The present invention relates generally to methods and systems for determining the amount of a product that is depleted or dispensed form a rolled or stacked configuration of the product, for example in the consumable paper products environment wherein rolled or stacked tissues and towels are dispensed from a dispenser.
With various manufacturing processes, a work material, such as a continuously running web or sheet material, is added to or depleted from a product formation. For example, in a paper mill, the formed paper web is continuously added to a rolled product formation. The web may then be unwound from the rolled product formation in the process of making other products, such as consumable paper products. For various manufacturing and quality control reasons, it is often necessary to know how much of the product remains on the product formation, or has been depleted from the product formation, without stopping or otherwise adversely affecting the manufacturing line.
The above issue also applies to the dispensing of a wide variety of consumable products. Whether for private home use or public use, the dispensing of paper products such as towels and tissues has resulted in many different types of manual and automatic dispensing devices for controlling quantities dispensed, as well as for determining how much of the paper product has been dispensed. For example, U.S. Pat. No. 7,780,380 describes a dispenser of stacked paper products (e.g., folded and stacked napkins or paper towels) wherein a sensor unit is carried by an inner side wall of the dispenser housing and is used for detecting when refill of the dispenser is needed. The sensor unit uses an infrared sensor to detect when a stack of the paper product falls below a low paper point. A narrow beam of infrared light is sent from an emitter and is picked up by an adjacent detector. When the top of the paper stack lies above the infrared sensor, the detector does not pick up infrared light. However, when the top of the paper stack falls below the infrared sensor, light from the emitter is visible to the detector and an appropriate low paper warning is generated.
The U.S. '380 patent also describes an automatic rolled product dispenser that detects the presence of a user and automatically dispenses a measured sheet of paper product. A mechanical lever is arranged on a pivot at one end and rests on the roll at the other end. A micro-switch or variable resistor located near the pivot detects changes in the pivoted position of the lever as the roll diameter decreases and generates a corresponding signal to a sensor unit that generates an indication of the amount of paper product remaining in the dispenser.
Other types of detection mechanisms are also suggested in the U.S. '380 patent, including purely electrical systems, purely mechanical systems, electro-mechanical systems, capacitive systems, and ultrasonic systems. Capacitive proximity sensors produce an electrostatic field that can sense paper and other non-metallic objects as well as metallic objects. Ultrasonic proximity sensors use a transducer to send and receive high frequency sound signals. The reflected sound has a shorter path when the paper is in proximity to the sensor.
Thus, the industry is continuously seeking new and improved dispensing systems that can accurately determine usage of the product without prohibitively adding to the cost of the dispenser or adversely affecting the product dispensing operation. It would be a significant benefit if the usage determination system and method could function without requiring physical alteration or modification of the monitored product.
Objects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
Embodiments of the present system and method will be described herein with reference to consumable paper product dispenser systems for illustrative purposes only. It should be appreciated that the present invention is not limited to such environment and encompasses any use or application wherein the amount or rate of product used (or remaining) is determined in accordance with the principles set forth herein. For example, the invention may have utility in various mills or other manufacturing systems wherein products are wound or unwound from a continuously operating roll, such as a paper mill, toilet tissue or paper towel manufacturing line wherein such products are wound from larger rolls, rolled sheet metal manufacturing lines, textile mills, and so forth.
In accordance with aspects of the invention, a method is provided for determining an amount of product in product formation, such as a rolled or stacked formation, wherein the product is being depleted from or added to the product formation in a continuous or periodic manner. The method includes, at defined intervals, projecting a mark with a light source imager onto an aspect of the product formation that changes as the amount of product is depleted or added to the product formation. A digital image is taken of the aspect of the product formation that captures the projected mark, with the digital image transmitted to a digital imager processor. With the digital image processor, a feature of the projected mark is analyzed that changes as the product formation decreases or increases in size as the product is dispensed from or added to the product formation. The analyzed feature is compared with a predetermined value of the feature at a predefined size of the product formation to determine an actual amount of the product on the product formation, or amount of product depleted from or added to the product formation.
The system for performing the product determination may be integral to a manufacturing or dispensing machine, or may be a portable unit that can be brought to a production/depletion location on an as-needed basis.
In particular embodiments, the analyzed feature is a dimensional value (e.g., length, radius, height, etc.) or pixel count of the projected mark that changes as the product formation decreases or increases in size, wherein a changing pixel count or dimensional value of the projected mark is a measure of the amount of product added or deleted from the product formation.
In one embodiment, the projected mark is a shadow mark produced by the light source imager against a sufficiently brighter background of the product formation in the digital image, wherein the shadow mark produces definable pixels that are detectable by the digital image processor for determining the pixel count or dimensional value of the shadow mark.
In an alternate embodiment, the projected mark is bright mark produced by the light source imager against a sufficiently darker background of the product formation in the digital image, wherein the bright mark produces definable pixels that are detectable by the digital image processor for determining the pixel count or dimensional value of the shadow mark.
The systems and methods are not limited any particular shape or configuration of product formation. In certain embodiments, the product formation is a rolled or stacked product, and the digital image is taken of a side of the product formation that changes in size as the product formation decreases or increases in size. For example, the product formation may be a stack of folded products, with the projected mark extending from a lower bottom portion of the stack towards an upper edge of the stack. Alternatively, the product formation may be a roll of continuous product, with the projected mark extending radially from a center portion of the side towards a circumferential edge of the roll.
The present systems and methods may have particular usefulness in dispenser systems, particular consumable paper product dispenser systems. In this regard, a dispenser system and method are provided for determining an amount of paper product dispensed from a dispenser or remaining in the dispenser, wherein the paper product is initially loaded in the dispenser as a paper product formation, such as a roll of a continuous tissue or paper towels, or a stack of folded napkins. It should be understood that the present system and method are not limited to a particular type or configuration of dispenser, or type of paper product dispensed. The inventive systems and methods are, however, particularly useful when integrated with consumable paper product dispensers (e.g., manual or automatic toilet tissue dispensers, paper towel dispensers, and folded napkin dispensers) typically found in an “away-from-home” public or semi-private environment. As used herein, the term “away-from-home” means a place or location where people congregate for various reasons or purposes that are outside the typical home. Examples of away-from-home locations include places of business, such as office buildings, office suites, retail stores, and warehouses, manufacturing facilities; schools; hospitals and other types of medical facilities; places of worship; hotels and motels; conference centers; and the like. The system is particularly useful in structures wherein multiple washroom facilities are provided for use of the building tenants or an industrial or manufacturing site wherein multiple site facilities are provided for a controlled populace. It should be appreciated though that the present washroom system may prove useful in a residential or private environment, and such uses are within the scope and spirit of the invention.
The method includes, at defined intervals, projecting a mark with a light source onto an aspect of the paper product formation within the dispenser that changes as the paper product is dispensed from the dispenser. A digital image is taken of the aspect of the paper product formation that captures the projected mark, with the digital image to a digital imager processor. With the digital image processor, a feature of the projected mark is analyzed that changes as the paper product formation decreases in size as the paper product is dispensed. The analyzed feature is compared with a predetermined value of the feature at a predefined size of the paper product formation, which allows the processor (including associated hardware and software) to determine an amount of the paper product that has been dispensed from or remains in the dispenser.
The method is particularly beneficial when implemented with a paper towel or toilet tissue dispenser.
The general features discussed above are applicable to various paper product dispenser-implemented embodiments, as discussed in greater detail below.
With the dispenser embodiments, the digital image may be taken by a digital imager configured within the dispenser housing. The imager may be hard-wired to a digital image processor that is dedicated to the dispenser and located in or near the dispenser. Alternatively, the imager may be in wireless communication with a remote processor that is common to a plurality of different dispensers. The remote processor may be located at a monitoring station for a “smart washroom” within a commercial building, such as an office building, wherein the dispensers at the functional locations (e.g., sinks, toilets, changing closets, etc.) are remotely monitored as to availability or operational status.
Using the digital image processor, a feature of the digital image is analyzed that changes as the paper product formation decreases in size with depletion of the paper product. The digital image process compares the analyzed feature with a predetermined value of the feature at a predefined size of the paper product formation,
Reference will now be made in detail to one or more embodiments of the invention, examples of the invention, examples of which are illustrated in the drawings. Each example and embodiment is provided by way of explanation of the invention, and is not meant as a limitation of the invention. For example, features illustrated or described as part of one embodiment may be used with another embodiment to yield still a further embodiment. It is intended that the invention include these and other modifications and variations as coming within the scope and spirit of the invention.
As mentioned, the present systems and methods have utility in any environment wherein it is desired to determine the amount of product depleted from or remaining in product formation, particularly if the product formation is in continuous or semi-continuous use, such as being added to or depleted from during a production process. Such environments may include, for example, textile or paper/pulp mills wherein the product is wound into a continuous rolled product formation, or a sheet metal manufacturing line wherein the metal product is wound into rolls, and so forth. The systems and methods are not limited by the type or configuration of product formation, or environment in which the systems and methods have utility.
The digital imaging system 110 includes a digital camera 113 having a defined imaging field that captures a digital image of the projected mark 104, with the digital image being transmitted to a digital imager processor 116 that may be integral with or remote from the camera 113. With the digital image processor 113, a feature of the projected mark 104 is analyzed that changes as the product formation 102 decreases or increases in size as the product is dispensed from or added to the product formation 102. For example, in the embodiments of
In the embodiment of
In the embodiment of
As mentioned, the present systems and methods are particularly useful when implemented with consumable product dispensers, such as paper towel or tissue dispensers. In this regard, various embodiments of exemplary dispensing systems and methods are depicted in
The rolled product formation (“roll”) 14 may include a core or sleeve 30, or may be a coreless roll, such as that disclosed in U.S. Pat. No. 5,620,148. The roll 14 may be rotatably supported within the housing 16 by a pair of mounting hubs 32 and 34 which, in the illustrated embodiment are connected to the side panels 20 and 22 of the housing 16 by means of roll holders 36 and 38. The outer circumference of the sheet roll 14 may be supported by a portion of the housing without other support for unwinding of the roll 14, as disclosed for example in U.S. Pat. No. 6,224,010. It will be appreciated, however, that the housing 16 may be provided as a separate unit with few or no mechanisms connected thereto. In this instance, some or all of the dispensing mechanisms shown and/or described herein may be provided as one or more modules which are inserted into the housing. Examples of such dispenser housings and modules are disclosed in U.S. Pat. Nos. 4,131,044 and 6,079,035.
As depicted in
The rollers 40 and 42 together define a nip 54 having a gap which is desirably slightly smaller than the thickness of the sheet material 12 on the roll 14. The sheet material 12 passes through the nip 54 so that rotation of the drive roller 40 and the driven roller 42 pulls the sheet material off of the roll 14 and dispenses it through the dispensing opening 44.
An activation sensor 56 may be mounted to the lower end 45 of the housing 16 (or, alternatively, to a module in the housing) adjacent a lens 58, as illustrated in
In alternate embodiments, the sensor 56 may be an active device that emits an active signal to detect the presence of a user at or near the dispenser. Such active sensing systems are also well known to those skilled in the art.
Aspects of the present system and method embodiments utilize digital imagining and processing techniques that are known to those skilled in the art of digital imagery. Referring to the figures in general and discussed in greater detail below, one or more digital imaging systems (“imaginer”) 62 are utilized with a dispenser system 10 to generate a digital image 60 (e.g.,
The digital images taken by the imagers 62 are transmitted to a digital image processor 64 (
Thus, embodiments may rely on known edge detection techniques in digital image processing, which are mathematical methods that identify points in the image at which brightness changes relatively sharply (e.g., brightness discontinuities). The result of applying an edge detector technique to an image leads to a set of connected curves that indicate boundaries of objects in the image. Applying an edge detection algorithm to an image may significantly reduce the amount of data to be processed and filter out information that is less relevant, while preserving important structural properties of an image. The edges extracted from a two-dimensional image of a three-dimensional object can be classified as either viewpoint dependent or viewpoint independent. Relevant to the present disclosure, a viewpoint independent edge typically reflects inherent properties of the three-dimensional object, such as surface markings and surface shape. A typical edge might be the border between a block of red color against a yellow or white background.
There are many methods for edge detection, but most are grouped into two categories, search-based and zero-crossing based. The search-based methods detect edges by first computing a measure of edge strength, usually a first-order derivative expression such as the gradient magnitude, and then searching for local directional maxima of the gradient magnitude using a computed estimate of the local orientation of the edge, usually the gradient direction. The zero-crossing based methods search for zero crossings in a second-order derivative expression computed from the image in order to find edges, usually the zero-crossings of the Laplacian or the zero-crossings of a non-linear differential expression.
As a pre-processing step to edge detection, a smoothing stage, typically Gaussian smoothing, is almost always applied. Known edge detection methods mainly differ in the types of smoothing filters that are applied and the way the measures of edge strength are computed. As many edge detection methods rely on the computation of image gradients, they also differ in the types of filters used for computing gradient estimates in the x- and y-directions.
It should be appreciated that those skilled in the art of digital image processing are well versed in techniques that may be implemented for purposes of the present invention.
Still referring to
Still referring to
Referring to
While the present invention has been described in connection with certain preferred embodiments it is to be understood that the subject matter encompassed by way of the present invention is not to be limited to those specific embodiments. On the contrary, it is intended for the subject matter of the invention to include all alternatives, modifications and equivalents as can be included within the spirit and scope of the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/017431 | 2/25/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/137450 | 9/1/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5427161 | Luhmann | Jun 1995 | A |
7930064 | Popovich, Jr. | Apr 2011 | B2 |
20070176040 | Asikainen | Aug 2007 | A1 |
20090183796 | Chase | Jul 2009 | A1 |
20090314801 | Ashrafzadeh | Dec 2009 | A1 |
20100155415 | Ashrafzadeh | Jun 2010 | A1 |
20140367401 | Stralin | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
04-00723 | Jan 1992 | JP |
05-147327 | Jun 1993 | JP |
09-040252 | Feb 1997 | JP |
2001-187662 | Jul 2001 | JP |
Entry |
---|
PCT Search Report and Written Opinion, dated Oct. 29, 2015. |
Number | Date | Country | |
---|---|---|---|
20170369262 A1 | Dec 2017 | US |