The present invention relates generally to the field of computer network security, and in particular to systems and methods for displaying network security incidents.
From large business transaction to personal financial management, almost every aspect of our daily life depends on the secure operation of computer networks, e.g., the Internet.
Over the past decades, different techniques have been developed to enhance the security of a computer network against attacks. For example, multiple security sensors such as intrusion detection sensors (IDS) are deployed over the Internet or a local area network (LAN) to detect suspicious network activities.
Generally speaking, the information embedded in an individual security event only reveals a small aspect of a large network attack plan. The accuracy of such limited information may also be contaminated by other network devices. For example, a network address translation (NAT) device is commonly employed for translating the addresses and ports of network packets destined to or originating from internal hosts and servers within a local area network (LAN) to resolve the problem of limited address space offered by 32-bit addresses. As a result, NAT devices often hide the true source and destination address of an IP packet, which makes the packet more difficult to be analyzed.
Further, a network attack is a dynamic phenomenon that evolves with time. With the development of network technology, more complicated and better disguised attacking strategies emerge to break the current network protection measures. In response, new detection measures have to be developed to discover and defeat these new strategies.
Therefore, it would be highly desirable to have a method and system that can not only analyze security events in a real time fashion, but also present the result in an intuitive form so that the user can easily understand the characteristics of any potential or on-going attacks. It would also be desirable that the user can use the method and system to develop new strategies to catch not only current, but also future network attacks.
In summary, a network security monitor system and method receive and process a plurality of security events arriving during a predefined time period, including grouping the security events into network sessions, each session having an identified source and destination, and correlating the network session according to a set of predefined security event correlation rules.
The system and method then display a graph representing devices in a network, the devices including security devices and non-security devices. The displayed graph includes a plurality of individual device symbols and a plurality of group device symbols, each individual device symbol representing a security device of the network and each group device symbol representing a group of non-security devices of the network.
In conjunction with the graph, the system and method display security incident information, including with respect to a group device symbol an incident volume indicator that indicates a number of network sessions whose source or destination is at any member of a group of non-security devices corresponding to the group device symbol.
In one embodiment, the system and method also display a second level graph representing the non-security devices in the group upon user selection of a group device symbol. The displayed second level graph further includes a plurality of non-security device symbols and a plurality of security device symbols, each non-security device symbol representing one non-security device serving as a source or destination of a network session and each security device symbol representing one security device that is in the vicinity of the non-security devices.
In another embodiment, the system and method, in response to one or more user commands, select a network session from the displayed data and define a drop rule that comprises a set of network conditions corresponding to the selected network session. Whenever there are one or more incoming security events that satisfy the set of network conditions, the system and method filter them out, either dropping them from a security event log file, or not showing them to the user, but still keeping them in the log file.
The aforementioned features and advantages of the invention as well as additional features and advantages thereof will be more clearly understood hereinafter as a result of a detailed description of preferred embodiments of the invention when taken in conjunction with the drawings.
FIGS. 4(A)-(B) are a hotspot and a vector graph of one example according to the present invention, respectively.
FIGS. 5(A)-(B) are a first-level and a second-level hotspot graph of another example according to the present invention, respectively.
FIGS. 11(A)-(C) depict a set of security events, a local hotspot graph and a local vector graph associated with a network session 676852, respectively.
FIGS. 12(A)-(C) depict a set of security events, a local hotspot graph and a local vector graph associated with a network session 676853, respectively.
FIGS. 13(A)-(C) depict a set of security events, a local hotspot graph and a local vector graph associated with a network session 676903, respectively.
FIGS. 14(A)-(C) depict a set of security events, a local hotspot graph and a local vector graph associated with a network session 676984, respectively.
FIGS. 15(A)-(D) illustrate procedures for defining a false positive security event and then constructing a drop rule for the security event.
FIGS. 16(A)-(B) depict a list of drop rules and a list of security incidents associated with each drop rule, respectively.
FIGS. 17(A)-(C) illustrate procedures for constructing a query against a set of security events received by the network security monitor system and then saving the query as a new correlation rule.
The present invention is directed to a method and system of analyzing a stream of security events sent to a network security monitor system by a plurality of network security devices, presenting the analysis result to a user of the system in an intuitive form, and helping the user to develop new network attack detection strategies. An example of such method and system is disclosed in U.S. patent application Ser. No. 10/443,946, entitled “Network Security Monitoring System”, filed May 21, 2003, which is incorporated herein by reference and U.S. patent application Ser. No. 10/602,846, entitled “A Method and System For Determining Intra-Session Event Correlation Across Network Address Translation Devices”, filed Jun. 23, 2003, which is also incorporated herein by reference.
At step 304, the monitor system receives a plurality of security events from security sensors deployed over the network and then groups them into different network sessions using the intra-session security event correlation engine 222 at step 306.
At step 308, the monitor system employs the security event correlation rule evaluation engine 224 to check if the network sessions satisfy any predefined security event correlation rule. If true, the monitor system creates a network security incident in response to the rule at step 310 and then takes certain actions to protect the network from attacks at step 314, e.g., notifying the network administrator. If false, the monitor system checks if a predefined time period associated with the security event correlation rule has expired or not. If the time has not expired, the system goes back to step 304, waiting for more incoming security events. If the time has expired, the system flushes out the security events and network sessions from its memory into an security event log file 228 at step 316.
The following discussion is directed to the user interactivity features of the system, to be more specific, how the information of a network attack is presented to a user and how the user adjusts the system to capture newly developed network attack strategies.
As a first step, a user, e.g., a network administrator, logs into a network security monitor system through a network browser, e.g., Internet Explorer (a trademark of Microsoft Corporation), and visits the homepage of the system, as shown in
The devices shown in hotspot graph 400 can be separated into two categories, security devices and non-security devices. Security devices include firewalls, routers, and network switches. A security sensor, e.g., an intrusion detection sensor, is often attached to a security device for monitoring the network activities going through the device. Non-security devices refer to those devices that do not have security sensors attached. For example, a regular desktop computer that is not equipped with a security sensor is usually a non-security device. Typically, the number of non-security devices on a network is higher than that of security devices.
In one embodiment, each security device, such as a firewall “BR-FW-1” or a network switch “BR-SW-1”, is represented by a unique graphical symbol on the hotspot graph 400, which makes it easy to understand the network's topology and to track down the locations of various attacks' sources and destinations. In contrast, a non-security device is usually not represented by a unique symbol, since there are too many of them on a network. Instead, the non-security devices on the network are organized into groups based on their physical locations on the network. Each group is given a unique name and represented by a cloud symbol on the hotspot graph. For example, “Cloud-3” represents a group of non-security devices and is connected to three surrounding security devices, a firewall “BR-FW-1”, a network router “BR-Head-End-Router” and a network switch “BR-SW-1”.
A security sensor is configured to monitor the network traffic through the security device to which it is attached and submit security events to the network security monitor system. A security event contains information generated by a security sensor in response to certain network activity happening to the network equipment to which the security sensor is attached. For instance, a stream of TCP/IP packets traveling through firewall BR-FW-1 may trigger the security sensor attached to the firewall to submit one or more security events to the monitor system. In one embodiment, a security event comprises a set of event parameters including, but not limited to, a source address, a destination address, a reporting device ID, an event ID, an event type and a timestamp.
Each individual security event, though useful, only provides a snapshot of network activities at a particular security device. Such information is usually insufficient to describe a complicated network attack involving multiple sources, destinations and network routes. Instead, the monitor system is employed to correlate the event parameters of a plurality of security events submitted by different security sensors according to a predefined correlation condition, which is also referred to a security event correlation rule representing a possible scenario of network attack.
However, because of the network address translation (NAT) devices deployed over the network, the source and destination addresses reported by a security event may not be the true source and destination addresses of a network activity that triggers the security event. Therefore, prior to the step of security event correlation, the monitor system needs to “undo” the address translation made by a NAT device and discover the true source and destination of the event, if possible. After that, the system groups the security events into different network sessions. A network session is a group of security events sharing a same set of session qualifiers including, but not limited to, source address, destination address, and network protocol. Therefore, the security event correlation actually happens among “sessionized” security events.
For every set of “sessionized” security events satisfying a security event correlation rule, the network security monitor system generates a security incident comprising the set of “sessionized” security events. In other words, a security incident is defined as a set of security events in association with a plurality of potentially concerted network activities that deserve special attention by the network administrator. A security incident involves at least two parties, a source and a destination. More complicated incidents may involve multiple parties. Each party can be a security device or a non-security device.
In one embodiment, the monitor system highlights a non-security device that has been involved in a security incident by attaching a black dot to a cloud symbol representing a group that includes the device. The number of black dots attached to (or associated with) a device symbol or a cloud symbol serves as an incident volume indicator with regard to a particular security device or group of non-security devices.
From a hotspot graph, a user is not only able to get an overview of suspicious network activities happening to the network during a predefined time period, but is also able to “zoom” into a particular group, retrieving more details about the non-security devices in the group that have been involved in these network activities. For example, if the user is interested in learning more details about the three non-security devices in the group represented by cloud Cloud-3, he can click on the cloud Cloud-3 in
For simplicity, the following discussion focuses on the example shown in
The correlation order can be a logical or temporal order, as indicated by the operators in the action/operation column. For instance, the operator of the first row is a logical OR, which means that the correlation can move onto the third row if there is any security event associated with any of the first two rows. Similarly, the operator of the second row is a temporal FOLLOWED-BY, which means that an event belonging to the first two rows must precede an event belonging to the third tow. By default, the correlation starts from the first row and ends at the last row of the table. However, this order can be adjusted using the open and close parentheses if necessary (see the Open and Close columns of the rule, as shown in
Each row of the rule includes a “Counts” column or field that specifies a number of security events that must satisfy the constraints of the row before the row is considered to be satisfied. When the Count is equal to one, just one security event that meets the constraints of the row is required. When the Count is equal to two or more, the specified number of such events is required.
Besides the correlation order, another important aspect of the security event correlation rule is to correlate the sources and destinations of different security events to discover a series of concerted network activities that constitute a network attack. As an example, a network attack could be a series of network activities launched by a hacker from one or more devices to attack some targeted devices for the purpose of either destroying the data stored in the targeted devices or illegally transmitting the data from the targeted devices to the devices designated by the hacker.
Each security event includes the information of the source and destination of a particular network activity. Depending on the direction of network traffic, the source of the network activity may be the device that initiates the attack or the device that is under attack. As a result, the source IP and destination IP columns of one or more rows of a rule may be populated with variables. In some embodiments, variables are represented by text strings starting with a dollar sign “$”, e.g., $TARGET01, to represent a host address. The advantage of such expression is that the same variable can be re-used in different rows to link them together according to a predefined order. For example, the variable $TARGET01 in the first three rows representing the destination of the corresponding security events becomes the source of the security events in the last row, indicating that the rule is satisfied only when the source of a packet satisfying row 4 of the rule is the same as the target of the packets satisfying row 1 through 3 of the rule.
Finally, there may be a temporal constraint over the correlated security events specified by the time-range column. In the example shown in
In the lower part of
For example, if a user clicks on the information icon next to the IP address 192.168.1.10 in the first row, a window pops up as shown in
Besides learning more about each device related with the network sessions, a user can also gain more insight into each security event belonging to one of the network sessions, such as the raw message reported by a security sensor and the traffic route of the suspicious network activities, etc.
Finally,
As discussed above, some network sessions may comprise only one security event, such as network sessions 676852 and 676853, and some may comprise multiple events, such as sessions 676903 and 676984. In the first case, the only security event in a network session must have satisfied the requirements stipulated in a corresponding row of the security event correlation rule. Such event is also referred to as the trigger event. In the second case, there is also at least one trigger event within a network session. However, some of the non-trigger events in the network session may not completely satisfy the requirements. As a result, these events are highlighted in the network session list by attaching a question mark icon to each of them, as explained in more detail below.
The pop-up window in
Since the operating system of the security event's destination is not Windows NT 4.0, this security event may be a false positive and any future events like this one will probably not appear in the network session list. However, the user has the final word about whether an event like this one is a false positive and how it should be treated even if it is a false positive. If the user thinks it is useful to keep this type of events in the network session list, he clicks on the Cancel button in
After the user confirms the creation of a new drop rule in
As discussed above, a security event correlation rule is created to detect one or more kinds of network attacks. Since new network attacks may evolve in response to the improvement of network technology, new security event correlation rules have to be developed to deal with these new attacks. In one embodiment, the system generates a new security event correlation rule through querying recorded security event data and thereby discovering new attack scenarios.
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.
Number | Name | Date | Kind |
---|---|---|---|
5566339 | Perholtz et al. | Oct 1996 | A |
5929855 | Benton et al. | Jul 1999 | A |
6088804 | Hill et al. | Jul 2000 | A |
6233575 | Agrawal et al. | May 2001 | B1 |
6505192 | Godwin et al. | Jan 2003 | B1 |
6550012 | Villa et al. | Apr 2003 | B1 |
6609205 | Bernhard et al. | Aug 2003 | B1 |
6647400 | Moran | Nov 2003 | B1 |
6717949 | Boden et al. | Apr 2004 | B1 |
6728885 | Taylor et al. | Apr 2004 | B1 |
6795918 | Trolan | Sep 2004 | B1 |
6816455 | Goldberg et al. | Nov 2004 | B2 |
6826697 | Moran | Nov 2004 | B1 |
6829239 | Bhatia et al. | Dec 2004 | B1 |
6883162 | Jackson et al. | Apr 2005 | B2 |
6886102 | Lyle | Apr 2005 | B1 |
7143442 | Scarfe et al. | Nov 2006 | B2 |
7171689 | Beavers | Jan 2007 | B2 |
7246166 | Watson | Jul 2007 | B1 |
7299504 | Tiller et al. | Nov 2007 | B1 |
7478151 | Maiocco et al. | Jan 2009 | B1 |
20020019945 | Houston et al. | Feb 2002 | A1 |
20020053033 | Cooper et al. | May 2002 | A1 |
20020152185 | Jamadagni | Oct 2002 | A1 |
20020199024 | Givoly et al. | Dec 2002 | A1 |
20030009547 | Benfield et al. | Jan 2003 | A1 |
20030033402 | Battat et al. | Feb 2003 | A1 |
20030093514 | Valdes et al. | May 2003 | A1 |
20030120935 | Teal et al. | Jun 2003 | A1 |
20030130967 | Mannila et al. | Jul 2003 | A1 |
20030149727 | Jaschek et al. | Aug 2003 | A1 |
20030165121 | Leung et al. | Sep 2003 | A1 |
20030182580 | Lee | Sep 2003 | A1 |
20030200192 | Bell et al. | Oct 2003 | A1 |
20030200318 | Chen et al. | Oct 2003 | A1 |
20030236995 | Fretwell | Dec 2003 | A1 |
20040049698 | Ott et al. | Mar 2004 | A1 |
20040073800 | Shah et al. | Apr 2004 | A1 |
20040098623 | Scheidell | May 2004 | A1 |
20040103021 | Scarfe et al. | May 2004 | A1 |
20040111637 | Baffes et al. | Jun 2004 | A1 |
20040133672 | Bhattacharya et al. | Jul 2004 | A1 |
20040250112 | Valente et al. | Dec 2004 | A1 |
20050005017 | Ptacek et al. | Jan 2005 | A1 |
20050021740 | Bar et al. | Jan 2005 | A1 |
20050037733 | Coleman et al. | Feb 2005 | A1 |
20050044406 | Stute | Feb 2005 | A1 |
20060089985 | Poletto | Apr 2006 | A1 |
20060218640 | Lotem et al. | Sep 2006 | A1 |
20060242694 | Gold et al. | Oct 2006 | A1 |
20070086480 | Elzur | Apr 2007 | A1 |
20080046572 | Jagels | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
2002261788 | Sep 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20050060562 A1 | Mar 2005 | US |