Method and system for determining the speed of sound in a fluid in the region of a cardiac support system

Information

  • Patent Grant
  • 12311160
  • Patent Number
    12,311,160
  • Date Filed
    Thursday, June 6, 2019
    6 years ago
  • Date Issued
    Tuesday, May 27, 2025
    a month ago
Abstract
A method for determining the speed of sound in a fluid in the region of an implanted, vascular support system includes sending an ultrasonic signal using an ultrasonic sensor, reflecting the ultrasonic signal on at least one sound reflector, receiving the reflected ultrasonic signal, and determining the speed of sound in the fluid using the ultrasonic signal. The at least one sound reflector may be visible in the field of vision of the ultrasonic sensor and arranged at a defined distance at least to the ultrasonic sensor or to a further sound reflector.
Description
BACKGROUND
Field

The invention relates to a method for determining the speed of sound in a fluid in the region of an implanted vascular support system, a system for determining the speed of sound in a fluid in the region of an implanted vascular support system, and an implantable vascular support system. The invention is particularly used in (fully) implanted left heart support systems (LVAD [Left Ventricular Assist Device]).


Description of the Related Art

Knowledge of the actually circulated blood volume of a heart support system or cardiac support system is medically of great importance, in particular for regulating the (implanted) support system.


Work is therefore being done on integrating ultrasonic-based volume flow measurement technology into the support systems. An ultrasonic Doppler measurement can be used as a measurement method, wherein only a single ultrasonic transducer is required as a transmitter and receiver element, which primarily saves installation space in the implant. The flow velocity can be calculated based on the frequency shift due to the Doppler effect:







Δ

f

=


f
0

·


2

v

c

·

cos

(
α
)







Where Δf is the resulting Doppler frequency shift, f0 is the frequency of the emitted ultrasound impulse, v is the flow velocity of the medium, c is the speed of sound in the medium, and α is the angle between the ultrasonic sound path and the main flow direction.


In a (heart) support system, v is to be determined, α is generally known, and f0 is known. The speed of sound c is only approximately known and depends on the composition and properties of the blood. For high measurement quality, it is therefore necessary to explicitly determine the speed of sound c in the blood by measurement.


SUMMARY

The task of the invention is to specify a method and to provide a system by which the speed of sound in a fluid, in particular the speed of sound of blood in the region of an implanted vascular support system, can be determined.


This object is achieved by the method specified in claim 1 and the system specified in claim 8. Advantageous embodiments of the invention are specified in the dependent claims.


According to claim 1, a method for determining the speed of sound in a fluid in the region of an implanted vascular support system is proposed here, comprising the following steps:

    • a) Transmitting an ultrasonic signal by means of an ultrasonic sensor,
    • b) Reflecting the ultrasonic signal on at least one sound reflector, which is arranged in the field of vision of the ultrasonic sensor and at a defined distance, at least to the ultrasonic sensor or to a further sound reflector,
    • c) receiving the reflected ultrasonic signal,
    • d) determining the speed of sound in the fluid using the reflected ultrasonic signal.


The vascular support system is preferably a cardiac support system, particularly preferably a ventricular support system. The support system is regularly used to support the circulation of blood in the cardiovascular system of a human, or patient if applicable. The support system can be arranged at least partially in a blood vessel. The blood vessel is, for example, the aorta, in particular in a left heart support system, or the pulmonary trunk (Truncus pulmonalis) into the two pulmonary arteries, in particular in a right heart support system, preferably the aorta. The support system is preferably arranged at the outlet of the left ventricle of the heart or the left ventricle. The support system is particularly preferably arranged in the aortic valve position.


The method is preferably used to measure the speed of sound in blood using ultrasound in a heart support system. The method can contribute toward determining a fluid flow velocity and/or fluid volume flow from a ventricle of a heart, in particular from a (left) ventricle of a heart towards the aorta in the region of a (fully) implanted, (left) ventricular (heart) support system. The fluid is regularly blood. The speed of sound is preferably determined in a fluid flow or fluid volume flow that flows through the support system. The method advantageously makes it possible to also determine the speed of sound or speed of flow required for a (Doppler) measurement in the blood outside of the surgical scenario with high quality, in particular by the implanted support system itself.


The explicit determination of the speed of sound is in particular made possible by integrating one or more sound reflectors in the field of vision of a Doppler ultrasonic sensor of a heart support system, in particular in combination with the enhancement of an additional analysis algorithm, in particular an additional FMCW (frequency-modulated approach)-based analysis algorithm, so that the accuracy of the Doppler-based blood flow measurement is not influenced by uncertainties in the speed of sound. The solution presented here is based in particular on enhancing a vascular support system with an integrated Doppler volume flow sensor with one or more reflectors at a defined distance to the ultrasonic element, so that the speed of sound can be determined based on the geometrically defined and known travel distance between the ultrasonic element and the reflector as well as the measured pulse time of flight and/or beat frequency.


In step a), an ultrasonic signal is emitted by means of an ultrasonic sensor. For this purpose, the ultrasonic sensor preferably comprises an ultrasonic element, which, for example due to its oscillation, is designed to emit one or more ultrasonic signals. A piezo element is particularly preferred for the ultrasonic element. Furthermore, the ultrasonic sensor is preferably aligned such that an angle between the ultrasonic sound path and the main flow direction of the fluid is less than 5°. It is also advantageous if the ultrasonic sensor is designed in the manner of an ultrasonic transducer that is configured both for transmitting and receiving ultrasonic signals, for example in that an ultrasonic element can function as a transmitter and receiver element. The emitted ultrasonic signal can also be referred to as a transmission signal and generally has a specific frequency and/or amplitude. In addition, the transmission signal can also be pulsed or comprise at least an (im-)pulse (for the pulse time of flight approach). Furthermore, the transmission signal can preferably be influenced by frequency modulation, in particular for determining beat frequencies (for the FMCW approach).


In step b), the ultrasonic signal is reflected on at least one sound reflector, which is arranged in the field of vision of the ultrasonic sensor and at a (pre-)defined distance to the ultrasonic sensor and/or to further sound reflector, which is also arranged in the field of vision of the ultrasonic sensor. The field of vision of the ultrasonic sensor is usually determined or formed by its emission characteristic. The sound reflector is preferably arranged circumferentially along an inner circumference of a flow channel of the support system. The at least one sound reflector preferably projects at least partially into a flow path of the fluid or flow channel for the fluid through the support system. This flow path or channel can, for example travel through, or be formed by, a(n) (inlet) cannula. It is particularly preferred in this case that the at least one sound reflector is arranged circumferentially along a(n) (inner) surface of the cannula. This defined distance between the ultrasonic sensor and the sound reflector is preferably in the range of 5 to 35 mm, in particular 5 to 30 mm.


The at least one sound reflector can have at least one air-filled cavity. The at least one sound reflector is preferably oriented and/or aligned such that it causes (only) one reflection or (only) reflections in the direction of the ultrasonic sensor. In other words, the at least one sound reflector is oriented and/or aligned such that it reflects incident ultrasonic waves or signals in particular directly and/or only toward the ultrasonic sensor. Furthermore, the at least one sound reflector is preferably aligned such that a surface of the reflector is oriented in parallel to the incident ultrasonic wavefront. Preferably, the at least one sound reflector is a component of the support system that is separate from the further components (e.g., channel inner wall) that come into contact with the fluid. The at least one sound reflector is preferably mounted or fastened to a channel inner wall of the support system.


In step c), the reflected ultrasonic signal is received. The reflected ultrasonic signal is preferably received by means of the ultrasonic sensor. The received ultrasonic signal can also be referred to as a receiving signal. In particular if several sound reflectors are specified, several reflected ultrasound signals can also be received in step c).


In step d), the speed of sound in the fluid is determined using the reflected ultrasonic signal. For this purpose, the ultrasonic signal can be evaluated or analyzed, for example by means of an analysis unit of the support system, in particular the ultrasonic sensor. A (pulse) time of flight-based approach and/or a so-called FMCW-based approach can be performed in this case.


According to an advantageous embodiment, it is proposed that the ultrasonic signal is reflected on at least two sound reflectors, which are arranged at different distances from the ultrasonic sensor. The two sound reflectors generally have a (pre-)defined distance to each other. This distance is preferably in the range of 1 to 10 mm. By using at least two reflectors at different distances, the accuracy can be advantageously further increased, in particular because uncertainties in the speed of sound of the impedance adjustment layer of the ultrasonic transducer and tissue deposits potentially present thereon can be compensated.


According to an advantageous embodiment, it is proposed that the at least one sound reflector has an acoustic impedance that is greater than the largest acoustic impedance of the fluid or is less than the lowest acoustic impedance of the fluid. The at least one sound reflector preferably has an acoustic impedance that differs by at least 5 MRayl from the acoustic impedance of the fluid. If several sound reflectors are specified, they can have the same acoustic impedance or acoustic impedances that differ from each other. However, all present sound reflectors should have an acoustic impedance that is respectively greater than the largest acoustic impedance of the fluid or less than the lowest acoustic impedance of the fluid. Furthermore, the at least one sound reflector preferably has an acoustic impedance in the range of 2 to 80 MRayl. Furthermore, the at least one sound reflector is preferably formed using one or more of the following materials: Titanium, medical stainless steel, e.g., MP35N, platinum iridium, NiTiNol.


Furthermore, the at least one sound reflector preferably has a reflection factor that is greater than the largest reflection factor of the fluid. A reflection factor of the sound reflector in this case is in particular defined as the reflection factor of the boundary layer between the material of the sound reflector and the fluid. A reflection factor of the fluid is in particular defined as the reflection factor of the boundary layer between blood cells and blood serum. If several sound reflectors are specified, they can have the same reflection factor or reflection factors that differ from each other. However, all present sound reflectors should have a reflection factor that is respectively greater than the largest reflection factor of the fluid. The reflection factor of the at least one sound reflector is preferably in the range of 0.3 to 0.99.


According to an advantageous embodiment, it is proposed that the at least one sound reflector be embedded in an embedding material. The embedding material preferably has an acoustic impedance that essentially corresponds to the acoustic impedance of the fluid. For example, a silicone can be used as the embedding material. Further preferably, the embedding material at least partially, preferably completely, envelops the surface of the sound reflector facing toward the fluid. In particular, the at least one sound reflector (using the embedding material) is preferably embedded in a planar and/or smooth surface. Preferably, the at least one sound reflector (by means of the embedding material) is embedded into a surface, the maximum slope of which is less than the maximum slope of the exterior surface of the sound reflector.


According to an advantageous embodiment, it is proposed that the speed of sound be determined using a (pulse) time of flight-based analysis algorithm. In other words, this means, in particular, that a (pulse) time of flight-based analysis algorithm is used to determine the speed of sound. The pulse-time-based analysis algorithm preferably determines the speed of sound as a function of the defined distance at least between the ultrasonic sensor and the sound reflector or between two sound reflectors and at least one (measured) signal time of flight. Particularly preferably, the signal time(s) of flight is/are determined based on a cross-correlation, in particular between the transmission pulse (pulse of the emitted ultrasonic signal) and the received pulses delayed by the time(s) of flight and reflected on the sound reflectors (pulse of the received, reflected ultrasonic signals).


According to an advantageous embodiment, it is proposed that the speed of sound be determined using an FMCW-based analysis algorithm. In other words, this means in particular that an FMCW-based analysis algorithm is used to determine the speed of sound. FMCW is an acronym for frequency modulated continuous wave.


The FMCW-based analysis algorithm preferably determines the speed of sound as a function of the defined distance at least between the ultrasonic sensor and the sound reflector or between two sound reflectors, a change in a frequency of an ultrasonic signal, and at least one (resulting) beat frequency. Particularly preferably, the speed of sound is determined as a function of the defined distance between the ultrasonic sensor and the sound-reflector and/or between two sound reflectors, the slope of a frequency ramp and at least one (resulting) beat frequency.


Preferably, a beat frequency is determined by and/or for the FMCW-based analysis algorithm. The beat frequency can also be referred to as the differential frequency and/or beat frequency. The beat frequency is advantageously determined from an overlay of the ultrasonic signal (transmitted signal) emitted by the ultrasonic sensor with the reflected ultrasonic signal (receiving signal) received by the ultrasonic sensor. As a rule, the number of beat frequencies determined or to be determined corresponds to the number of (ultra)sonic reflectors. Furthermore, a discrete Fourier transformation (DFT) or fast Fourier transformation (FFT) can preferably be used to determine the beat frequency.


According to a further aspect, a system for determining the speed of sound in a fluid in the region of an implanted vascular support system is proposed, comprising:

    • an ultrasonic sensor that is arranged in or on the support system,
    • at least one sound reflector that is arranged in the field of vision of the ultrasonic sensor and at a defined distance at least to the ultrasonic sensor or to a further sound reflector.


According to an advantageous embodiment, it is proposed that at least two sound reflectors be arranged at different distances to the ultrasonic sensor. Furthermore, it is also preferred for the system that the at least one sound reflector be embedded into an embedding material.


According to an advantageous embodiment, it is proposed that an analysis unit is specified in which a pulse-time-based analysis algorithm is stored. Alternatively or cumulatively, an analysis unit can be specified in which an FMCW-based analysis algorithm is stored. The analysis unit is preferably a component of the support system, in particular of the ultrasonic sensor. Furthermore, the analysis unit is preferably configured to execute a method proposed herein. The analysis unit can have a memory in which the pulse time of flight-based analysis algorithm and/or the FMCW-based analysis algorithm is or are stored. In addition, the analysis unit can comprise a microprocessor that can access the memory. The processing unit preferably receives data from an ultrasonic element of the ultrasonic sensor.


According to a further aspect, an implantable vascular support system is proposed, comprising a system proposed herein for determining the speed of sound. The support system is preferably a left ventricular heart support system (LVAD) or a percutaneous, minimally invasive left heart support system. Furthermore, it is preferred that said system can be fully implanted. In other words, this means in particular that the support system is completely in the patient's body and remains there. The support system is particularly preferably configured and/or suitable such that it can be arranged at least partially in a ventricle, preferably the left ventricle of a heart and/or aorta, in particular in an aortic valve position.


Furthermore, the support system preferably comprises a cannula, in particular an inlet cannula and a flow machine, such as a pump. The support system can furthermore comprise an electric motor that is in this case regularly a component of the flow machine. The (inlet) cannula is preferably configured such that it can in the implanted state convey fluid from a (left) ventricle of a heart to the flow machine. The support system is preferably elongated and/or has a hose-like shape. The inlet cannula and the flow machine are preferably arranged in the region of opposite ends of the support system.


The details, features and advantageous embodiments discussed in connection with the method can also occur accordingly in the system and/or the support system presented here and vice versa. In this respect, reference is made in full to the related discussion regarding the detailed characterization of the features.





BRIEF DESCRIPTION OF THE DRAWINGS

The solution presented herein as well as its technical environment are explained below in more detail based on the figures. It is important to note that the invention is not limited by the shown exemplary embodiments. In particular, unless explicitly stated otherwise, it is also possible to extract partial aspects of the facts explained in the figures, and to combine said partial aspects with other components and/or findings from other figures and/or the present description. The following figures show schematically:



FIG. 1 a sequence of a method presented here in a standard operating sequence,



FIG. 2a a detailed view of an implantable vascular support system,



FIG. 2b a detailed view of a further implantable vascular support system,



FIG. 3 an emission characteristic of an ultrasonic element,



FIG. 4 an illustration of a system presented here,



FIG. 5 an illustration of a pulse time of flight-based approach that can be used here,



FIG. 6 an illustration of an FMCW-based approach that can be used here,



FIG. 7 example graphs of real parts of impedances,



FIG. 8a a detailed view of a system presented here, and



FIG. 8b a detailed view of a further system presented here.





DETAILED DESCRIPTION


FIG. 1 shows a schematic representation of a sequence of a method presented here in a standard operating sequence. The illustrated sequence of the method steps a), b), c) and d) with the blocks 110, 120, 130 and 140 is only, exemplary. In block 110, an ultrasonic signal is transmitted with an ultrasonic sensor. In block 120, the ultrasonic signal is reflected on at least one sound reflector, which is arranged in the field of vision of the ultrasonic sensor and at a defined distance from the ultrasonic sensor. In block 130, the reflected ultrasonic signal is received. In block 140, the speed of sound is determined in the fluid using the reflected ultrasonic signal.


In particular, the method steps a), b), and c) can also be executed at least partially or simultaneously in parallel.



FIG. 2a schematically shows a detailed view of an implantable vascular support system 2. FIG. 2b shows a schematic representation of a detailed view of a further implantable vascular support system 2. FIGS. 2a and 2b are explained jointly below. The reference symbols are used uniformly.


The method presented here can in principle be integrated into all designs of cardiac support systems. By way of example, FIG. 2a shows the integration into a left ventricular microaxial pump in the aortic valve position, and FIG. 2b shows the integration into an apically positioned radial support system 2.


The flow direction of the fluid 1 is represented in FIGS. 2a and 2b by arrows. In each case, an ultrasonic sensor 4 is specified, which is arranged in or on the support system 2. The ultrasonic sensors 4 are designed as an ultrasonic transducer in FIGS. 2a and 2b by way of example. In addition, two circumferential sound reflectors 5 are specified along an inner circumference of a flow channel of the support system 2, which are arranged in the field of vision 6 of the ultrasonic sensor 4 and each at a defined distance 7 to the ultrasonic sensor 4. In particular in the embodiment according to FIG. 2a, the flow channel can be formed in the interior of a(n) (inlet) cannula (not shown here) of the support system 2.


The detailed view according to FIG. 2a shows a tip of a support system 2 with a microaxial pump (not shown here); said tip accommodating the ultrasonic sensor 4. A flow conductive body 10 is in this case by way of example placed directly in front of the ultrasonic sensor 4. Said flow conductive body 10 is not spaced at a distance from the ultrasonic sensor 4 and is permeable for ultrasonic signals. The fluid 1 in this case flows in the direction of the pump. The tip of the support system 2 shown in the detailed view according to FIG. 2a can in a preferred arrangement protrude into a ventricle (not shown here) of a heart with the end shown herein on the left, wherein the pump can be arranged at least partially in the aorta (not shown here). In this arrangement, the support system thus penetrates an aortic valve (not shown here).


The detailed view according to FIG. 2b relates to a support system 2, which is also referred to as an apical radial pump. The support system 2 comprises a flow machine 11 (a pump in this case), which expels the fluid 1 as shown in radial direction.


In both exemplary pump variants, the ultrasonic sensor 4, in particular an ultrasonic element of the ultrasonic sensor 4, is usually placed such that the angle to the flow is α=0° (zero degrees); a best possible Doppler shift can therefore be realized.



FIG. 3 shows a schematic representation of an emission characteristic 12 of an ultrasonic element (not shown here). The emission characteristic 12 of an ultrasonic sensor or an ultrasonic element of the ultrasonic sensor is generally lobe-shaped with a main beam direction straight ahead. This is shown in FIG. 3 as an example for a circular disk ultrasonic transducer with a diameter of 3 mm at f0=4 MHz. In other words, FIG. 3 illustrates the field of vision 6 of the ultrasonic sensor (not shown here). A field of vision width 13 can be measured along the ordinate (y-axis) and a field of vision length 14 can be measured along the abscissa (x-axis).



FIG. 4 shows a schematic illustration of a system presented herein. The system comprises an ultrasonic sensor 4 and two sound reflectors 5, which are arranged at a different (defined) distance 7 to the ultrasonic sensor 4. The reflectors 5 project into the fluid 1 by way of example.


Each boundary layer between two acoustic impedances has a reflection factor at which a part of the sound energy is reflected according to the parameter Γ.






Γ
=





Z

w





2


-

Z

w





1





Z

w





2


+

Z

w





1







Γ




1





In this case, Zw1 is the wave impedance before the step point and Zw2 is the wave impedance after the step point.


The slightly different acoustic impedance of red blood cells and blood serum, for example, provides the reflected signal, which is usually used to calculate the Doppler frequency shift, from which the flow speed of the blood can be determined.


A(n) (additional) reflector proposed here should preferably have the highest possible reflection factor, which can be achieved in particular by an impedance mismatch with the blood, i.e., the acoustic impedance of the reflector should differ as clearly as possible from the blood, for example by the reflector being made of an air-filled cavity or a metal.


The method with only one reflector 5 can be faulty as soon as more than one unknown medium is present between the ultrasonic sensor 4 and the reflector 5. For example, the acoustic impedance (formula symbol: ZW1) and thus the speed of sound (formula symbol: C1) of the adjustment layers 15 could change over the years due to water diffusion, or deposits 16 of cell layers (with their own acoustic impedance ZW2 and speed of sound C2) could occur on the ultrasonic sensor 4, thus creating an additional material layer of unknown thickness and/or unknown speed of sound, as shown in greater detail in FIG. 4. In this context, the different speeds of sound of the different media are shown in FIG. 4 by way of example, namely the speed of sound C1 of the adjustment layers 15, the speed of sound C2 of the deposits 16 and the speed of sound C3 of the fluid 1 (here: blood).



FIG. 5 shows a schematic illustration of a pulse time of flight-based approach usable herein. In order to explain the illustration according to FIG. 5 and/or the pulse time of flight-based approach, reference is also made to the illustration of the system according to FIG. 4.


In addition to the ultrasonic power reflected continuously by each scatter particle of fluid 1 (here: blood; in particular at the respective boundary from blood serum to blood cells), there are clear echoes at the reflectors 5, which can be identified in the received amplitude-time data. In addition, the impulse time of flight from the ultrasonic sensor 4 to the reflector 5 and back to the ultrasonic sensor 4 can be calculated. Since the mechanical design of the (heart) support system 2 and thus the (defined) distance 7 between the ultrasonic sensor 4 and reflector 5 is known, the desired speed of sound c is determined with the formula






c
=


2

s

t






where s is the known (defined) distance 7 between the ultrasonic sensor 4 and reflector 5 and t is the measured signal time of flight.


When using two reflectors 5 with different distances 7, as shown in FIG. 4, the time of flight tR1 of the impulse scattered on the first reflector 5 is therefore







t

R





1


=

2


[



s
1


c
1


+


s
2


c
2


+


s
3


c
3



]






And the time of flight tR2 of the pulse scattered on the second reflector 5 is







t

R





2


=

2


[



s
1


c
1


+


s
2


c
2


+


s
3


c
3


+


s
4


c
3



]







where s1 is the thickness of the adjustment layers 15, s2 is the thickness of the deposits 16, s3 is the distance between deposits 16 and the first (left) reflector 5 and s4 is the distance between the first (left) reflector 5 and the second (right) reflector 5, and where c1 is the speed of sound in the adjustment layers 15, c2 is the speed of sound in the deposits 16, and c3 is the speed of sound in the fluid 1 (here: blood).


Since the adjustment layers 15 with the speed of sound c1 and the deposits 16 with the speed of sound c2 act equally on both impulses, the difference of the signal times of flight tR2-tR1 only contains components in the sought (fluid) range or in the (fluid) range relevant here with the (sought) speed of sound c3:








t

R





2


-

t

R





1



=



2


[



s
1


c
1


+


s
2


c
2


+


s
3


c
3


+


s
4


c
3



]


-

2


[



s
1


c
1


+


s
2


c
2


+


s
3


c
3



]



=

2



s
4


c
3








Since the distance s4 of the two reflectors 5 to one another is known, the speed of sound c3 can be determined independent of the influence of additional layers between the ultrasonic sensor 4 and the reflector 5.


One possibility for determining the times of flight tR1 and tR2 or tR1-tR2 is the calculation of the cross-correlation 17 of the transmission pulse 3 (pulse of the transmitted ultrasonic signal 3) to the receiving pulses 8 (pulses of the received and reflected ultrasonic signals 8) reflected on the ultrasonic reflectors 5 and delayed by the times of flight tR1 or tR2. The time-discrete cross correlation 17 can be calculated as follows for an energy signal:








R

x

γ


[
n
]

=



(

x

y

)

[
n
]

=




m
=

-








x
*

[
m
]



y
[

m
+
n

]









where Rxy [n] is the discrete cross-correlation at time n, and the operator “star” as an acronym for the cross-correlation, x*[m] is the conjugated complex transmission signal over all time shifts m, and y[m+n] is the receiving signal at time n over all time shifts m.


The illustration according to FIG. 5 shows an example of the result of this calculation. FIG. 5 shows the pulse of the emitted ultrasonic signal 3, the pulses of the received reflected ultrasonic signals 8 and the (time-discrete) cross correlation 17 overtime 18. The time interval tR1-tR2 can be determined from the distance between, e.g., the two tips (peaks) in the cross-correlation signal 17—after reverse-recalculating the discrete time steps.



FIG. 6 shows a schematic illustration of an FMCW-based approach usable here. In order to explain the illustration according to FIG. 6 or the FMCW-based approach, reference is also made to the illustration of the system according to FIG. 4.


The (ultra)sound reflectors 5 represent the dominant targets in the emission range of the ultrasonic sensor 4, in particular due to their high reflection factor. Their beat frequencies can therefore be clearly detected in the calculated spectrum. Since the mechanical design of the (heart) support system and thus the distance between the ultrasonic sensor 4 and the reflector 5 (formula symbol x) is known, the desired speed of sound c is determined by the formula






c
=

2


s
x




(

bw
T

)


f

beat
,
x









where sx is the known distance between the ultrasonic sensor and reflector x, bw/T is the slope of the frequency ramp, and fbeat,x is the resulting beat frequency in the base band. In particular, since the reflectors 5 are installed in a fixed location, the resulting beat frequency is only influenced by their distance to the ultrasonic sensor 4 and the corresponding time of flight of the frequency ramp in the fluid (here: blood), and in particular contains no speed-dependent portion.


When using two reflectors 5 with different distances 7, as shown in FIG. 4, the beat frequency fbeat,R1 of the frequency ramp reflected at the first reflector is therefore







f

beat
,

R





1



=

2



(

bw
T

)



[



s
1


c
1


+


s
2


c
2


+


s
3


c
3



]








and the beat frequency fbeat,R2 of the frequency reflected on the second reflector is







f

beat
,

R





2



=

2



(

bw
T

)



[



s
1


c
1


+


s
2


c
2


+


s
3


c
3


+


s
4


c
3



]








where s1 is the thickness of the adjustment layers 15, s2 is the thickness of the deposits 16, s3 is the distance between deposits 16 and the first (left) reflector 5 and s4 is the distance between the first (left) reflector 5 and the second (right) reflector 5, and where c1 is the speed of sound in the adjustment layers 15, c2 is the speed of sound in the deposits 16, and c3 is the speed of sound in the fluid 1 (here: blood).


Since the adjustment layers 15 with the speed of sound c1 and the deposits 16 with the speed of sound c2 act equally on both frequency ramps, the difference of the beat frequencies fbeat,R2-fbeat,R1 only contains components in the searched (fluid) range or in the (fluid) range relevant here with the (searched) speed of sound c3:








f

beat
,

R





2



-

f

beat
,

R





1




=



2



(

bw
T

)



[



s
1


c
1


+


s
2


c
2


+


s
3


c
3


+


s
4


c
3



]



-

2



(

bw
T

)



[



s
1


c
1


+


s
2


c
2


+


s
3


c
3



]




=

2


(

bw
T

)




s
4


c
3








Since the distance s4 of the two reflectors 5 to one another is known, the speed of sound c3 can be determined irrespective of the influence of additional layers between the ultrasonic sensor 4 and the reflector 5.


To determine the beat frequencies, the ultrasonic frequency f0 is influenced by frequency modulation as an example. Without limitation, sine-wave-shaped, saw-tooth-shaped, triangular or rectangular modulation types can be used. It is particularly preferred that the ultrasonic sensor or the ultrasonic element of the sensor provide a broadband resonance and that the ramp time of flight (formula symbol: T) is much greater than the time of flight of the frequency ramps to the ultrasonic sensor 4 (ultrasound transducer) to the (ultra)-sound reflectors 5 and back again. The echoes of the successively emitted, modulated ultrasonic frequency reflected at the reflectors 5 are overlaid with the instantaneous transmission frequency ramp. The base band signal generated in this way contains the beat frequencies to be determined. These are converted by the transformation into the frequency range, e.g., by discrete Fourier transformation (DFT) or fast Fourier transformation (FFT).


The illustration according to FIG. 6 shows a possible realization of the previously described FMCW-based approach by means of a sawtooth modulation. The upper diagram of FIG. 6 shows the graph of the frequency 19 versus time 18. It can be seen that both the ultrasonic signal 3 (transmission signal) emitted by the ultrasonic sensor and the reflected ultrasonic signals 8 (receiving signals) received by the ultrasonic sensor (three here as an example) are shaped in the manner of a sawtooth. In this case, three receiving signals 8 shifted relative to the transmission signal 3 and to one another are applied as examples, which would for example be the case if three ultrasonic reflectors arranged at different distances to the ultrasonic sensor were used.


The FMCW approach regularly works with a periodic frequency modulation, in this case periodic sawtooth modulation, which should be as time-linear as possible to ensure the best-possible accuracy of the measurement. The modulation is usually performed cyclically. Such a cycle from the lowest to the highest frequency is also referred to as a signal burst. The duration of a corresponding cycle is shown in the upper diagram of FIG. 6 as a so-called chirp duration 22. In addition, a usable chirp duration 23 is marked.


The ultrasonic sensor in this case sends an example of a linear frequency-modulated signal with a sawtooth-shaped change of the transmission frequency 3. The same signal is received by the ultrasonic sensor after a reflection on one of the ultrasonic reflectors. The received signal 8 differs in the time, wherein the time difference 21 between the frequency shifts is generally proportional to the distance of the reflective ultrasonic reflector from the ultrasonic sensor. At the same time (assuming a linear frequency change), the difference frequency 20 between the transmission signal 3 and the receiving signal 8 is the same at any point in time and is thus also a measure for the distance to the reflective ultrasound reflector. This frequency difference can be evaluated in particular in the frequency range.


The frequency plots of the upper diagram in FIG. 6 are in this example used to generate a frequency spectrum 25 by overlaying/multiplying with the instantaneous transmission signal and by means of a subsequent fast Fourier transformation 24, wherein said frequency spectrum 25 carries the difference frequencies 20 in addition to the background noise 26. In a simplified manner, the receiving signal is multiplied with the instantaneous transmission signal, followed by a Fourier transformation of the base band time signal, from which the difference frequencies 20 result, which are also referred to herein as beat frequencies. The minimum range resolution of FMCW systems is







Δ





r

=


c

2

bw


=

s
4







is defined. Accordingly, when two ultrasonic reflectors 5 are, e.g., placed at a distance of Ar=s4=6 mm to each other, and at a(n) (expected) speed of sound in blood c of about 1540 m/s (used to determine the approximately required or particularly advantageous bandwidth), it is possible to work with a bandwidth bw≈128 kHz≤150 kHz.


But a significantly higher range accuracy can be achieved by the additional use of techniques, such as the so-called zero padding (concatenating or padding of zeros) or high-performance frequency estimation methods. This can contribute to a significantly more precise determination of the speed of sound c in the blood. The achievable accuracy depends in particular on the frequency estimation method and/or the signal-to-noise ratio.


The particularly advantageous linearity can in particular be achieved over the desired frequency band when using piezo elements (as ultrasonic elements), preferably when the quality of the resonance (wide-band resonance) is reduced by backing (amplification). The illustration according to FIG. 7 shows example plots of real components 27 of the impedances of 8 MHz piezo elements versus the stimulation frequency 28. In the case shown, a frequency ramp with the example bandwidth bw=150 kHz could be placed in the frequency band 29 highlighted in gray.



FIG. 8a shows a schematic of a detailed view of a system presented here. FIG. 8b shows a schematic of a detailed view of a further system presented here. FIGS. 8a and 8b are explained jointly below. The reference symbols are used uniformly.


To achieve the best possible reflection, the surface of the reflector should be parallel to the incident ultrasonic wavefront. Since non-planar surfaces such as superimposed reflectors can lead to turbulence in the flow (disadvantageous for Doppler ultrasonic measurement), to the formation of thrombi, and to additional blood damage (hemolysis) due to shear forces, it is expedient to embed the reflectors 5 into an embedding material 9, as illustrated by way of example in FIGS. 8a and 8b. The embedding material 9 is used here as an example for providing a smoother surface or a surface without corners and/or edges in comparison to the reflector surface. It is particularly preferred to embed the at least one reflector 5 into a planar surface, in particular by means of the embedding material 9. The embedding material 9 should as much as possible have the same acoustic impedance as the fluid 1 (here: blood) and be as thin as possible, so that there are no additional reflections or diffractions of the acoustic impulse, unless this additional diffraction is desired. For example, the (or each) reflector 5 with an acoustic impedance C4 can be embedded into a silicone with an acoustic impedance C3′, wherein C3′ is similar to the acoustic impedance C3 of blood.


The solution presented here in particular has one or more of the following advantages:

    • By supplementing at least one ultrasonic reflector in the emission range of the ultrasonic system, the speed of sound can be determined from the resulting pulse time of flight and/or the ramp time of flight from the reflector.
    • The known speed of sound increases the measurement accuracy of the flow measurement.
    • The speed of sound depends on the composition of the blood and can in this case be determined and used directly.
    • The FMCW approach does not require a very precise time difference to be measured; an equivalent frequency difference can be determined instead, which significantly reduces the technical effort.

Claims
  • 1. A method for determining speed of sound in blood within a cannula of a cardiac support system, the method comprising: transmitting blood through the cannula of the cardiac support system via a pump of the cardiac support system;sending an ultrasonic signal by means of an ultrasonic sensor, the ultrasonic sensor arranged within a flow path of the blood in the cannula of the cardiac support system;reflecting the ultrasonic signal on a first sound reflector and a second sound reflector protruding at least partially into the flow path of the blood in the cannula of the cardiac support system, the first sound reflector and second sound reflector being located in a field of vision of the ultrasonic sensor, the first sound reflector and second sound reflector located at different linear distances from the ultrasonic sensor along the flow path of the blood in the cannula;receiving a first reflected ultrasound signal and a second reflected ultrasonic signal corresponding to the ultrasonic signal after reflection at the first sound reflector and second sound reflector respectively; anddetermining a speed of sound in the blood based on the first reflected ultrasonic signal and second reflected ultrasonic signal and the different linear distances.
  • 2. The method of claim 1, wherein at least one of the first sound reflector and second sound reflector has an acoustic impedance greater than the largest acoustic impedance of the blood or less than the lowest acoustic impedance of the blood.
  • 3. The method of claim 1, wherein at least one of the first sound reflector and second sound reflector is configured to be embedded into an embedding material.
  • 4. The method of claim 1, wherein the speed of sound is determined based on a pulse time of flight-based analysis algorithm.
  • 5. The method of claim 1, wherein the speed of sound is determined based on a Frequency Modulated Continuous Wave (FMCW) based analysis algorithm.
  • 6. The method of claim 5, wherein a beat frequency is determined.
  • 7. The method of claim 1, wherein at least one of the first sound reflector and second sound reflector is configured to project sound at least partially into a flow path of the blood formed by an inlet cannula.
  • 8. The method of claim 1, wherein the ultrasonic signal is configured to travel along an ultrasonic sound path towards the first sound reflector and second sound reflector and the method further comprises: determining a flow velocity of the fluid within a region of the cardiac support system based on a Doppler frequency shift comprising: Δf=f0·2v/c·cos(α)
  • 9. The method of claim 1, wherein the ultrasonic sensor is positioned downstream of the first sound reflector and the second sound reflector.
  • 10. A system for determining speed of sound in blood within a cannula of a cardiac support system, the system comprising: an ultrasonic sensor, which is arranged in a flow path of blood in the cannula of the cardiac support system; andat least two sound reflectors, the at least two sound reflectors protruding at least partially into the flow path of the blood in the cannula of the cardiac support system, the at least two sound reflectors located in a field of vision of the ultrasonic sensor, wherein the at least two sound reflectors comprise a first sound reflector and a second sound reflector, the first sound reflector and second sound reflector located at different linear distances from the ultrasonic sensor along the flow path of the blood in the cannula.
  • 11. The system of claim 10, wherein each of the at least two sound reflectors is embedded into an embedding material.
  • 12. The system of claim 10, comprising an analysis unit configured to store a pulse time of flight-based analysis algorithm.
  • 13. The system of claim 10, comprising an analysis unit configured to store a Frequency Modulated Continuous Wave (FMCW) based analysis algorithm.
  • 14. The system of claim 10, wherein each of the at least two sound reflectors is configured to project sound at least partially into a flow path of the blood formed by an inlet cannula.
  • 15. The system of claim 10, wherein the ultrasonic sensor is positioned downstream of the first sound reflector and the second sound reflector.
  • 16. A cardiac support system comprising: an ultrasonic sensor, which is arranged within a flow path of blood in a cannula of the support system; andat least two sound reflectors protruding at least partially into the flow path of the blood in the cannula of the cardiac support system, the at least two sound reflectors located in a field of vision of the ultrasonic sensor and wherein the at least two sound reflectors comprise a first sound reflector and a second sound reflector, the first sound reflector and second sound reflector located at different linear distances from the ultrasonic sensor along the flow path of the blood.
  • 17. The system of claim 16, wherein each of the at least two sound reflectors is configured to project sound at least partially into a flow path of the blood formed by an inlet cannula.
  • 18. The system of claim 16, wherein the ultrasonic sensor is positioned downstream of the first sound reflector and the second sound reflector.
Priority Claims (1)
Number Date Country Kind
102018208899.3 Jun 2018 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2019/064803 6/6/2019 WO
Publishing Document Publishing Date Country Kind
WO2019/234163 12/12/2019 WO A
US Referenced Citations (525)
Number Name Date Kind
3088323 Welkowitz et al. May 1963 A
4023562 Hynecek et al. May 1977 A
4103679 Aronson Aug 1978 A
4559952 Angelsen et al. Dec 1985 A
4680730 Omoda Jul 1987 A
4781525 Hubbard et al. Nov 1988 A
4888011 Kung et al. Dec 1989 A
4889131 Salem et al. Dec 1989 A
4902272 Milder et al. Feb 1990 A
5045051 Milder et al. Sep 1991 A
5269811 Hayes Dec 1993 A
5289821 Swartz Mar 1994 A
5456715 Liotta Oct 1995 A
5527159 Bozeman, Jr. et al. Jun 1996 A
5581038 Lampropoulos Dec 1996 A
5613935 Jarvik Mar 1997 A
5662115 Torp Sep 1997 A
5676651 Larson, Jr. et al. Oct 1997 A
5720771 Snell Feb 1998 A
5752976 Duffin et al. May 1998 A
5766207 Potter et al. Jun 1998 A
5827203 Nita Oct 1998 A
5865759 Koblanski Feb 1999 A
5888242 Antaki et al. Mar 1999 A
5904708 Goedeke May 1999 A
5911685 Siess et al. Jun 1999 A
5964694 Siess et al. Oct 1999 A
5980465 Elgas Nov 1999 A
6007478 Siess et al. Dec 1999 A
6024704 Meador et al. Feb 2000 A
6053873 Govari et al. Apr 2000 A
6167765 Weitzel Jan 2001 B1
6176822 Nix et al. Jan 2001 B1
6183412 Benkowsi et al. Feb 2001 B1
6185460 Thompson Feb 2001 B1
6190324 Kieval et al. Feb 2001 B1
6210318 Lederman Apr 2001 B1
6231498 Pfeiffer et al. May 2001 B1
6245007 Bedingham et al. Jun 2001 B1
6314322 Rosenberg Nov 2001 B1
6351048 Schob et al. Feb 2002 B1
6398734 Cimochowski et al. Jun 2002 B1
6432136 Weiss et al. Aug 2002 B1
6438409 Malik et al. Aug 2002 B1
6512949 Combs et al. Jan 2003 B1
6530876 Spence Mar 2003 B1
6540658 Fasciano et al. Apr 2003 B1
6540659 Milbocker Apr 2003 B1
6561975 Pool et al. May 2003 B1
6579257 Elgas et al. Jun 2003 B1
6602182 Milbocker Aug 2003 B1
6605032 Benkowsi et al. Aug 2003 B2
6652447 Benkowsi et al. Nov 2003 B2
6731976 Penn et al. May 2004 B2
6879126 Paden et al. Apr 2005 B2
6912423 Ley et al. Jun 2005 B2
6949066 Bearnson et al. Sep 2005 B2
6984201 Khaghani et al. Jan 2006 B2
7010954 Siess Mar 2006 B2
7022100 Aboul-Hosn et al. Apr 2006 B1
7024244 Muhlenberg et al. Apr 2006 B2
7070555 Siess Jul 2006 B2
7083588 Shmulewitz et al. Aug 2006 B1
7138776 Gauthier et al. Nov 2006 B1
7160243 Medvedev Jan 2007 B2
7175588 Morello Feb 2007 B2
7177681 Xhu Feb 2007 B2
7238151 Frazier Jul 2007 B2
7396327 Morello Jul 2008 B2
7513864 Kantrowitz et al. Apr 2009 B2
7520850 Brockway Apr 2009 B2
7527599 Hickey May 2009 B2
7591777 LaRose Sep 2009 B2
7744560 Struble Jun 2010 B2
7794384 Sugiura et al. Sep 2010 B2
7819916 Yaegashi Oct 2010 B2
7850593 Vincent et al. Dec 2010 B2
7850594 Sutton et al. Dec 2010 B2
7856335 Morello et al. Dec 2010 B2
7862501 Woodward et al. Jan 2011 B2
7951062 Morello May 2011 B2
7951129 Chinchoy May 2011 B2
7963905 Salmonsen et al. Jun 2011 B2
7988728 Ayre Aug 2011 B2
8075472 Zilbershlag et al. Dec 2011 B2
8190390 Morello et al. May 2012 B2
8211028 Karamanoglu et al. Jul 2012 B2
8303482 Schima et al. Nov 2012 B2
8323173 Benkowsi et al. Dec 2012 B2
8435182 Tamura May 2013 B1
8449444 Poirier May 2013 B2
8545380 Farnan et al. Oct 2013 B2
8585572 Mehmanesh Nov 2013 B2
8591393 Walters et al. Nov 2013 B2
8594790 Kjellstrom et al. Nov 2013 B2
8622949 Zafirelis et al. Jan 2014 B2
8657733 Ayre et al. Feb 2014 B2
8657875 Kung et al. Feb 2014 B2
8715151 Poirier May 2014 B2
8747293 Arndt et al. Jun 2014 B2
8849398 Evans Sep 2014 B2
8864643 Reichenbach et al. Oct 2014 B2
8864644 Yomtov Oct 2014 B2
8876685 Crosby Nov 2014 B2
8882477 Fritz, IV et al. Nov 2014 B2
8888728 Aboul-Hosn et al. Nov 2014 B2
8897873 Schima et al. Nov 2014 B2
8903492 Soykan et al. Dec 2014 B2
9091271 Bourque Jul 2015 B2
9297735 Graichen et al. Mar 2016 B2
9308305 Chen et al. Apr 2016 B2
9345824 Mohl et al. May 2016 B2
9371826 Yanai et al. Jun 2016 B2
9427508 Reyes et al. Aug 2016 B2
9474840 Siess Oct 2016 B2
9492601 Casas et al. Nov 2016 B2
9511179 Casas et al. Dec 2016 B2
9555173 Spanier Jan 2017 B2
9555175 Bulent et al. Jan 2017 B2
9556873 Yanai et al. Jan 2017 B2
9566374 Spence et al. Feb 2017 B2
9636442 Karmon et al. May 2017 B2
9656010 Burke May 2017 B2
9669142 Spanier et al. Jun 2017 B2
9669144 Spanier et al. Jun 2017 B2
9694123 Bourque et al. Jul 2017 B2
9713701 Sarkar et al. Jul 2017 B2
9744282 Rosenberg et al. Aug 2017 B2
9789236 Bonde Oct 2017 B2
9833550 Siess Dec 2017 B2
9848899 Sliwa et al. Dec 2017 B2
9849224 Angwin et al. Dec 2017 B2
9878087 Richardson et al. Jan 2018 B2
9943236 Bennett et al. Apr 2018 B2
9950102 Spence et al. Apr 2018 B2
9974894 Morello May 2018 B2
9999714 Spanier et al. Jun 2018 B2
10010662 Wiesener et al. Jul 2018 B2
10022480 Greatrex et al. Jul 2018 B2
10029037 Muller et al. Jul 2018 B2
10052420 Medvedev et al. Aug 2018 B2
10279093 Reichenbach et al. May 2019 B2
10322217 Spence Jun 2019 B2
10342906 D'Ambrosio et al. Jul 2019 B2
10350342 Thomas et al. Jul 2019 B2
10357598 Aboul-Hosn et al. Jul 2019 B2
10376162 Edelman et al. Aug 2019 B2
10413651 Yomtov et al. Sep 2019 B2
10426879 Farnan Oct 2019 B2
10449275 Corbett Oct 2019 B2
10500322 Karch Dec 2019 B2
10525178 Zeng Jan 2020 B2
10549020 Spence et al. Feb 2020 B2
10561771 Heilman et al. Feb 2020 B2
10561772 Schumacher Feb 2020 B2
10561773 Ferrari et al. Feb 2020 B2
10632241 Schenck et al. Apr 2020 B2
10660998 Hodges May 2020 B2
10668195 Flores Jun 2020 B2
10732583 Rudser Aug 2020 B2
10857275 Granegger Dec 2020 B2
10864308 Muller et al. Dec 2020 B2
11027114 D'Ambrosio et al. Jun 2021 B2
11067085 Granegger et al. Jul 2021 B2
11120908 Agnello et al. Sep 2021 B2
11131968 Rudser Sep 2021 B2
11147960 Spanier et al. Oct 2021 B2
11154701 Reyes et al. Oct 2021 B2
11154702 Kadrolkar et al. Oct 2021 B2
11185682 Farnan Nov 2021 B2
11191945 Siess et al. Dec 2021 B2
11197618 Edelman et al. Dec 2021 B2
11217344 Agnello Jan 2022 B2
11235139 Kudlik Feb 2022 B2
11241572 Dague et al. Feb 2022 B2
11273299 Wolman et al. Mar 2022 B2
11285310 Curran et al. Mar 2022 B2
11285311 Siess et al. Mar 2022 B2
11298524 El Katerji et al. Apr 2022 B2
11311711 Casas et al. Apr 2022 B2
11316679 Agnello Apr 2022 B2
11320382 Aikawa May 2022 B2
11324395 Banik et al. May 2022 B2
11331082 Itoh et al. May 2022 B2
11337724 Masubuchi et al. May 2022 B2
11338125 Liu et al. May 2022 B2
11351356 Mohl Jun 2022 B2
11351357 Mohl Jun 2022 B2
11351358 Nix et al. Jun 2022 B2
11357438 Stewart et al. Jun 2022 B2
11357968 El Katerji et al. Jun 2022 B2
11376415 Mohl Jul 2022 B2
11376419 Reyes et al. Jul 2022 B2
11389639 Casas Jul 2022 B2
11389641 Nguyen et al. Jul 2022 B2
11413444 Nix et al. Aug 2022 B2
11413445 Brown et al. Aug 2022 B2
11420041 Karch Aug 2022 B2
11439806 Kimball et al. Sep 2022 B2
11446481 Wolman et al. Sep 2022 B2
11478629 Harjes et al. Oct 2022 B2
11517740 Agarwa et al. Dec 2022 B2
11521723 Liu et al. Dec 2022 B2
11524165 Tan et al. Dec 2022 B2
11527322 Agnello et al. Dec 2022 B2
11529062 Moyer et al. Dec 2022 B2
11554260 Reyes et al. Jan 2023 B2
11572879 Mohl Feb 2023 B2
11574741 Tan et al. Feb 2023 B2
11577068 Spence et al. Feb 2023 B2
11581083 El Katerji et al. Feb 2023 B2
11583659 Pfeffer et al. Feb 2023 B2
11587337 Lemay et al. Feb 2023 B2
11590337 Granegger et al. Feb 2023 B2
11622695 Adriola et al. Apr 2023 B1
11628293 Gandhi et al. Apr 2023 B2
11639722 Medvedev et al. May 2023 B2
11648386 Poirer May 2023 B2
11653841 Reyes et al. May 2023 B2
11666746 Ferrari et al. Jun 2023 B2
11668321 Richert et al. Jun 2023 B2
11674517 Mohl Jun 2023 B2
11676718 Agnello et al. Jun 2023 B2
11684276 Cros et al. Jun 2023 B2
11684769 Harjes et al. Jun 2023 B2
11694539 Kudlik et al. Jul 2023 B2
11694813 El Katerji et al. Jul 2023 B2
11696782 Carlson et al. Jul 2023 B2
11707617 Reyes et al. Jul 2023 B2
11712167 Medvedev et al. Aug 2023 B2
11754077 Mohl Sep 2023 B1
D1001145 Lussier et al. Oct 2023 S
D1001146 Lussier et al. Oct 2023 S
11771885 Liu et al. Oct 2023 B2
11779234 Harjes et al. Oct 2023 B2
11781551 Yanai et al. Oct 2023 B2
11790487 Barbato et al. Oct 2023 B2
11793994 Josephy et al. Oct 2023 B2
11806116 Tuval et al. Nov 2023 B2
11806517 Petersen Nov 2023 B2
11806518 Michelena et al. Nov 2023 B2
11813079 Lau et al. Nov 2023 B2
11818782 Doudian et al. Nov 2023 B2
11824381 Conyers et al. Nov 2023 B2
11826127 Casas Nov 2023 B2
11832793 McWeeney et al. Dec 2023 B2
11832868 Smail et al. Dec 2023 B2
11837364 Lee et al. Dec 2023 B2
11844592 Tuval et al. Dec 2023 B2
11844940 D'Ambrosio et al. Dec 2023 B2
11850073 Wright et al. Dec 2023 B2
11850414 Schenck et al. Dec 2023 B2
11850415 Schwammenthal et al. Dec 2023 B2
D1012284 Glaser et al. Jan 2024 S
11857345 Hanson et al. Jan 2024 B2
11864878 Duval et al. Jan 2024 B2
11872384 Cotter Jan 2024 B2
11883207 El Katerji et al. Jan 2024 B2
D1014552 Lussier et al. Feb 2024 S
11890082 Cros et al. Feb 2024 B2
11896199 Lent et al. Feb 2024 B2
11900660 Saito et al. Feb 2024 B2
11903657 Geric et al. Feb 2024 B2
11906411 Graichen et al. Feb 2024 B2
11911550 Itamochi et al. Feb 2024 B2
D1017634 Lussier et al. Mar 2024 S
D1017699 Moore et al. Mar 2024 S
11923078 Fallen et al. Mar 2024 B2
11923093 Moffitt et al. Mar 2024 B2
11925794 Malkin et al. Mar 2024 B2
11931073 Walsh et al. Mar 2024 B2
11931528 Rohl et al. Mar 2024 B2
11931588 Aghassian Mar 2024 B2
11986274 Edelman May 2024 B2
12017076 Tan et al. Jun 2024 B2
12023476 Tuval et al. Jul 2024 B2
12029891 Siess et al. Jul 2024 B2
12059559 Muller et al. Aug 2024 B2
D1043730 Lussier et al. Sep 2024 S
D1043731 Lussier et al. Sep 2024 S
12076544 Siess et al. Sep 2024 B2
12097016 Goldvasser Sep 2024 B2
12102815 Dhaliwal et al. Oct 2024 B2
12144650 Spanier et al. Nov 2024 B2
12144976 Baumbach et al. Nov 2024 B2
12178554 Stotz et al. Dec 2024 B2
12179009 El Katerji et al. Dec 2024 B2
12183459 Agnello et al. Dec 2024 B2
20010016686 Okada et al. Aug 2001 A1
20010037093 Benkowski et al. Nov 2001 A1
20010039828 Shin et al. Nov 2001 A1
20020022785 Romano Feb 2002 A1
20020082585 Carroll et al. Jun 2002 A1
20020147495 Petroff Oct 2002 A1
20020151761 Viole et al. Oct 2002 A1
20030069465 Benkowski et al. Apr 2003 A1
20030130581 Salo et al. Jul 2003 A1
20030139643 Smith et al. Jul 2003 A1
20030167002 Nagar et al. Sep 2003 A1
20030191357 Frazier Oct 2003 A1
20030199727 Burke Oct 2003 A1
20040022640 Siess et al. Feb 2004 A1
20040044266 Siess et al. Mar 2004 A1
20040065143 Husher Apr 2004 A1
20040130009 Tangpuz Jul 2004 A1
20040167376 Peters et al. Aug 2004 A1
20040167410 Hettrick Aug 2004 A1
20040225177 Coleman et al. Nov 2004 A1
20040241019 Goldowsky Dec 2004 A1
20040260346 Overall et al. Dec 2004 A1
20050001324 Dunn Jan 2005 A1
20050019167 Nusser et al. Jan 2005 A1
20050107658 Brockway May 2005 A1
20050126268 Ouriev et al. Jun 2005 A1
20050267322 LaRose Dec 2005 A1
20060030809 Barzilay et al. Feb 2006 A1
20060108697 Wang May 2006 A1
20060122583 Pesach et al. Jun 2006 A1
20060196277 Allen et al. Sep 2006 A1
20060229488 Ayre et al. Oct 2006 A1
20060287600 McEowen Dec 2006 A1
20060287604 Hickey Dec 2006 A1
20070060787 Peters et al. Mar 2007 A1
20070069354 Dangelmaier Mar 2007 A1
20070073352 Euler et al. Mar 2007 A1
20070088214 Shuros et al. Apr 2007 A1
20070156006 Smith et al. Jul 2007 A1
20070255352 Roline et al. Nov 2007 A1
20070266778 Corey et al. Nov 2007 A1
20070282209 Lui et al. Dec 2007 A1
20070299325 Farrell et al. Dec 2007 A1
20080015517 Geistert et al. Jan 2008 A1
20080082005 Stern et al. Apr 2008 A1
20080091239 Johansson et al. Apr 2008 A1
20080097595 Gabbay Apr 2008 A1
20080102096 Molin et al. May 2008 A1
20080108901 Baba May 2008 A1
20080108930 Weitzel et al. May 2008 A1
20080133006 Crosby et al. Jun 2008 A1
20080146996 Smisson Jun 2008 A1
20080210016 Zwirn et al. Sep 2008 A1
20080262289 Goldowsky Oct 2008 A1
20080262361 Gutfinger et al. Oct 2008 A1
20080269822 Ljungstrom et al. Oct 2008 A1
20080275339 Thiemann Nov 2008 A1
20080306328 Ercolani Dec 2008 A1
20090024042 Nunez et al. Jan 2009 A1
20090025459 Zhang et al. Jan 2009 A1
20090064755 Fleischli et al. Mar 2009 A1
20090105799 Hekmat et al. Apr 2009 A1
20090131765 Roschak et al. May 2009 A1
20090204163 Shuros et al. Aug 2009 A1
20090226328 Morello Sep 2009 A1
20090312650 Maile et al. Dec 2009 A1
20100010354 Skerl et al. Jan 2010 A1
20100082099 Vodermayer et al. Apr 2010 A1
20100087742 Bishop et al. Apr 2010 A1
20100160801 Takatani et al. Jun 2010 A1
20100219967 Kaufmann Sep 2010 A1
20100222632 Poirier Sep 2010 A1
20100222633 Poirier Sep 2010 A1
20100222635 Poirier Sep 2010 A1
20100222878 Poirier Sep 2010 A1
20100268017 Siess Oct 2010 A1
20100298625 Reichenbach et al. Nov 2010 A1
20100324378 Tran et al. Dec 2010 A1
20110004075 Stahmann et al. Jan 2011 A1
20110022057 Eigler et al. Jan 2011 A1
20110071336 Yomtov Mar 2011 A1
20110144744 Wampler Jun 2011 A1
20110172505 Kim Jul 2011 A1
20110184301 Holmstrom Jul 2011 A1
20110218435 Srinivasan et al. Sep 2011 A1
20110230068 Pahl Sep 2011 A1
20120022645 Burke Jan 2012 A1
20120084024 Norcross, Jr. Apr 2012 A1
20120150089 Penka et al. Jun 2012 A1
20120203476 Dam Aug 2012 A1
20120245404 Smith Sep 2012 A1
20120247200 Ahonen et al. Oct 2012 A1
20120310037 Choi et al. Dec 2012 A1
20120330214 Peters et al. Dec 2012 A1
20130041204 Heilman et al. Feb 2013 A1
20130046129 Medvedev et al. Feb 2013 A1
20130066141 Doerr et al. Mar 2013 A1
20130066142 Doerr et al. Mar 2013 A1
20130072846 Heide et al. Mar 2013 A1
20130116575 Mickle et al. May 2013 A1
20130144379 Najafi et al. Jun 2013 A1
20130289334 Badstibner Oct 2013 A1
20130289376 Lang Oct 2013 A1
20130303831 Evans Nov 2013 A1
20130304404 Dam Nov 2013 A1
20140005467 Farnan et al. Jan 2014 A1
20140013852 Brown et al. Jan 2014 A1
20140030122 Ozaki Jan 2014 A1
20140100414 Tamez et al. Apr 2014 A1
20140114202 Hein et al. Apr 2014 A1
20140128659 Heuring et al. May 2014 A1
20140200389 Yanai et al. Jul 2014 A1
20140243688 Caron et al. Aug 2014 A1
20140275720 Ferrari Sep 2014 A1
20140275727 Bonde Sep 2014 A1
20140296677 McEowen Oct 2014 A1
20140303426 Kerkhoffs et al. Oct 2014 A1
20140342203 Elian Nov 2014 A1
20150032007 Ottevanger et al. Jan 2015 A1
20150141832 Yu et al. May 2015 A1
20150141842 Spanier et al. May 2015 A1
20150157216 Stigall et al. Jun 2015 A1
20150174307 Eckman et al. Jun 2015 A1
20150190092 Mori Jul 2015 A1
20150250935 Anderson et al. Sep 2015 A1
20150273184 Scott et al. Oct 2015 A1
20150290372 Muller et al. Oct 2015 A1
20150306290 Rosenberg et al. Oct 2015 A1
20150306291 Bonde et al. Oct 2015 A1
20150307344 Ernst Oct 2015 A1
20150327921 Govari Nov 2015 A1
20150335804 Marseille et al. Nov 2015 A1
20150365738 Purvis et al. Dec 2015 A1
20160000983 Mohl et al. Jan 2016 A1
20160008531 Wang et al. Jan 2016 A1
20160022889 Bluvshtein et al. Jan 2016 A1
20160022890 Schwammenthal et al. Jan 2016 A1
20160045165 Braido et al. Feb 2016 A1
20160095968 Rudser Apr 2016 A1
20160101230 Ochsner et al. Apr 2016 A1
20160144166 Decré et al. May 2016 A1
20160151553 Bonde Jun 2016 A1
20160166747 Frazier et al. Jun 2016 A1
20160213828 Sievers Jul 2016 A1
20160250399 Tiller et al. Sep 2016 A1
20160278856 Panescu Sep 2016 A1
20160302672 Kuri Oct 2016 A1
20160317043 Campo Nov 2016 A1
20160338629 Doerr Nov 2016 A1
20170010144 Lenner et al. Jan 2017 A1
20170021070 Petersen Jan 2017 A1
20170049945 Halvorsen et al. Feb 2017 A1
20170086780 Sokulin et al. Mar 2017 A1
20170098491 Ziaie et al. Apr 2017 A1
20170112985 Yomtov Apr 2017 A1
20170128646 Karch May 2017 A1
20170136164 Yeatts May 2017 A1
20170202575 Stanfield et al. Jul 2017 A1
20170224279 Cahan et al. Aug 2017 A1
20170239407 Hayward Aug 2017 A1
20170258980 Katsuki et al. Sep 2017 A1
20170348470 D'Ambrosio et al. Dec 2017 A1
20170354812 Callaghan et al. Dec 2017 A1
20180064860 Nunez et al. Mar 2018 A1
20180078159 Edelman et al. Mar 2018 A1
20180093070 Cottone Apr 2018 A1
20180110910 Rodemerk et al. Apr 2018 A1
20180199635 Longinotti-Buitoni et al. Jul 2018 A1
20180250457 Morello et al. Sep 2018 A1
20180256796 Hansen Sep 2018 A1
20180256800 Conyers et al. Sep 2018 A1
20180264182 Spanier et al. Sep 2018 A1
20180280598 Curran et al. Oct 2018 A1
20180316209 Gliner Nov 2018 A1
20180326131 Muller et al. Nov 2018 A1
20180333059 Casas Nov 2018 A1
20180353667 Moyer et al. Dec 2018 A1
20180369469 Le Duc De Lillers et al. Dec 2018 A1
20190001038 Yomtov et al. Jan 2019 A1
20190054223 Frazier et al. Feb 2019 A1
20190083690 Siess et al. Mar 2019 A1
20190192752 Tiller et al. Jun 2019 A1
20190192753 Liu et al. Jun 2019 A1
20190209755 Nix et al. Jul 2019 A1
20190209758 Tuval et al. Jul 2019 A1
20190216995 Kapur et al. Jul 2019 A1
20190217002 Urakabe Jul 2019 A1
20190223877 Nitzen et al. Jul 2019 A1
20190240680 Hayakawa Aug 2019 A1
20190254543 Hartholt et al. Aug 2019 A1
20190282741 Franano et al. Sep 2019 A1
20190282744 D'Ambrosio et al. Sep 2019 A1
20190351117 Cambronne et al. Nov 2019 A1
20190351118 Graichen et al. Nov 2019 A1
20200016309 Kallenbach et al. Jan 2020 A1
20200038567 Siess et al. Feb 2020 A1
20200060559 Edelman et al. Feb 2020 A1
20200069857 Schwammenthal et al. Mar 2020 A1
20200147283 Tanner et al. May 2020 A1
20200164125 Muller et al. May 2020 A1
20200164126 Muller May 2020 A1
20200253583 Brisken Aug 2020 A1
20200312450 Agnello et al. Oct 2020 A1
20210268264 Stotz Sep 2021 A1
20210290087 Schlebusch Sep 2021 A1
20210290930 Kasel Sep 2021 A1
20210290933 Stotz Sep 2021 A1
20210339004 Schlebusch et al. Nov 2021 A1
20210346674 Baumbach et al. Nov 2021 A1
20210346675 Schlebusch et al. Nov 2021 A1
20210346676 Schlebusch et al. Nov 2021 A1
20210346677 Baumbach et al. Nov 2021 A1
20210346678 Baumbach et al. Nov 2021 A1
20210378523 Budde Dec 2021 A1
20210379359 Schellenberg Dec 2021 A1
20210379360 Schellenberg Dec 2021 A1
20210393944 Wenning Dec 2021 A1
20220016411 Winterwerber Jan 2022 A1
20220032032 Schlebusch et al. Feb 2022 A1
20220032036 Baumbach et al. Feb 2022 A1
20220039669 Schlebusch et al. Feb 2022 A1
20220047173 Stotz et al. Feb 2022 A1
20220050037 Stotz et al. Feb 2022 A1
20220072298 Spanier et al. Mar 2022 A1
20220076807 Agnello Mar 2022 A1
20220079457 Tuval et al. Mar 2022 A1
20220105339 Nix et al. Apr 2022 A1
20220126085 Farnan Apr 2022 A1
20220126086 Schlebusch et al. Apr 2022 A1
20220142462 Douk et al. May 2022 A1
20220161019 Mitze et al. May 2022 A1
20220361762 Lalancette Nov 2022 A1
20230173250 Stigloher Jun 2023 A1
20230191141 Wenning et al. Jun 2023 A1
20240011808 Winzer et al. Jan 2024 A1
20240074828 Wenning Mar 2024 A1
20240245902 Schlebusch et al. Jul 2024 A1
Foreign Referenced Citations (276)
Number Date Country
3 122 415 Jul 2020 CA
1192351 Sep 1998 CN
1222862 Jul 1999 CN
1202871 May 2005 CN
1661338 Aug 2005 CN
101128168 Feb 2008 CN
101208045 Jun 2008 CN
101214158 Jul 2008 CN
101351237 Jan 2009 CN
101448535 Jun 2009 CN
101460094 Jun 2009 CN
101579233 Nov 2009 CN
201437016 Apr 2010 CN
101711683 May 2010 CN
201658687 Dec 2010 CN
102421372 Apr 2012 CN
102803923 Nov 2012 CN
103328018 Sep 2013 CN
103857326 Jun 2014 CN
103957957 Jul 2014 CN
104105449 Oct 2014 CN
104188687 Dec 2014 CN
106104229 Nov 2016 CN
106333707 Jan 2017 CN
206007680 Mar 2017 CN
107530479 Jan 2018 CN
107632167 Jan 2018 CN
109939282 Jun 2019 CN
209790495 Dec 2019 CN
210020563 Feb 2020 CN
195 20 920 Dec 1995 DE
198 21 307 Oct 1999 DE
100 59 714 May 2002 DE
100 60 275 Jun 2002 DE
101 44 269 Mar 2003 DE
102 26 305 Oct 2003 DE
10 2006 001 180 Sep 2007 DE
10 2009 007 216 Aug 2010 DE
10 2009 011 726 Sep 2010 DE
10 2009 025 464 Jan 2011 DE
10 2009 047 845 Mar 2011 DE
10 2011 106 142 Dec 2012 DE
20 2011 110 389 Sep 2013 DE
10 2015 004 177 Oct 2015 DE
10 2015 219 263 Apr 2017 DE
10 2015 222 199 May 2017 DE
20 2015 009 422 Jul 2017 DE
10 2012 207 042 Sep 2017 DE
10 2016 013 334 Apr 2018 DE
10 2018 208 536 Dec 2019 DE
10 2018 208 862 Dec 2019 DE
10 2018 208 916 Dec 2019 DE
10 2018 208 927 Dec 2019 DE
10 2018 208 945 Dec 2019 DE
10 2018 210 076 Dec 2019 DE
10 2018 212 153 Jan 2020 DE
10 2018 213 151 Feb 2020 DE
10 2018 213 350 Feb 2020 DE
10 2018 220 658 Jun 2020 DE
10 2018 222 505 Jun 2020 DE
10 2020 102 473 Aug 2021 DE
11 2020 003 151 Mar 2022 DE
0 794 411 Sep 1997 EP
0 916 359 May 1999 EP
1 062 959 Dec 2000 EP
1 339 443 Nov 2001 EP
1 011 803 Sep 2004 EP
1 354 606 Jun 2006 EP
2 143 385 Jan 2010 EP
2 175 770 Apr 2010 EP
2 187 807 Jun 2012 EP
2 570 143 Mar 2013 EP
2 401 003 Oct 2013 EP
1 871 441 Nov 2014 EP
2 859 911 Apr 2015 EP
2 213 227 Aug 2016 EP
2 835 141 Aug 2016 EP
3 088 016 Nov 2016 EP
2 585 129 Mar 2017 EP
2 945 661 Nov 2017 EP
2 136 861 Dec 2017 EP
3 020 426 Dec 2017 EP
3 287 154 Feb 2018 EP
3 205 359 Aug 2018 EP
3 205 360 Aug 2018 EP
3 389 738 Aug 2019 EP
2 505 090 Dec 2019 EP
3 668 560 Jun 2020 EP
3 720 520 Oct 2020 EP
3 753 594 Dec 2020 EP
3 357 523 Jan 2021 EP
3 490 628 Feb 2021 EP
3 487 548 Mar 2021 EP
3 509 661 Mar 2021 EP
3 515 523 Mar 2021 EP
3 528 863 Mar 2021 EP
3 615 103 Mar 2021 EP
4 271 461 Mar 2021 EP
3 131 600 Jun 2021 EP
3 131 615 Jun 2021 EP
3 463 505 Sep 2021 EP
3 884 970 Sep 2021 EP
2 599 510 Oct 2021 EP
3 003 421 Oct 2021 EP
3 027 241 Oct 2021 EP
3 668 561 Oct 2021 EP
3 164 168 Dec 2021 EP
3 344 129 Dec 2021 EP
3 624 867 Mar 2022 EP
3 651 822 Mar 2022 EP
3 689 389 Mar 2022 EP
3 737 436 Mar 2022 EP
3 972 661 Mar 2022 EP
3 984 589 Apr 2022 EP
3 654 006 May 2022 EP
3 737 310 Jul 2022 EP
2 999 400 Aug 2022 EP
3 711 788 Aug 2022 EP
3 694 573 Sep 2022 EP
3 600 477 Oct 2022 EP
3 897 768 Oct 2022 EP
2 892 583 Jan 2023 EP
3 370 797 Jan 2023 EP
3 597 231 Jan 2023 EP
3 668 562 Jan 2023 EP
3 856 275 Jan 2023 EP
3 003 420 Feb 2023 EP
3 397 299 Feb 2023 EP
3 046 594 Mar 2023 EP
3 938 005 Apr 2023 EP
3 685 562 May 2023 EP
3 397 298 Jul 2023 EP
3 809 959 Jul 2023 EP
2 072 150 Sep 2023 EP
2 961 984 Sep 2023 EP
3 352 808 Sep 2023 EP
3 768 156 Sep 2023 EP
4 052 754 Oct 2023 EP
3 157 596 Nov 2023 EP
3 766 428 Nov 2023 EP
3 781 027 Nov 2023 EP
4 061 470 Nov 2023 EP
4 070 720 Nov 2023 EP
3 449 958 Dec 2023 EP
3 687 596 Dec 2023 EP
3 768 340 Dec 2023 EP
3 801 675 Jan 2024 EP
3 566 636 Feb 2024 EP
3 634 526 Feb 2024 EP
3 768 347 Feb 2024 EP
3 790 606 Feb 2024 EP
3 930 780 Feb 2024 EP
3 397 147 Mar 2024 EP
3 782 695 Mar 2024 EP
3 854 448 Mar 2024 EP
4 140 532 May 2024 EP
3 693 038 Jun 2024 EP
3 970 765 Jul 2024 EP
3 854 444 Sep 2024 EP
3 793 674 Oct 2024 EP
3 618 885 Nov 2024 EP
4 034 221 Nov 2024 EP
3 809 960 Dec 2024 EP
2 913 485 Jun 2022 ES
S59-080229 May 1984 JP
S61-125329 Jun 1986 JP
S62-113555 Jul 1987 JP
S62-204733 Sep 1987 JP
S62-282284 Dec 1987 JP
S64-68236 Mar 1989 JP
H02-055886 Feb 1990 JP
H02-234750 Sep 1990 JP
H05-079875 Mar 1993 JP
H06-218044 Aug 1994 JP
H07-047025 May 1995 JP
H08-057042 Mar 1996 JP
H08-066398 Mar 1996 JP
H08-327527 Dec 1996 JP
H10-052489 Feb 1998 JP
H10-505766 Jun 1998 JP
H11-239617 Sep 1999 JP
2000-512191 Sep 2000 JP
2001-037728 Feb 2001 JP
2001-506140 May 2001 JP
2001-276213 Oct 2001 JP
2002-525175 Aug 2002 JP
2003-019197 Jan 2003 JP
2003-047656 Feb 2003 JP
2003-062065 Mar 2003 JP
2004-515278 May 2004 JP
2005-028137 Feb 2005 JP
2005-192687 Jul 2005 JP
2006-528006 Dec 2006 JP
2007-222644 Sep 2007 JP
2008-511414 Apr 2008 JP
2006-518249 Aug 2008 JP
2008-178690 Aug 2008 JP
2009-504290 Feb 2009 JP
2009-240348 Oct 2009 JP
2010-518907 Jun 2010 JP
2012-520157 Sep 2012 JP
2013-128792 Jul 2013 JP
2014-524274 Sep 2014 JP
2015-514529 May 2015 JP
2015-514531 May 2015 JP
2015-515429 May 2015 JP
2015-122448 Jul 2015 JP
2015-527172 Sep 2015 JP
2015-181800 Oct 2015 JP
2016-002466 Jan 2016 JP
2016-509950 Apr 2016 JP
2017-500932 Jan 2017 JP
2017-176719 Oct 2017 JP
2017-532084 Nov 2017 JP
2019-523110 Aug 2019 JP
2020-072985 May 2020 JP
WO 92015239 Sep 1992 WO
WO 98043688 Oct 1998 WO
WO 00033047 Jun 2000 WO
WO 2006122001 Nov 2006 WO
WO 2010142286 Dec 2010 WO
WO 2010143272 Dec 2010 WO
WO 2012018917 Feb 2012 WO
WO 2012112378 Aug 2012 WO
WO 2013160443 Oct 2013 WO
WO 2014042925 Mar 2014 WO
WO 2014141284 Sep 2014 WO
WO 2014165635 Oct 2014 WO
WO 2015085220 Jun 2015 WO
WO 2016001284 Jan 2016 WO
WO 2016066180 May 2016 WO
WO 2016137743 Sep 2016 WO
WO 2017032751 Mar 2017 WO
WO 2017066257 Apr 2017 WO
WO 2017106190 Jun 2017 WO
WO 2017147291 Aug 2017 WO
WO 2017214118 Dec 2017 WO
WO 2018005228 Jan 2018 WO
WO 2018048800 Mar 2018 WO
WO 2018109038 Jun 2018 WO
WO 2018213089 Nov 2018 WO
WO 2019013794 Jan 2019 WO
WO 2019034670 Feb 2019 WO
WO 2019034775 Feb 2019 WO
WO 2019078723 Apr 2019 WO
WO 2019126721 Jun 2019 WO
WO 2019137911 Jul 2019 WO
WO 2019193604 Oct 2019 WO
WO 2019219883 Nov 2019 WO
WO 2019229210 Dec 2019 WO
WO 2019229220 Dec 2019 WO
WO 2019234145 Dec 2019 WO
WO 2019234146 Dec 2019 WO
WO 2019234148 Dec 2019 WO
WO 2019234149 Dec 2019 WO
WO 2019234151 Dec 2019 WO
WO 2019234152 Dec 2019 WO
WO 2019234153 Dec 2019 WO
WO 2019234161 Dec 2019 WO
WO 2019234162 Dec 2019 WO
WO 2019234163 Dec 2019 WO
WO 2019234164 Dec 2019 WO
WO 2019234166 Dec 2019 WO
WO 2019234167 Dec 2019 WO
WO 2019234169 Dec 2019 WO
WO 2019243582 Dec 2019 WO
WO 2020030686 Feb 2020 WO
WO 2020030706 Feb 2020 WO
WO 2020064707 Apr 2020 WO
WO 2020089429 May 2020 WO
WO 2020198280 Oct 2020 WO
WO 2020243756 Dec 2020 WO
WO 2022074136 Apr 2022 WO
WO 2022109590 May 2022 WO
WO 2022173970 Aug 2022 WO
WO 2023049813 Mar 2023 WO
Non-Patent Literature Citations (21)
Entry
Atkinson et al., “Pulse-Doppler Ultrasound and Its Clinical Application”, The Yale Journal of Biology and Medicine, 1977, vol. 50, pp. 367-373.
Leguy et al., “Assessment of Blood vol. Flow in Slightly Curved Arteries from a Single Velocity Profile”, Journal of Biomechanics, 2009, pp. 1664-1672.
Lombardi et al., “Flow Rate Profiler: an instrument to measure blood velocity profiles”, Ultrasonics, 2001, vol. 39, pp. 143-150.
Mushi et al., “Identification of Fluidic Element Models to Simulate the Short-Term Baroreflex”, Proceedings of the 45th IEEE Conference on Decision & Control, San Diego, CA, Dec. 13-15, 2006, pp. 6.
Sinha et al., “Effect of Mechanical Assistance of the Systemic Ventricle in Single Ventricle Circulation with Cavopulmonary Connection”, The Journal of Throacic and Cardiovascular Surgery, Apr. 2014, vol. 147, No. 4, pp. 1271-1275.
“Understanding Hot-Wire Anemometry”, Advanced Thermal Solutions, Inc., 2007, pp. 13-17.
Vieli, A., “Doppler Flow Determination”, BJA: British Journal of Anaesthesia, 1988, vol. 60, pp. 107S-112S.
Yuanyuan et al., “Characteristics Analysis for Doppler Ultrasound Blood Flow Signals”, China Medical Device Information, 5(1), Feb. 28, 1999, pp. 36-42.
Zhang, Dabiao et al., “Design of Microwave Velocity and Distance Monitor System”, Instrument Technique and Sensor, Hebei Normal University, Apr. 25, 2004, pp. 3.
Hertz Ph.D. et al, “Ultrasonic Engineering in Heart Diagnosis”, The American Journal of Cardiology, Jan. 1967, vol. 19, No. 1, pp. 6-17.
International Search Report and Written Opinion received in PCT Application No. PCT/EP2019/064803, dated Sep. 5, 2019 in 13 pages.
International Preliminary Report on Patentability and Written Opinion received in PCT Application No. PCT/EP2019/064803, dated Aug. 12, 2020 in 7 pages.
Kong et al., “A Stein Equation Approach for Solutions to the Diophantine Equations,” 2010 Chinese Control and Decision Conference, Xuzhou, May 26, 2010, pp. 3024-3028.
Koseli et al., “Online Viscosity Measurement of Complex Solutions Using Ultrasound Doppler Velocimetry”, Turk J Chem, Jan. 2006, vol. 30, pp. 297-305.
McCormick et al., “Resolution of a 2/spl pi/ Ambiguity Problem in Multiple Frequency Spectral Estimation,” in IEEE Transactions on Aerospace and Electronic Systems, Jan. 1995, vol. 31, No. 1, pp. 2-8.
Syrmos et al., “A Generalized Bezout Equation in Output Feedback Design,” Proceedings of the 31st IEEE Conference on Decision and Control, Tucson, AZ, USA, Dec. 1992, vol. 4, pp. 3590-3594.
Udesen et al., “A Simple Method to Reduce Aliasing Artifacts in Color Flow Mode Imaging”, IEEE Ultrasonics Symposium, 2005, Rotterdam, The Netherlands, Sep. 18-21, 2005, pp. 1352-1355.
Vollkron et al., “Advanced Suction Detection for an Axial Flow Pump”, Artificial Organs, 2006, vol. 30, No. 9, pp. 665-670.
Vollkron et al., “Development of a Suction Detection System for Axial Blood Pumps”, Artificial Organs, 2004, vol. 28, No. 8, pp. 709-716.
Murali, Akila, “Design of Inductive Coils for Wireless Power Transfer to Pediatric Implants”, A graduate project submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering, California State University, Northridge, May 2018, pp. 37.
HeartMate 3™ Left Ventricular Assist System, Instructions for Use, Thoratec Corporation, Aug. 2017, pp. 536. [Uploaded in 3 parts].
Related Publications (1)
Number Date Country
20210339002 A1 Nov 2021 US