This invention relates generally to imaging systems, and more particularly, to diagnostic imaging systems.
In imaging systems, small data errors may cause artifacts, such as smudges, spots, bands, center spots, rings, and streaks, to appear in the reconstructed image. The data errors may be a result of malfunctioning of the components of the imaging systems or may be caused by the patient, such as due to a patient's motion. Failure to account for these errors during image reconstruction may result in a loss in image quality. These errors also may cause a large discrepancy between the scanned object and the reconstructed image. Hence, such artifacts and data errors should be diagnosed and repaired prior to scanning an object to improve image quality and results.
Various methods are known for diagnosing an imaging system. One most commonly used method is manual diagnosis of the imaging system. The service engineer diagnoses the problem based on his past experience. However, this method may not work to identify the cause of certain types of artifacts that can arise from multiple causes. For example, a band artifact may be caused by a problem in a detector or due to the presence of particles in the x-ray beam path. To distinguish between the two causes, images can be acquired in both the cold state and hot state of an X-ray tube. For example, an image is acquired initially with the X-ray tube in a cold state. Then the X-ray tube is heated for approximately an hour or more, and another image is acquired. If the two images or scan data show any difference, the problem can be diagnosed as a particle in the beam path. However, these methods rely on the expertise of the operator and are often time consuming.
In an exemplary embodiment of the invention, a method for diagnosing an imaging system is provided. The method includes varying a system parameter of the imaging system. The method further includes obtaining a first data set and a second data set for a first state and a second state of the varied system parameter, respectively. The first and second data sets are then compared for diagnosing the imaging system.
In another exemplary embodiment of the invention, an imaging system is provided. The imaging system includes an image acquisition portion for acquiring image data and a controller for controlling the image acquisition portion to vary a system parameter. The imaging system further includes a processor for comparing a first data set acquired at a first state of a varied system parameter with a second data set acquired at a second state of the varied system parameter.
Various embodiments of the present invention provide a method and a system for diagnosing an imaging system. More specifically, various embodiments of the invention provide a method and system for diagnosing an imaging system by varying one or more system parameters. The system parameters that may be varied include, but are not limited to, focal spot position, focal spot size, beam voltage, beam current, magnet fields and RF fields. The imaging system generally acquires multiple images of an object at different states of a system parameter. These images are then compared for diagnosing problems, for example, image quality problems, in the imaging system.
Controller 104 includes processor 106, a memory unit 110, and a display unit 112. Controller 104 controls image acquisition portion 102 and is configured to vary system parameters of imaging system 100 as described in more detail herein. In operation, scan data is acquired by image acquisition portion 102 and is stored in memory unit 110. Processor 106 uses the scan data to reconstruct images of object 108. Processor 106 is further capable of comparing various images obtained at different states of the system parameter for use in diagnosing imaging system 100 as described in more detail herein. In various embodiments of the invention, memory unit 110 may be, for example, a magnetic or an optical storage media, such as a hard disk, a tape drive, a Compact Disc (CD), or a memory chip. Memory unit 110 also may be other similar means for loading computer programs or other instructions into the computer system, such as a Random Access Memory (RAM) etc. Further, display unit 112 may include a cathode ray display, a Liquid Crystal Display (LCD), or a plasma display. Display unit 112 is used to display an image of object 108.
In an embodiment of the invention, image acquisition portion 102 may use a magnetic field generated by a magnet to scan object 108. In another embodiment of the invention, image acquisition portion 102 may use X-rays to scan object 108. In order to diagnose imaging system 100, image acquisition portion 102 performs several scans of object 108 at different states of one or more system parameter. The variation in the images can be examined and/or analyzed to diagnose problems related to imaging system 100.
At 204, image acquisition portion 102 obtains a first data set for object 108 at the first state of the varied system parameter. At 206, image acquisition portion 102 obtains a second data set for object 108 at the second state of the varied system parameter. The second state of the system parameter may be different or varied from the first state with respect to, for example, magnitude, position or time. For example, controller 104 may vary the magnitude of the beam current or the beam voltage, so as to change the resolution of the images obtained. Controller 104 also may, for example, change the size or the position of the focal spot, which changes the various image characteristics or the image view. At 208, processor 106 compares the first data set and the second data set for diagnosing imaging system 100. Processor 106 may compare the scan data corresponding to the first data set and the second data set for diagnosing imaging system 100. This comparison process may include taking the ratios of the first and second scan data or using standard deviation plots. For example, processor 106 may divide the first scan data set with the second scan data set to obtain a ratio to determine if the ratio is within a predefined range. The predefined range for the ratio may be, for example, within a tolerance range of 1, such as, within 0.95 to 1.05. In an embodiment of the invention, comparison of the data sets involves generating a difference image from the first data set and the second data set. For example, processor 106 may subtract the first data set from the second data set. In one embodiment of the invention, the system parameter may be varied between more than two states for diagnosing imaging system 100.
The position of the focal spot differs in the cold state and the hot state of the X-ray tube. This causes a variation in the direction of the X-rays, thereby causing a slight change in the image obtained. This change in the focal spot can also be achieved more quickly by the application of electric and/or magnetic fields to the electron beam. In an embodiment of the invention, a magnetic field is applied to X-ray tube 400 using a deflection coil (not shown). This causes a deflection in the direction of electron beam from a first direction 406 to a second direction 408. The change in the direction of the electron beam causes a change in the position of the focal spot, and hence the direction of the X-rays produced.
In an exemplary embodiment of the invention, the focal spot can be varied between first position 302 and second position 304 at a sub-harmonic frequency, for example 500 Hz, wherein the sampling frequency is 1 KHz. This is referred to as sub-harmonic focal spot wobble and emulates the cold state and hot state of the X-ray tube, alternately. In this method, alternate samples are obtained with the focal spot (or other system parameter) in first position 302 and then in second position 304. Then the data sets obtained from first position 302 and second position 304 are interleaved to construct a single image, which is used to diagnose imaging system 100. In various embodiments of the invention, other sub-harmonic frequencies, such as 250 Hz, may be used. In this method, the first two samples are obtained at first position 302, the next two sample at second position 304, the following two sample at first position 302, and so on. In another embodiment of the invention, the focal spot is maintained static at first position 302 for a pre-defined period of time before being changed to second position 304. In this embodiment, a plurality of scans are performed with the focal spot at first position 302 to obtain a first data set and another plurality of scans is performed with the focal spot at second position 304 to obtain a second data set. These two data sets are then used to diagnose imaging system 100, by taking the ratios of the data sets or by generating a difference image.
It should be noted that X-rays systems have been used in various embodiments of the invention for illustrative purposes only. The various embodiments may be implemented in connection with any type of imaging system, such as MRI systems, by varying quantities of interest to MRI systems.
Various embodiments of the present invention provide a method and a system that enables diagnosis of the imaging system in less time and with greater accuracy. The imaging system can reduce the time required from a few hours to a few seconds. This reduces the overall time required to diagnose a problem associated with the imaging system, which may result in increasing manufacturing throughput, or reducing service repair time.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
4637040 | Sohval et al. | Jan 1987 | A |
4689809 | Sohval | Aug 1987 | A |
5303281 | Koller et al. | Apr 1994 | A |
5550889 | Gard et al. | Aug 1996 | A |
5898755 | Meusel et al. | Apr 1999 | A |
6252935 | Styrnol et al. | Jun 2001 | B1 |
6480572 | Harris et al. | Nov 2002 | B2 |
6652143 | Popescu | Nov 2003 | B2 |
6744845 | Harding et al. | Jun 2004 | B2 |
20020158632 | Sodickson | Oct 2002 | A1 |
20050024051 | Doddrell et al. | Feb 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20060215890 A1 | Sep 2006 | US |