This application is a national stage entry of PCT/EP2014/057223 filed Apr. 10, 2014, under the International Convention claiming priority over French Patent Application No. 1353323 filed Apr. 12, 2013.
The invention relates to a method and a system suitable for providing a display inside an airplane of the external environment of that airplane, and an airplane door equipped with this display system.
In emergency situations in which the passengers have to be evacuated to the ground, for example in the event of an airplane fire, it is a known practice to use escape slides, which are moored to the emergency exit doors or fuselage of the airplane. In order to ensure that the external conditions of the airplane make it possible to deploy the escape slide in total safety, a direct view of the immediate environment of the airplane is conventionally produced through a window by the crew of the airplane, an air hostess or an in-charge flight attendant.
Furthermore, the view of the environment close to the airplane is useful to avoid collisions on the ground, particularly at the wing ends when the airplane is pulled in reverse, for example in a parking zone, in a hanger for an overhaul or during maintenance.
Generally, a view of the environment of the airplane makes it possible to monitor the approaches and anticipate certain risks or avoid hazardous situations: for example, when taxiing on the taxiways, notably at intersections thereof, or when two airplanes cross on the same taxiway, when obstacles are present on the runway, objects or vehicles are present nearby, the environment is suspect, etc.
The size of a window dedicated to the external view results from a trade-off between the constraints associated with the placement of this window in a door or the fuselage of the airplane and the aperture of the field of view which results from this size.
It is also a known practice, for example from the patent document GB 1290144, to use a camera to film objects outside of an airplane through a window. In order to pick up the field outside the direct view axis, a prism provided with a 45° inclined reflecting surface can be used between the window and the camera. In order to increase the aperture of the observed field, the input and output surfaces of the prism are curved.
To observe the presence of ice or the presence of foreign bodies on the wings of an airplane, the patent document U.S. Pat. No. 6,052,056 describes also the transmission of a pulsed light to an optical sensor via an optical channel. When water, ice or a de-icing liquid covers the sensor, a variable quantity of pulsed light is reflected and strikes a photosensitive detector—for example photodiodes—after having returned through the optical channel. The photodiodes then provide a signal which varies as a function of the type of detection, in terms of nature and quantity.
These documents do not make it possible to address the problem of the display of the space which surrounds the airplane with a degree that is sufficient to provide a guarantee of observation (day/night display, poor weather conditions, etc.) both of the immediate environment of the airplane—in particular to accurately check the impact on the ground of the escape slides when they are deployed—and of the environment of the wing ends in order to be able to rectify the trajectory of the airplane in time, in case of a risk of collision.
The invention aims to produce such a display of the environment of the airplane by combining a direct shot and illumination in light radiation ranges appropriate to this environment, in conjunction with a display suitable for providing immediately usable information.
To this end, the object of the present invention is a method for displaying the external environment of an airplane and including replacing a window of the airplane by at least one opening produced in at least one door of the airplane, in mechanically coupling a lens of a camera, the camera transmitting a video signal in this opening, such that the lens directly picks up the light originating from said environment of the airplane. This environment is previously illuminated by zone with a directional lighting in at least one radiation range chosen as a function of display parameters of this environment. The method then includes transmitting the video signal supplied by the camera(s) to at least one display screen to provide comprehensive information from this signal. The comprehensive information relates to the state of operation of the equipment of the airplane, and to the display of safety zones surrounding the airplane whose lighting is adjusted as a function of said parameters.
Advantageously, the camera associated with the lighting makes it possible to measure the weather conditions over the visual range RVR (Runway Visual Range) of the pilot, particularly by targeting the end winglets in order to measure the RVR automatically and local to the airplane.
According to preferred embodiments:
the lighting parameters are set, between the infrared or visible radiation range, as a function of the weather conditions (day/night; poor conditions: mist, rain, etc.) of the environment and of the specific state of orientation of the airplane as established by a piloting center with which the airplane is equipped;
the radiation range is situated in the visible radiation spectrum when the solar radiation is above a determined threshold, particularly during the day, and the lighting is directed toward at least one passenger evacuation zone to guide the passengers and/or a zone surrounding the door(s) in order to facilitate maintenance activities;
the radiation range is situated in the near IR (infrared) radiation in order to provide a usable display when the solar radiation is below a determined threshold, in particular at night;
at least one double opening is produced in at least one door of the airplane, each opening being mechanically coupled to a camera lens so as to perform at least one video processing in three dimensions (3D) or enhanced 2D;
the 3D display is produced through each front door and each rear door of the airplane, to assess the position of the wing ends on the ground respectively when the aircraft moves forward and when the aircraft reverses, the distance relative to an obstacle, or another assessment relative to the environment of the airplane;
the video signal can also be transmitted to a display screen installed in the cockpit of the airplane and/or to the screens of a video system with which the passenger cabin is equipped, this video signal being able to be accompanied by complementary information (assessment of the distances to the obstacles, recognition of forms, etc.);
the screen or screens also displays/display information and/or alert messages linked to the state of operation of the equipment of the airplane, in particular the status of the door(s) (for example: locked, blocked or closed), the state of the escape slide arming/disarming system (nitrogen tank, etc.), the control mode of the camera and of the illumination (manual or automatic), and the state of the equipment for maintenance (state of the engine, state of the air conditioning system, etc.).
The invention relates also to a system for displaying the external environment of an airplane comprising a passenger cabin, a cockpit, wings and passenger and service doors, this system being intended to apply the method defined above. Such a system comprises at least one source of illumination for zones of said environment in at least one radiation range, at least one video camera provided with a lens suitable for picking up a set of light rays originating directly from the external environment illuminated by the source to provide a video signal corresponding to said environment, and at least one display screen linked with the camera to receive the video signal. The camera, the illumination source and the display screen are linked to a controller suitable for receiving information on the state of operation of the equipment of the airplane and display parameters of said environment.
According to preferred embodiments:
at least one illumination zone surrounds an impact zone of the airplane escape slide determined by the controller, this zone remaining displayed on the screen by inclusion in the controller of the state of orientation of the essential structures of the airplane, for example of the landing gear, of the fuselage and of the engine pods;
the illumination source or illuminator includes of light-emitting diodes or LEDs for lighting in the visible or infrared radiation range, arranged in a housing to light a zone that is sufficiently wide surrounding the impact zone of an escape slide of an airplane door;
a 3D display is produced by a pair of cameras through a front door and a rear door of the airplane, to assess the position of the airplane relative to its environment during maneuvers on the ground, in particular to assess the position of the wing ends respectively when the airplane moves forward and when the airplane reverses;
the video signal can also be transmitted to a display screen installed in the cockpit of the airplane and/or to the screens of a video system with which the passenger cabin is equipped.
Another subject of the present invention is an airplane door, namely passenger door or service door, comprising a locking system and a door opening/closing system by an articulation arm. This door is equipped with the display system defined above comprising at least one HD video camera.
Preferably, the controller of the display system is also intended to drive and coordinate the movements of the articulation arm of the door via an assisted mechanical drive or an electric drive motor.
Advantageously, the illuminator consists of an LED lighting assembly, advantageously arranged in proximity to the door, and the camera(s) and the display screen are installed on the door, preferably substantially in the middle of the door.
Other features and advantages of the invention will emerge on reading the following description which relates to an exemplary embodiment, with reference to the attached figures which illustrate:
Referring to the cross-sectional view of
The lens 11 is fixed in a circular opening 21 on a passenger door of the airplane (not represented). The opening 21 was previously produced by cutting the skin of the fuselage 10. A cylindrical framing 22 of the same material as the skin 10—here of composite material—is provided to receive the lens 11 clad in a matching ring 14. Alternatively, the framing can be formed in a different material from that of the skin, for example aluminum.
The framing 22 has a widened portion 22a passed through by rivets 3 for fixing (or other fixing means: screws, etc.) to the skin 10. The ring 14 and the framing 22 are joined together via a coupling of thread/tapping type or equivalent (snap fitting, seal, etc.). Furthermore, the electronic housing 12 is advantageously fixed to the skin 10 by lateral ties 15.
As a variant, as illustrated by
Moreover, the housing 23 bears peripherally against the inner face 10i of the skin 10 and is fixed to this skin 10 by appropriate screws 25. An o-ring seal 26 is housed in a space E1 formed between the housing 23 and the skin 10 to produce a seal-tight link between the housing 23 and the skin 10.
Referring to the front view of
The passenger door 4 comprises a locking system with safety latch 41, a door opening/closing system by an articulation arm 42, and a door controller 5 intended to drive and coordinate the movements of the door 4. The controller 5 also drives and coordinates the movements of the articulation arm of the door 42 by an electric drive motor 6.
This door 4 is equipped with two HD display video cameras 1a and 1b, each camera being arranged in the manner described above through door openings 21. The cameras and the display screen are installed substantially in the middle of the door, the cameras 1a and 1b under the arm 42 and the screen 8 above the arm 42.
The distance between the cameras 1a and 1b is computed so as to allow the processing of the HD video signals in three-dimensional (3D) mode by the controller 5. Such processing makes it possible to accurately measure the distances between objects, in particular between the ends of the wings and the surrounding structures as explained later in conjunction with
The display screen 8 also displays information and/or alert messages in conjunction with the state of operation of the equipment of the airplane, namely: the status of the doors—locked, blocked or closed—, the state of the escape slide arming/disarming system, nitrogen tank level, the control mode of the camera and of the illumination—manual or automatic—and the maintenance (state of the engine, of the roll/pitch detection system, state of operation of the weather sensor) and equivalent.
An illuminator 7, consisting of an LED housing 71 and a support bushing 72, is arranged through the door 4, as shown by the lateral cross-sectional view of
The LED housing 71 forms a directional lighting part through the presence of a cover with variable angular aperture 73 which channels the radiation toward a zone of the external environment. This part 71 is coupled to the support bushing 72.
The illuminator 7 is arranged in the door 4 (
The illuminated zone 91 makes it possible to target the impact zone 101 and retain the display 101a of this zone on the screen 8, as represented in
When the visibility conditions are correct, particularly in daytime, the radiation range of the illuminator 7 is in the visible and the lighting remains directed toward the evacuation zone of the passengers 91 to guide them. Advantageously, a zone surrounding the door 4 is lit by the illuminator 7 in order to facilitate maintenance activities.
The radiation range is situated in the near IR (infrared) radiation in order to provide a usable display when the visibility conditions of the environment do not allow sufficient visibility in the visible radiation range. Thus, the radiation range is chosen by the controller 5 as a function of the display parameters conventionally: sharpness, contrast, brightness—which defines the conditions of visibility.
The HD 3D display is thus produced by each pair of cameras 1A, 1B through a double opening of each of the front doors 4A and 4B and each of the rear doors 4C and 4D of the airplane, with wide angular apertures ΔA and ΔB, the rear cameras being directed in the example illustrated so as to be able to also display the wing ends 102 and 103. The position of the wing ends 102 and 103 is thus assessed on the ground, respectively when the airplane moves forward and when the airplane reverses, through the processing of the video signals by the controller 5 (
The invention is not limited to the examples described and represented. In particular, the video signal(s) can also be transmitted to a display screen 104 installed in the cockpit 106 of the airplane (See
Furthermore, the 3D display can be useful when the airplane is required to perform more complex maneuvers on the ground, for example when it has to negotiate turns. The use of two cameras per door can also be useful for the airplane transmission in case of failure of the electronic equipment.
The 3D display can be replaced by a 2D display enhanced by an indication of the depth by a suitable symbol system, for example a color code or equivalent on the display screen.
Advantageously, the display system according to the invention can be used equally in emergency door opening conditions and in nominal operation, for example to detect the presence of a walkway or of an operator working facing the door.
Moreover, the screen(s) also displays/display information and/or alert messages in conjunction with the state of operation of the equipment of the airplane chosen from the status of the door(s) (for example: locked, blocked or closed), the status of the escape slide arming/disarming system (nitrogen tank, etc.), the control mode of the camera and of the illumination (manual or automatic) and/or maintenance (state of the engine, of the detection system, etc.).
Number | Date | Country | Kind |
---|---|---|---|
13 53323 | Apr 2013 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/057223 | 4/10/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/167038 | 10/16/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4358182 | Hayes | Nov 1982 | A |
4816828 | Feher | Mar 1989 | A |
4843461 | Tatsumi | Jun 1989 | A |
5253051 | McManigal | Oct 1993 | A |
6052056 | Burns et al. | Apr 2000 | A |
6592077 | Uhlemann | Jul 2003 | B2 |
6831680 | Kumler | Dec 2004 | B1 |
7677494 | Yada | Mar 2010 | B2 |
9234813 | Reitmann | Jan 2016 | B2 |
9302780 | Zaneboni | Apr 2016 | B2 |
9456184 | Barrou | Sep 2016 | B2 |
20030095185 | Naifeh | May 2003 | A1 |
20040061027 | Movsesian | Apr 2004 | A1 |
20040085450 | Stuart | May 2004 | A1 |
20040144894 | Paradis | Jul 2004 | A1 |
20040217234 | Jones | Nov 2004 | A1 |
20040217976 | Sanford | Nov 2004 | A1 |
20050007261 | Berson | Jan 2005 | A1 |
20050007386 | Berson | Jan 2005 | A1 |
20060156361 | Wang | Jul 2006 | A1 |
20090195652 | Gal | Aug 2009 | A1 |
20100188506 | Dwyer | Jul 2010 | A1 |
20100294888 | Texcier | Nov 2010 | A1 |
20110042517 | Depeige | Feb 2011 | A1 |
20110248514 | Koneczny | Oct 2011 | A1 |
20120154587 | Hwang | Jun 2012 | A1 |
20120325962 | Barron | Dec 2012 | A1 |
20130169807 | de Carvalho | Jul 2013 | A1 |
20130318873 | Knijnenburg | Dec 2013 | A1 |
20140092206 | Boucourt | Apr 2014 | A1 |
20140160285 | Barrou | Jun 2014 | A1 |
20140176668 | Boucourt | Jun 2014 | A1 |
20140180508 | Zaneboni | Jun 2014 | A1 |
20150292254 | Bessettes | Oct 2015 | A1 |
20150307208 | Butler, III | Oct 2015 | A1 |
20160019770 | Bredemeier | Jan 2016 | A1 |
20160107755 | Bessettes | Apr 2016 | A1 |
20160114895 | Perrier | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
023473 | Aug 1987 | EP |
0980828 | Feb 2000 | EP |
2495168 | Sep 2012 | EP |
1290144 | Sep 1972 | GB |
2002240798 | Aug 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20160090196 A1 | Mar 2016 | US |