov 2007 B1
7302117 Sekiguchi et al. Nov 2007 B2
7313805 Rosin et al. Dec 2007 B1
7340358 Yoneyama Mar 2008 B2
7340458 Vaithilingam et al. Mar 2008 B2
7353224 Chen et al. Apr 2008 B2
7376672 Weare May 2008 B2
7376722 Sim et al. May 2008 B1
7433895 Li et al. Oct 2008 B2
7464086 Black et al. Dec 2008 B2
7526607 Singh et al. Apr 2009 B1
7529659 Wold May 2009 B2
7536417 Walsh et al. May 2009 B2
7574668 Nunez et al. Aug 2009 B2
7577656 Kawai et al. Aug 2009 B2
7657100 Gokturk et al. Feb 2010 B2
7660468 Gokturk et al. Feb 2010 B2
7660737 Lim et al. Feb 2010 B1
7694318 Eldering et al. Apr 2010 B2
7697791 Chan et al. Apr 2010 B1
7769221 Shakes et al. Aug 2010 B1
7788132 Desikan et al. Aug 2010 B2
7836054 Kawai et al. Nov 2010 B2
7837111 Yang et al. Nov 2010 B2
7860895 Scofield Dec 2010 B1
7904503 De Mar 2011 B2
7920894 Wyler Apr 2011 B2
7921107 Chang et al. Apr 2011 B2
7933407 Keidar et al. Apr 2011 B2
7974881 Culver et al. Jul 2011 B2
7974994 Li et al. Jul 2011 B2
7987194 Walker et al. Jul 2011 B1
7987217 Long et al. Jul 2011 B2
7991715 Schiff et al. Aug 2011 B2
8000655 Wang et al. Aug 2011 B2
8023739 Hohimer et al. Sep 2011 B2
8036893 Reich Oct 2011 B2
8098934 Vincent Jan 2012 B2
8112376 Raichelgauz et al. Feb 2012 B2
8266185 Raichelgauz et al. Sep 2012 B2
8312031 Raichelgauz et al. Nov 2012 B2
8315442 Gokturk et al. Nov 2012 B2
8316005 Moore Nov 2012 B2
8326646 Schwarzberg et al. Dec 2012 B2
8326775 Raichelgauz et al. Dec 2012 B2
8345982 Gokturk et al. Jan 2013 B2
8457827 Ferguson et al. Jun 2013 B1
8495489 Everingham Jul 2013 B1
8548828 Longmire Oct 2013 B1
8635531 Graham et al. Jan 2014 B2
8655801 Raichelgauz et al. Feb 2014 B2
8655878 Kulkarni et al. Feb 2014 B1
8677377 Cheyer et al. Mar 2014 B2
8682667 Haughay Mar 2014 B2
8688446 Yanagihara Apr 2014 B2
8706503 Cheyer et al. Apr 2014 B2
8775442 Moore et al. Jul 2014 B2
8799195 Raichelgauz et al. Aug 2014 B2
8799196 Raichelquaz et al. Aug 2014 B2
8818916 Raichelgauz et al. Aug 2014 B2
8868619 Raichelgauz et al. Oct 2014 B2
8868861 Shimizu et al. Oct 2014 B2
8880539 Raichelgauz et al. Nov 2014 B2
8880566 Raichelgauz et al. Nov 2014 B2
8886648 Procopio et al. Nov 2014 B1
8898568 Bull et al. Nov 2014 B2
8922414 Raichelgauz et al. Dec 2014 B2
8959037 Raichelgauz et al. Feb 2015 B2
8990125 Raichelgauz et al. Mar 2015 B2
8990199 Ramesh et al. Mar 2015 B1
9009086 Raichelgauz et al. Apr 2015 B2
9031999 Raichelgauz et al. May 2015 B2
9087049 Raichelgauz et al. Jul 2015 B2
9104747 Raichelgauz et al. Aug 2015 B2
9165406 Gray et al. Oct 2015 B1
9191626 Raichelgauz et al. Nov 2015 B2
9197244 Raichelgauz et al. Nov 2015 B2
9218606 Raichelgauz et al. Dec 2015 B2
9235557 Raichelgauz et al. Jan 2016 B2
9256668 Raichelgauz et al. Feb 2016 B2
9323754 Ramanathan et al. Apr 2016 B2
9330189 Raichelgauz et al. May 2016 B2
9384196 Raichelgauz et al. Jul 2016 B2
9438270 Raichelgauz et al. Sep 2016 B2
9466068 Raichelgauz et al. Oct 2016 B2
9646006 Raichelgauz et al. May 2017 B2
9679062 Schillings et al. Jun 2017 B2
9807442 Bhatia et al. Oct 2017 B2
9875445 Amer et al. Jan 2018 B2
9984369 Li et al. May 2018 B2
20010019633 Tenze Sep 2001 A1
20010038876 Anderson Nov 2001 A1
20010056427 Yoon et al. Dec 2001 A1
20020010682 Johnson Jan 2002 A1
20020010715 Chinn et al. Jan 2002 A1
20020019881 Bokhari et al. Feb 2002 A1
20020019882 Bokhani Feb 2002 A1
20020032677 Morgenthaler et al. Mar 2002 A1
20020037010 Yamauchi Mar 2002 A1
20020038299 Zernik et al. Mar 2002 A1
20020042914 Walker et al. Apr 2002 A1
20020059580 Kalker et al. May 2002 A1
20020072935 Rowse et al. Jun 2002 A1
20020087530 Smith et al. Jul 2002 A1
20020099870 Miller et al. Jul 2002 A1
20020107827 Benitez-Jimenez et al. Aug 2002 A1
20020113812 Walker et al. Aug 2002 A1
20020123928 Eldering et al. Sep 2002 A1
20020126872 Brunk et al. Sep 2002 A1
20020129140 Peled et al. Sep 2002 A1
20020129296 Kwiat et al. Sep 2002 A1
20020143976 Barker et al. Oct 2002 A1
20020147637 Kraft et al. Oct 2002 A1
20020152267 Lennon Oct 2002 A1
20020157116 Jasinschi Oct 2002 A1
20020159640 Vaithilingam et al. Oct 2002 A1
20020161739 Oh Oct 2002 A1
20020163532 Thomas Nov 2002 A1
20020174095 Lulich et al. Nov 2002 A1
20020178410 Haitsma et al. Nov 2002 A1
20020184505 Mihcak et al. Dec 2002 A1
20030005432 Ellis et al. Jan 2003 A1
20030028660 Igawa et al. Feb 2003 A1
20030041047 Chang et al. Feb 2003 A1
20030050815 Seigel et al. Mar 2003 A1
20030078766 Appelt et al. Apr 2003 A1
20030086627 Berriss et al. May 2003 A1
20030089216 Birmingham et al. May 2003 A1
20030093790 Logan et al. May 2003 A1
20030101150 Agnihotri May 2003 A1
20030105739 Essafi et al. Jun 2003 A1
20030115191 Copperman et al. Jun 2003 A1
20030126147 Essafi et al. Jul 2003 A1
20030182567 Barton et al. Sep 2003 A1
20030184598 Graham Oct 2003 A1
20030191764 Richards Oct 2003 A1
20030200217 Ackerman Oct 2003 A1
20030217335 Chung et al. Nov 2003 A1
20030229531 Beckerman et al. Dec 2003 A1
20040003394 Ramaswamy Jan 2004 A1
20040025180 Begeja et al. Feb 2004 A1
20040068510 Hayes et al. Apr 2004 A1
20040095376 Graham et al. May 2004 A1
20040098671 Graham et al. May 2004 A1
20040107181 Rodden Jun 2004 A1
20040111432 Adams et al. Jun 2004 A1
20040111465 Chuang et al. Jun 2004 A1
20040117367 Smith et al. Jun 2004 A1
20040117638 Monroe Jun 2004 A1
20040128142 Whitham Jul 2004 A1
20040128511 Sun et al. Jul 2004 A1
20040133927 Sternberg et al. Jul 2004 A1
20040153426 Nugent Aug 2004 A1
20040215663 Liu et al. Oct 2004 A1
20040249779 Nauck et al. Dec 2004 A1
20040260688 Gross Dec 2004 A1
20040267774 Lin et al. Dec 2004 A1
20050021394 Miedema et al. Jan 2005 A1
20050114198 Koningstein et al. May 2005 A1
20050131884 Gross et al. Jun 2005 A1
20050144455 Haitsma Jun 2005 A1
20050163375 Grady Jul 2005 A1
20050172130 Roberts Aug 2005 A1
20050177372 Wang et al. Aug 2005 A1
20050238198 Brown et al. Oct 2005 A1
20050238238 Xu et al. Oct 2005 A1
20050245241 Durand et al. Nov 2005 A1
20050249398 Khamene et al. Nov 2005 A1
20050256820 Dugan et al. Nov 2005 A1
20050262428 Little et al. Nov 2005 A1
20050281439 Lange Dec 2005 A1
20050289163 Gordon et al. Dec 2005 A1
20050289590 Cheok et al. Dec 2005 A1
20060004745 Kuhn et al. Jan 2006 A1
20060013451 Haitsma Jan 2006 A1
20060020860 Tardif et al. Jan 2006 A1
20060020958 Allamanche et al. Jan 2006 A1
20060026203 Tan et al. Feb 2006 A1
20060031216 Semple et al. Feb 2006 A1
20060033163 Chen Feb 2006 A1
20060041596 Stirbu et al. Feb 2006 A1
20060048191 Xiong Mar 2006 A1
20060064037 Shalon et al. Mar 2006 A1
20060112035 Cecchi et al. May 2006 A1
20060129822 Snijder et al. Jun 2006 A1
20060143674 Jones et al. Jun 2006 A1
20060153296 Deng Jul 2006 A1
20060159442 Kim et al. Jul 2006 A1
20060173688 Whitham Aug 2006 A1
20060184638 Chua et al. Aug 2006 A1
20060204035 Guo et al. Sep 2006 A1
20060217818 Fujiwara Sep 2006 A1
20060217828 Hicken Sep 2006 A1
20060218191 Gopalakrishnan Sep 2006 A1
20060224529 Kermani Oct 2006 A1
20060236343 Chang Oct 2006 A1
20060242130 Sadri Oct 2006 A1
20060242139 Butterfield et al. Oct 2006 A1
20060242554 Gerace et al. Oct 2006 A1
20060247983 Dalli Nov 2006 A1
20060248558 Barton Nov 2006 A1
20060253423 McLane et al. Nov 2006 A1
20060288002 Epstein et al. Dec 2006 A1
20070019864 Koyama et al. Jan 2007 A1
20070022374 Huang et al. Jan 2007 A1
20070033163 Epstein et al. Feb 2007 A1
20070038614 Guha Feb 2007 A1
20070042757 Jung et al. Feb 2007 A1
20070061302 Ramer et al. Mar 2007 A1
20070067304 Ives Mar 2007 A1
20070067682 Fang Mar 2007 A1
20070071330 Oostveen et al. Mar 2007 A1
20070074147 Wold Mar 2007 A1
20070083611 Farago et al. Apr 2007 A1
20070091106 Moroney Apr 2007 A1
20070130159 Gulli et al. Jun 2007 A1
20070156720 Maren Jul 2007 A1
20070168413 Barletta et al. Jul 2007 A1
20070179359 Goodwin Aug 2007 A1
20070195987 Rhoads Aug 2007 A1
20070220573 Chiussi et al. Sep 2007 A1
20070244902 Seide et al. Oct 2007 A1
20070253594 Lu et al. Nov 2007 A1
20070255785 Hayashi et al. Nov 2007 A1
20070294295 Finkelstein et al. Dec 2007 A1
20070298152 Baets Dec 2007 A1
20080040277 DeWitt Feb 2008 A1
20080046406 Seide et al. Feb 2008 A1
20080049629 Morrill Feb 2008 A1
20080049789 Vedantham et al. Feb 2008 A1
20080072256 Boicey et al. Mar 2008 A1
20080079729 Brailovsky Apr 2008 A1
20080091527 Silverbrook et al. Apr 2008 A1
20080152231 Gokturk et al. Jun 2008 A1
20080159622 Agnihotri et al. Jul 2008 A1
20080163288 Ghosal et al. Jul 2008 A1
20080165861 Wen Jul 2008 A1
20080201299 Lehikoinen et al. Aug 2008 A1
20080201314 Smith et al. Aug 2008 A1
20080201361 Castro et al. Aug 2008 A1
20080204706 Magne et al. Aug 2008 A1
20080228995 Tan et al. Sep 2008 A1
20080237359 Silverbrook et al. Oct 2008 A1
20080253737 Kimura Oct 2008 A1
20080263579 Mears et al. Oct 2008 A1
20080270373 Oostveen et al. Oct 2008 A1
20080307454 Ahanger et al. Dec 2008 A1
20080313140 Pereira et al. Dec 2008 A1
20090013414 Washington et al. Jan 2009 A1
20090022472 Bronstein et al. Jan 2009 A1
20090024641 Quigley et al. Jan 2009 A1
20090043637 Eder Feb 2009 A1
20090043818 Raichelgauz et al. Feb 2009 A1
20090089587 Brunk et al. Apr 2009 A1
20090119157 Dulepet May 2009 A1
20090125529 Vydiswaran et al. May 2009 A1
20090125544 Brindley May 2009 A1
20090148045 Lee et al. Jun 2009 A1
20090157575 Schobben et al. Jun 2009 A1
20090172030 Schiff et al. Jul 2009 A1
20090175538 Bronstein et al. Jul 2009 A1
20090204511 Tsang Aug 2009 A1
20090208106 Dunlop et al. Aug 2009 A1
20090216639 Kapczynski et al. Aug 2009 A1
20090216761 Raichelgauz et al. Aug 2009 A1
20090220138 Zhang et al. Sep 2009 A1
20090245573 Saptharishi et al. Oct 2009 A1
20090245603 Koruga et al. Oct 2009 A1
20090253583 Yoganathan Oct 2009 A1
20090254572 Redlich et al. Oct 2009 A1
20090277322 Cai et al. Nov 2009 A1
20090282218 Raichelgauz et al. Nov 2009 A1
20090297048 Slotine et al. Dec 2009 A1
20100023400 DeWitt Jan 2010 A1
20100042646 Raichelgauz et al. Feb 2010 A1
20100082684 Churchill et al. Apr 2010 A1
20100088321 Solomon et al. Apr 2010 A1
20100104184 Bronstein Apr 2010 A1
20100106857 Wyler Apr 2010 A1
20100125569 Nair May 2010 A1
20100153201 Rubertis et al. Jun 2010 A1
20100153209 Rubertis et al. Jun 2010 A1
20100162405 Cook Jun 2010 A1
20100173269 Puri et al. Jul 2010 A1
20100191567 Lee et al. Jul 2010 A1
20100198626 Cho et al. Aug 2010 A1
20100268524 Nath et al. Oct 2010 A1
20100284604 Chrysanthakopoulos Nov 2010 A1
20100306193 Pereira et al. Dec 2010 A1
20100312736 Kello Dec 2010 A1
20100318493 Wessling Dec 2010 A1
20100322522 Wang et al. Dec 2010 A1
20100325138 Lee et al. Dec 2010 A1
20100325581 Finkelstein et al. Dec 2010 A1
20110035289 King et al. Feb 2011 A1
20110052063 McAuley et al. Mar 2011 A1
20110055585 Lee Mar 2011 A1
20110106782 Ke et al. May 2011 A1
20110145068 King et al. Jun 2011 A1
20110164180 Lee Jul 2011 A1
20110164810 Zang et al. Jul 2011 A1
20110202848 Ismalon Aug 2011 A1
20110208822 Rathod Aug 2011 A1
20110218946 Stern et al. Sep 2011 A1
20110246566 Kashef et al. Oct 2011 A1
20110251896 Impollonia et al. Oct 2011 A1
20110276680 Rimon Nov 2011 A1
20110296315 Lin et al. Dec 2011 A1
20110313856 Cohen et al. Dec 2011 A1
20120082362 Diem et al. Apr 2012 A1
20120131454 Shah May 2012 A1
20120150890 Jeong et al. Jun 2012 A1
20120167133 Carroll Jun 2012 A1
20120179642 Sweeney et al. Jul 2012 A1
20120185445 Borden et al. Jul 2012 A1
20120197857 Huang Aug 2012 A1
20120221470 Lyon Aug 2012 A1
20120227074 Hill et al. Sep 2012 A1
20120239690 Asikainen et al. Sep 2012 A1
20120239694 Avner et al. Sep 2012 A1
20120299961 Ramkumar et al. Nov 2012 A1
20120301105 Rehg et al. Nov 2012 A1
20120330869 Durham Dec 2012 A1
20120331011 Raichelgauz et al. Dec 2012 A1
20130031489 Gubin et al. Jan 2013 A1
20130066856 Ong et al. Mar 2013 A1
20130067035 Amanat et al. Mar 2013 A1
20130067364 Berntson Mar 2013 A1
20130080433 Raichelgauz et al. Mar 2013 A1
20130086499 Dyor et al. Apr 2013 A1
20130089248 Remiszewski Apr 2013 A1
20130104251 Moore et al. Apr 2013 A1
20130159298 Mason et al. Jun 2013 A1
20130173635 Sanjeev Jul 2013 A1
20130226930 Amgren et al. Aug 2013 A1
20130283401 Pabla et al. Oct 2013 A1
20130325550 Varghese et al. Dec 2013 A1
20130332951 Gharaat et al. Dec 2013 A1
20140019264 Wachman et al. Jan 2014 A1
20140025692 Pappas Jan 2014 A1
20140125703 Roveta May 2014 A1
20140147829 Jerauld May 2014 A1
20140152698 Kim et al. Jun 2014 A1
20140169681 Drake Jun 2014 A1
20140176604 Venkitaraman et al. Jun 2014 A1
20140188786 Raichelgauz et al. Jul 2014 A1
20140193077 Shiiyama et al. Jul 2014 A1
20140250032 Huang et al. Sep 2014 A1
20140282655 Roberts Sep 2014 A1
20140300722 Garcia Oct 2014 A1
20140310825 Raichelgauz et al. Oct 2014 A1
20140330830 Raichelgauz et al. Nov 2014 A1
20140341476 Kulick et al. Nov 2014 A1
20150100562 Kohlmeier et al. Apr 2015 A1
20150120627 Hunzinger et al. Apr 2015 A1
20150154189 Raichelgauz et al. Jun 2015 A1
20150254344 Kulkarni et al. Sep 2015 A1
20150286742 Zhang Oct 2015 A1
20150289022 Gross Oct 2015 A1
20150324356 Gutierrez et al. Nov 2015 A1
20160007083 Gurha Jan 2016 A1
20160026707 Ong et al. Jan 2016 A1
20160239566 Raichelgauz et al. Aug 2016 A1
20160306798 Guo et al. Oct 2016 A1
20170017638 Satyavarta et al. Jan 2017 A1
20170154241 Shambik et al. Jun 2017 A1
Foreign Referenced Citations (13)
Number Date Country
1085464 Jan 2007 EP
0231764 Apr 2002 WO
0231764 Apr 2002 WO
2003005242 Jan 2003 WO
2003067467 Aug 2003 WO
2004019527 Mar 2004 WO
2005027457 Mar 2005 WO
2007049282 May 2007 WO
20070049282 May 2007 WO
2014076002 May 2014 WO
2014137337 Sep 2014 WO
2016040376 Mar 2016 WO
2016070193 May 2016 WO
Non-Patent Literature Citations (128)
Entry
Chuan-Yu Cho, et al., “Efficient Motion-Vector-Based Video Search Using Query by Clip”, 2004, IEEE, Taiwan, pp. 1-4.
Gomes et al., “Audio Watermaking and Fingerprinting: For Which Applications?” University of Rene Descartes, Paris, France, 2003.
Ihab Al Kabary, et al., “SportSense: Using Motion Queries to Find Scenes in Sports Videos”, Oct. 2013, ACM, Switzerland, pp. 1-3.
Jianping Fan et al., “Concept-Oriented Indexing of Video Databases: Towards Semantic Sensitive Retrieval and Browsing”, IEEE, vol. 13, No. 7, Jul. 2004, pp. 1-19.
Shih-Fu Chang, et al., “VideoQ: A Fully Automated Video Retrieval System Using Motion Sketches”, 1998, IEEE, , New York, pp. 1-2.
Wei-Te Li et al., “Exploring Visual and Motion Saliency for Automatic Video Object Extraction”, IEEE, vol. 22, No. 7, Jul. 2013, pp. 1-11.
Zhu et al., Technology-Assisted Dietary Assessment. Computational Imaging VI, edited by Charles A. Bauman, Eric L. Miller, Ilya Pollak, Proc. of SPIE-IS&T Electronic Imaging, SPIE vol. 6814, 681411, Copyright 2008 SPIE-IS&T. pp. 1-10.
Brecheisen, et al., “Hierarchical Genre Classification for Large Music Collections”, ICME 2006, pp. 1385-1388.
Lau, et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications Year: 2008, pp. 98-103, DOI: 10.1109/CITISIA.2008.4607342 IEEE Conference Publications.
McNamara, et al., “Diversity Decay in Opportunistic Content Sharing Systems”, 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks Year: 2011, pp. 1-3, DOI: 10.1109/WoWMoM.2011.5986211 IEEE Conference Publications.
Santos, et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for Multimedia and e-Learning”, 2015 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCOM) Year: 2015, pp. 224-228, DOI: 10.1109/SOFTCOM.2015.7314122 IEEE Conference Publications.
Wilk, et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, 2015 International Conference and Workshops on Networked Systems (NetSys) Year: 2015, pp. 1-5, DOI: 10.1109/NetSys.2015.7089081 IEEE Conference Publications.
Clement, et al. “Speaker Diarization of Heterogeneous Web Video Files: A Preliminary Study”, Acoustics, Speech and Signal Processing (ICASSP), 2011, IEEE International Conference on Year: 2011, pp. 4432-4435, DOI: 10.1109/ICASSP.2011.5947337 IEEE Conference Publications, France.
Gong, et al., “A Knowledge-based Mediator for Dynamic Integration of Heterogeneous Multimedia Information Sources”, Video and Speech Processing, 2004, Proceedings of 2004 International Symposium on Year: 2004, pp. 467-470, DOI: 10.1109/ISIMP.2004.1434102 IEEE Conference Publications, Hong Kong.
Lin, et al., “Robust Digital Signature for Multimedia Authentication: A Summary”, IEEE Circuits and Systems Magazine, 4th Quarter 2003, pp. 23-26.
Lin, et al., “Summarization of Large Scale Social Network Activity”, Acoustics, Speech and Signal Processing, 2009, ICASSP 2009, IEEE International Conference on Year 2009, pp. 3481-3484, DOI: 10.1109/ICASSP.2009.4960375, IEEE Conference Publications, Arizona.
Nouza, et al., “Large-scale Processing, Indexing and Search System for Czech Audio-Visual Heritage Archives”, Mlultimedia Signal Processing (MMSP), 2012, pp. 337-342, IEEE 14th Intl. Workshop, DOI: 10.1109/MMSP.2012.6343465, Czech Republic.
Li, et al., “Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature,” Proceedings of the Digital Imaging Computing: Techniques and Applications, Feb. 2005, vol. 0-7695-2467, Australia.
May et al., “The Transputer”, Springer-Verlag, Berlin Heidelberg, 1989, teaches multiprocessing system.
Nam, et al., “Audio Visual Content-Based Violent Scene Characterization”, Department of Electrical and Computer Engineering, Minneapolis, MN, 1998, pp. 353-357.
Vailaya, et al., “Content-Based Hierarchical Classification of Vacation Images,” I.E.E.E.: Multimedia Computing and Systems, vol. 1, 1999, East Lansing, MI, pp. 518-523.
Vallet, et al., “Personalized Content Retrieval in Context Using Ontological Knowledge,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, No. 3, Mar. 2007, pp. 336-346.
Whitby-Strevens, “The Transputer”, 1985 IEEE, Bristol, UK.
Yanai, “Generic Image Classification Using Visual Knowledge on the Web,” MM'03, Nov. 2-8, 2003, Tokyo, Japan, pp. 167-176.
Liu, et al., “Instant Mobile Video Search With Layered Audio-Video Indexing and Progressive Transmission”, Multimedia, IEEE Transactions on Year: 2014, vol. 16, Issue: 8, pp. 2242-2255, DOI: 10.1109/TMM.2014.2359332 IEEE Journals & Magazines.
Mladenovic, et al., “Electronic Tour Guide for Android Mobile Platform with Multimedia Travel Book”, Telecommunications Forum (TELFOR), 2012 20th Year: 2012, pp. 1460-1463, DOI: 10.1109/TELFOR.2012.6419494 IEEE Conference Publications.
Park, et al., “Compact Video Signatures for Near-Duplicate Detection on Mobile Devices”, Consumer Electronics (ISCE 2014), The 18th IEEE International Symposium on Year: 2014, pp. 1-2, DOI: 10.1109/ISCE.2014.6884293 IEEE Conference Publications.
Wang et al. “A Signature for Content-based Image Retrieval Using a Geometrical Transform”, ACM 1998, pp. 229-234.
Zang, et al., “A New Multimedia Message Customizing Framework for Mobile Devices”, Multimedia and Expo, 2007 IEEE International Conference on Year: 2007, pp. 1043-1046, DOI: 10.1109/ICME.2007.4284832 IEEE Conference Publications.
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995.
Cernansky et al., “Feed-forward Echo State Networks”; Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005.
Fathy et al., “A Parallel Design and Implementation for Backpropagation Neural Network Using NIMD Architecture”, 8th Mediterranean Electrotechnical Corsfe rersce, 19'96. MELECON '96, Date of Conference: May 13-16, 1996, vol. 3, pp. 1472-1475.
Foote, Jonathan, et al. “Content-Based Retrieval of Music and Audio”, 1997 Institute of Systems Science, National University of Singapore, Singapore (Abstract).
Howlett et al., “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International Journal of Knowledge-based Intelligent Engineering Systems, 4 (2). pp. 86-93, 133N 1327-2314; first submitted Nov. 30, 1999; revised version submitted Mar. 10, 2000.
International Search Authority: “Written Opinion of the International Searching Authority” (PCT Rule 43bis.1) including International Search Report for International Patent Application No. PCT/US2008/073852; dated Jan. 28, 2009.
International Search Authority: International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty) including “Written Opinion of the International Searching Authority” (PCT Rule 43bis. 1) for the corresponding International Patent Application No. PCT/IL2006/001235; dated Jul. 28, 2009.
International Search Report for the corresponding International Patent Application PCT/IL2006/001235; dated Nov. 2, 2008.
IPO Examination Report under Section 18(3) for corresponding UK application No. GB1001219.3, dated May 30, 2012.
IPO Examination Report under Section 18(3) for corresponding UK application No. GB1001219.3, dated Sep. 12, 2011.
Iwamoto, K.; Kasutani, E.; Yamada, A.: “Image Signature Robust to Caption Superimposition for Video Sequence Identification”; 2006 IEEE International Conference on Image Processing; pp. 3185-3188, Oct. 8-11, 2006; doi: 10.1109/ICIP.2006.313046.
Jaeger, H.: “The “echo state” approach to analysing and training recurrent neural networks”, GMD Report, No. 148, 2001, pp. 1-43, XP002466251. German National Research Center for Information Technology.
Lin, C.; Chang, S.: “Generating Robust Digital Signature for Image/Video Authentication”, Multimedia and Security Workshop at ACM Mutlimedia '98; Bristol, U.K., Sep. 1998; pp. 49-54.
Lyon, Richard F.; “Computational Models of Neural Auditory Processing”; IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar. 1984, vol. 9, pp. 41-44.
Maass, W. et al.: “Computational Models for Generic Cortical Microcircuits”, Institute for Theoretical Computer Science, Technische Universitaet Graz, Graz, Austria, published Jun. 10, 2003.
Morad, T.Y. et al.: “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005 (Jul. 4, 2005), pp. 1-4, XP002466254.
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on Control '96, Sep. 2-5, 1996, Conference 1996, Conference Publication No. 427, IEE 1996.
Natsclager, T. et al.: “The “liquid computer”: A novel strategy for real-time computing on time series”, Special Issue on Foundations of Information Processing of Telematik, vol. 8, No. 1, 2002, pp. 39-43, XP002466253.
Ortiz-Boyer et al., “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005) 1-48 Submitted Nov. 2004; published Jul. 2005.
Raichelgauz, I. et al.: “Co-evolutionary Learning in Liquid Architectures”, Lecture Notes in Computer Science, [Online] vol. 3512, Jun. 21, 2005 (Jun. 21, 2005), pp. 241-248, XP019010280 Springer Berlin / Heidelberg ISSN: 1611-3349 ISBN: 978-3-540-26208-4.
Ribert et al. “An Incremental Hierarchical Clustering”, Visicon Interface 1999, pp. 586-591.
Scheper et al, “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publi, ISBN 2-930307-06-4.
Theodoropoulos et al, “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996. PDP '96.
Verstraeten et al., “Isolated word recognition with the Liquid State Machine: a case study”; Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available online Jul. 14, 2005.
Verstraeten et al.: “Isolated word recognition with the Liquid State Machine: a case study”, Information Processing Letters, Amsterdam, NL, vol. 95, No. 6, Sep. 30, 2005 (Sep. 30, 2005), pp. 521-528, XP005028093 ISSN: 0020-0190.
Xian-Sheng Hua et al.: “Robust Video Signature Based on Ordinal Measure” In: 2004 International Conference on Image Processing, ICIP '04; Microsoft Research Asia, Beijing, China; published Oct. 24-27, 2004, pp. 685-688.
Zeevi, Y. et al.: “Natural Signal Classification by Neural Cliques and Phase-Locked Attractors”, IEEE World Congress on Computational Intelligence, IJCNN2006, Vancouver, Canada, Jul. 2006 (Jul. 2006), XP002466252.
Zhou et al., “Ensembling neural networks: Many could be better than all”; National Laboratory for Novel Software Technology, Nanjing Unviersirty, Hankou Road 22, Nanjing 210093, PR China; Available online Mar. 12, 2002.
Zhou et al., “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”; IEEE Transactions on Information Technology in Biomedicine, vol. 7, Issue: 1, pp. 37-42, Date of Publication: Mar. 2003.
Cococcioni, et al, “Automatic Diagnosis of Defects of Rolling Element Bearings Based on Computational Intelligence Techniques”, University of Pisa, Pisa, Italy, 2009.
Emami, et al, “Role of Spatiotemporal Oriented Energy Features for Robust Visual Tracking in Video Surveillance, University of Queensland”, St. Lucia, Australia, 2012.
Guo et al, “AdOn: An Intelligent Overlay Video Advertising System”, SIGIR, Boston, Massachusetts, Jul. 19-23, 2009.
Mandhaoui, et al, “Emotional Speech Characterization Based on Multi-Features Fusion for Face-to-Face Interaction”, Universite Pierre et Marie Curie, Paris, France, 2009.
Marti, et al, “Real Time Speaker Localization and Detection System for Camera Steering in Multiparticipant Videoconferencing Environments”, Universidad Politecnica de Valencia, Spain, 2011.
Mei, et al., “Contextual In-Image Advertising”, Microsoft Research Asia, pp. 439-448, 2008.
Mei, et al., “VideoSense—Towards Effective Online Video Advertising”, Microsoft Research Asia, pp. 1075-1084, 2007.
Semizarov et al. “Specificity of Short Interfering RNA Determined through Gene Expression Signatures”, PNAS, 2003, pp. 6347-6352.
Odinaev, et al., “Cliques in Neural Ensembles as Perception Carriers”, Technion—Israel Institute of Technology, 2006 International Joint Conference on Neural Networks, Canada, 2006, pp. 285-292.
The International Search Report and the Written Opinion for PCT/US2016/054634 dated Mar. 16, 2017, ISA/RU, Moscow, RU.
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93, downloaded from http://proceedings.spiedigitallibrary.org/ on Aug. 2, 2017.
Schneider, et. al., “A Robust Content Based Digital Signature for Image Authentication”, Proc. ICIP 1996, Laussane, Switzerland, Oct. 1996, pp. 227-230.
Yanagawa, et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts.” Columbia University ADVENT technical report, 2007, pp. 222-2006-8.
Johnson, John L., “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images.” Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253.
The International Search Report and the Written Opinion for PCT/US2016/050471, ISA/RU, Moscow, RU, dated May 4, 2017.
The International Search Report and the Written Opinion for PCT/US2017/015831, ISA/RU, Moscow, Russia, dated Apr. 20, 2017.
Ma et el. (“Semantics modeling based image retrieval system using neural networks” 2005 (Year: 2005).
Zhou et al, “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”, IEEE Transactions on Information Technology in Biomedicine, vol. 7, Issue: 1, Mar. 2003, pp. 37-42.
Zhu et al., “Technology-Assisted Dietary Assesment”, Proc SPIE. Mar. 20, 2008, pp. 1-15.
Zou et al., “A Content-Based Image Authentication System with Lossless Data Hiding”, ICME 2003, pp. 213-216.
“Computer Vision Demonstration Website”, Electronics and Computer Science, University of Southampton, 2005, USA.
Big Bang Theory Series 04 Episode 12, aired Jan. 6, 2011; [retrieved from Internet: ].
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995, pp. 1-14.
Burgsteiner et al., “Movement Prediction from Real-World Images Using a Liquid State machine”, Innovations in Applied Artificial Intelligence Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence, LNCS, Springer-Verlag, BE, vol. 3533, Jun. 2005, pp. 121-130.
Cernansky et al, “Feed-forward Echo State Networks”, Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005, pp. 1-4.
Chinchor, Nancy A. et al.; Multimedia Analysis + Visual Analytics = Multimedia Analytics; IEEE Computer Society; 2010; pp. 52-60. (Year: 2010).
Fathy et al, “A Parallel Design and Implementation for Backpropagation Neural Network Using MIMD Architecture”, 8th Mediterranean Electrotechnical Conference, 19'96. MELECON '96, Date of Conference: May 13-16, 1996, vol. 3 pp. 1472-1475, vol. 3.
Freisleben et al, “Recognition of Fractal Images Using a Neural Network”, Lecture Notes in Computer Science, 1993, vol. 6861, 1993, pp. 631-637.
Garcia, “Solving the Weighted Region Least Cost Path Problem Using Transputers”, Naval Postgraduate School, Monterey, California, Dec. 1989.
Guo et al, AdOn: An Intelligent Overlay Video Advertising System (Year: 2009).
Hogue, “Tree Pattern Inference and Matching for Wrapper Induction on the World Wide Web”, Master's Thesis, Massachusetts Institute of Technology, Jun. 2004, pp. 1-106.
Howlett et al, “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International Journal of knowledge-based intelligent engineering systems, 4 (2). pp. 86-93, 133N 1327-2314.
Hua et al., “Robust Video Signature Based on Ordinal Measure”, Image Processing, 2004, 2004 International Conference on Image Processing (ICIP), vol. 1, IEEE, pp. 685-688, 2004.
International Search Report and Written Opinion for PCT/US2016/050471, ISA/RU, Moscow, RU, dated May 4, 2017.
International Search Report and Written Opinion for PCT/US2016/054634, ISA/RU, Moscow, RU, dated Mar. 16, 2017.
International Search Report and Written Opinion for PCT/US2017/015831, ISA/RU, Moscow, RU, dated Apr. 20, 2017.
Johnson et al, “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images”, Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253.
Lau et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, 2008, pp. 98-103.
Li et al (“Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature” 2005) (Year: 2005).
Lin et al., “Generating robust digital signature for image/video authentication”, Multimedia and Security Workshop at ACM Multimedia '98, Bristol, U.K., Sep. 1998, pp. 245-251.
Lu et al, “Structural Digital Signature for Image Authentication: An Incidental Distortion Resistant Scheme”, IEEE Transactions on Multimedia, vol. 5, No. 2, Jun. 2003, pp. 161-173.
Lyon, “Computational Models of Neural Auditory Processing”, IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar 1984, vol. 9, pp. 41-44.
Marian Stewart B et al., “Independent component representations for face recognition”, Proceedings of the SPIE Symposium on Electronic Imaging: Science and Technology; Conference on Human Vision and Electronic Imaging III, San Jose, California, Jan. 1998, pp. 1-12.
May et al, “The Transputer”, Springer-Verlag Berlin Heidelberg 1989, vol. 41.
McNamara et al., “Diversity Decay in opportunistic Content Sharing Systems”, 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1-3.
Morad et al., “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005, pp. 1-4, XP002466254.
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on Control '96, Sep. 2-5, 1996, Conference Publication No. 427, IEE 1996.
Natschlager et al., “The “Liquid Computer”: A novel strategy for real-time computing on time series”, Special Issue on Foundations of Information Processing of telematik, vol. 8, No.1, 2002, pp. 39-43, XP002466253.
Odinaev et al, “Cliques in Neural Ensembles as Perception Carriers”, Technion—Institute of Technology, 2006 International Joint Conference on neural Networks, Canada, 2006, pp. 285-292.
Ortiz-Boyer et al, “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005) Submitted Nov. 2004; published Jul. 2005, pp. 1-48.
Pandya etal. A Survey on QR Codes: in context of Research and Application. International Journal of Emerging Technology and U Advanced Engineering. ISSN 2250-2459, ISO 9001:2008 Certified Journal, vol. 4, Issue 3, Mar. 2014 (Year: 2014).
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93.
Rui, Yong et al. “Relevance feedback: a power tool for interactive content-based image retrieval.” IEEE Transactions pn circuits and systems for video technology 8.5 (1998): 644-655.
Santos et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for multimediaand E-Learning”, 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCom), 2015, pp. 224-228.
Scheper et al, “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publication, ISBN 2-930307-06-4, pp. 1-12.
Schneider et al, “A Robust Content based Digital Signature for Image Authentication”, Proc. ICIP 1996, Lausane, Switzerland, Oct. 1996, pp. 227-230.
Srihari et al., “Intelligent Indexing and Semantic Retrieval of Multimodal Documents”, Kluwer Academic Publishers, May 2000, vol. 2, Issue 2-3, pp. 245-275.
Srihari, Rohini K. “Automatic indexing and content-based retrieval of captioned images” Computer 0 (1995): 49-56.
Stolberg et al (“Hibrid-Soc: A Multi-Core Soc Architecture for Multimedia Signal Processing” (2003).
Stolberg et al, “Hibrid-Soc: A Mul Ti-Core Soc Architecture for Mul Timedia Signal Processing”, 2003 IEEE, pp. 189-194.
Theodoropoulos et al, “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996. PDP '96, pp. 274-281.
Vallet et al (“Personalized Content Retrieval in Context Using Ontological Knowledge” Mar. 2007) (Year: 2007).
Verstraeten et al, “Isolated word recognition with the Liquid State Machine: a case study”, Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available onlline Jul. 14, 2005, pp. 521-528.
Wang et al., “Classifying Objectionable Websites Based onImage Content”, Stanford University, pp. 1-12.
Ware et al, “Locating and Identifying Components in a Robot's Workspace using a Hybrid Computer Architecture” Proceedings of the 1995 IEEE International Symposium on Intelligent Control, Aug. 27-29, 1995, pp. 139-144.
Whitby-Strevens, “The transputer”, 1985 IEEE, pp. 292-300.
Wilk et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, International Conference and Workshops on networked Systems (NetSys), 2015, pp. 1-5.
Yanagawa et al, “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University ADVENT Technical Report # 222-2006-8, Mar. 20, 2007, pp. 1-17.
Yanagawa et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University Advent Technical Report #222, 2007, pp. 2006-2008.
Zhou et al, “Ensembling neural networks: Many could be better than all”, National Laboratory for Novel Software Technology, Nanjing University, Hankou Road 22, Nanjing 210093, PR China, Available online Mar. 12, 2002, pp. 239-263.
Related Publications (1)
Number Date Country
20150139569 A1 May 2015 US
Provisional Applications (1)
Number Date Country
62030085 Jul 2014 US
Continuations (1)
Number Date Country
Parent 12434221 May 2009 US
Child 13344400 US
Continuation in Parts (5)
Number Date Country
Parent 14096865 Dec 2013 US
Child 14608880 US
Parent 13624397 Sep 2012 US
Child 14096865 US
Parent 13344400 Jan 2012 US
Child 13624397 US
Parent 12195863 Aug 2008 US
Child 13624397 US
Parent 12084150 US
Child 12195863 US