This application is a U.S. National Stage Application of International Application No. PCT/US2012/062155 filed Oct. 26, 2012, and which is hereby incorporated by reference in its entirety.
After drilling a wellbore that intersects a subterranean hydrocarbon-bearing formation, a variety of wellbore tools may be positioned in the wellbore during completion, production, or remedial activities. For example, temporary packers may be set in the wellbore during the completion and production operating phases of the wellbore. In addition, various operating tools including flow controllers (e.g., chokes, valves, etc.) and safety devices such as safety valves may be releasably positioned in the wellbore.
A number of subsurface wellbore devices such as plugs, safety valves, packers, and the like may be used when performing subterranean operations. Such tools are generally lowered downhole by either a wireline or a working string and may be configured with a fishing neck to facilitate recovery at a later time. Once downhole, the tool may be set at a desired location and released, allowing the wireline or work string to be retrieved.
The setting and retrieving of such tools may be performed mechanically by a work string or wireline or by electrically actuated power units. Electrically actuated power units may utilize a conductor in the wireline to accomplish actuation by surface power, after the tool is properly positioned. Alternatively, self-contained Downhole Power Units (“DPUs”) which do not require electrical power from the surface and therefore permit using a slickline rather than a wireline may be used. The use of DPUs is desirable because of their relative speed and efficiency of use.
However, because DPUs are not powered from the surface, they can only apply a limited amount of force. Further, conventional DPUs are relatively long to prevent exposure of parts to wellbore pressure. It is desirable to develop a more compact DPU that can provide greater force than that supplied by traditional DPUs.
The present disclosure will be more fully understood by reference to the following detailed description of the preferred embodiments of the present disclosure when read in conjunction with the accompanying drawings, in which like reference numbers refer to like parts throughout the views, wherein:
The disclosure may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the disclosure being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Illustrative embodiments of the present invention are described in detail herein. In the interest of clarity, not all features of an actual implementation may be described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions may be made to achieve the specific implementation goals, which may vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of the present disclosure.
The terms “couple” or “couples,” as used herein are intended to mean either an indirect or a direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection, or through an indirect electrical or mechanical connection via other devices and connections. The term “upstream” as used herein means along a flow path towards the source of the flow, and the term “downstream” as used herein means along a flow path away from the source of the flow. The term “uphole” as used herein means along the drillstring or the hole from the distal end towards the surface, and “downhole” as used herein means along the drillstring or the hole from the surface towards the distal end.
It will be understood that the term “oil well drilling equipment” or “oil well drilling system” is not intended to limit the use of the equipment and processes described with those terms to drilling an oil wellbore. The terms also encompass drilling natural gas wellbores or hydrocarbon wellbores in general. Further, such wellbores can be used for production, monitoring, or injection in relation to the recovery of hydrocarbons or other materials from the subsurface. This could also include geothermal wellbores intended to provide a source of heat energy instead of hydrocarbons.
Turning now to
At various times during the drilling process, the drill string 8 may be removed from the wellbore 16. Once the drill string has been removed, a subsurface device 26 (e.g., a plug, packer, etc.) may be coupled to a DPU 100 and lowered downhole to the desired setting depth via a conveying member 28 as shown in
Referring now to
As illustrated in
The power rod 215 may include a coupling mechanism (e.g., slips, keys, or dogs) 209 that engages the guide housing 206 to rotationally fix the power rod 215 relative to the guide housing 206. In certain implementations, the power rod 215 may include a similar coupling mechanism (not shown) to engage the wellbore or an outerstring to stabilize its movement. In the embodiment shown in
Accordingly, the rotation of the drive shaft 207 in a first direction may rotate the drive shaft out of the ball nut assembly 211, thereby extending the power rod 215 out of the DPU 200. Similarly, a rotation of the drive shaft 207 in the opposite direction may rotate the drive shaft 207 into the ball nut assembly 211, thereby retracting the power rod 215 back into the DPU 200.
The DPU 200 may be moved uphole and downhole by a conveying member (not shown) such as a slickline, a wireline, or coil tubing. In certain implementations, the conveying member may be coupled to the power section (not shown) of the DPU 200.
The motor 219 may be used to regulate rotation of the drive shaft 207. In certain embodiments, the motor 219 may be a direct current (DC) electric motor of any suitable type and it may be coupled to a self-contained power source, eliminating the need for power to be supplied from an exterior source, such as a source at the surface. As would be appreciated by those of ordinary skill in the art, having the benefit of this disclosure, any suitable power source may be used in conjunction with the motor 219. For example, in certain illustrative embodiments, the power source may include a battery assembly. In one implementation, battery assembly of the self contained power source may include a pack of one or more D-cell type alkaline batteries. Moreover, in certain illustrative embodiments, the motor 219 may be selectively activated and deactivated using a timer (not shown). Specifically, the timer may be set before the DPU 200 is directed downhole so that it will turn the motor 219 after a predetermined amount of time elapses. Additionally, the timer may be programmed to turn the motor 219 off after it has been on for a certain time period. As would be appreciated by those of ordinary skill in the art having the benefit of the present disclosure, any suitable timers may be used to control the operation of the motor 219. For instance, the timer may be a jumper timer or one of various types of rotary selection timers.
The hollow interior 218 of the power rod 215 may be designed to be able to engage other components therein. For instance, in certain embodiments the hollow interior 218 may include or be coupled to a threaded ball nut assembly 211. The motor 219 may be rotationally coupled to the drive shaft 207 so that energy generated by the motor 219 can be transferred to the drive shaft 207. The drive shaft 207 and the motor 219 may be coupled using any suitable coupling mechanism. For instance, in certain embodiments, a first end of the drive shaft 207 which is coupled to the motor 219 may include a square portion that aligns with and engages a socket on the motor shaft 221. Accordingly, the motor 219 may be rotationally coupled to the drive shaft 207. Further, as discussed above, a portion of the drive shaft 207 may be threaded. The threaded portion of the drive shaft may be received within the hollow interior 218 of the power rod 215 through the ball nut assembly 211. Accordingly, the drive shaft 207 may be coupled to the power rod 215 so that rotation of the drive shaft 207 is translated into a linear motion of the power rod 215.
Once the motor 219 is activated (i.e., turned on), the motor shaft 221 will rotate. Because the motor shaft 221 is coupled to the drive shaft 207, the rotation of the motor 219 will also rotate the drive shaft 207.
As the drive shaft 207 rotates in a pre-set direction, it moves into the hollow interior 218 of the power rod 215. When the drive shaft 207 reaches near the end of the hollow interior 218 of the power rod 215, the DPU 200 may be in a retracted position as shown in
The motor 219 may also be operated in the opposite direction so that the drive shaft 207 extends uphole out of the hollow interior 218 of the power rod 215. In this implementation, the grooves 216 on the guide housing 206 that engage the keys 209 may be configured so that a freewheel mode occurs when the tool is in an extended position. Specifically, the guide housing 206 may be configured so that the grooves 216 have openings on a downhole end thereof to permit the keys 209 to slide out of the grooves 216 of the guide housing 206 once the drive shaft 207 has reached its maximum extended position. Accordingly, in the same manner discussed above, in the maximum extended position the drive shaft 207 enters a freewheel position.
A plurality of retainer nuts 202 may be threaded onto an uphole end of the drive shaft 207. A retainer locking disk 201 may be threaded on the drive shaft 207 and is located uphole of the retainer nuts 202. The retainer nuts 202 ensure the drive shaft 207 does not become disengaged from the power rod 215 by rotating too far uphole. The retainer locking disk 201 may act to prevent the power rod 215 from moving from a predetermined stationary position. The retainer locking disk 201 may consist of any suitable structures known to those of ordinary skill in the art, having the benefit of the present disclosure. For instance, in certain illustrative embodiments, the locking disk 201 may include an allen screw or any type of bolt, or a threaded screw with a slot. Thrust bearings 203 may be threaded onto the uphole end of the drive shaft 207. Thrust bearings 203 may allow the drive shaft 207 to rotate under loads from either direction. When the motor 219 is operated, the retainer locking disk 201 and the retainer nuts 202 rotate with the drive shaft 207. The top sub-housing 204, the guide housing 206, and the lower housing 212 all move linearly but do not rotate.
In certain implementations, lubricating fluid may be provided in the hollow interior 218 of the power rod 215. Wellbore pressure may be great at certain depths, causing the drive shaft 207 to rotate at a speed that is undesirably high. When the motor 219 is activated, the motor shaft 221 begins to rotate. The pressure inside the wellbore acting on the cross sectional area of the drive shaft 207 is greater than the pressure in the hollow interior 218 of the power rod 215. The force applied to the power rod 215 is exerted to the drive shaft 207 which causes the drive shaft 207 to rotate at high speeds until external forces (i.e., the device being set) equal the forces applied to the power rod 215. At that point, the continued rotation of the motor 219 would continue to turn the drive shaft 207 to retract the power rod 215 until the setting procedure is complete. The fluid will provide resistance to the rotation of the drive shaft 207 to slow down the rotation speed of the drive shaft 207. As the drive shaft 207 enters the hollow interior 218 of the power rod 215, the lubricating fluid may be forced out along space around the ball nut assembly 211. This will also ensure that the ball nut assembly 211 is well lubricated. The appropriate amount of lubricating fluid to fill the hollow interior 218 of the power rod 215 may be measured in advance of the DPU 200 being lowered downhole.
Drive shaft seals 205 may operate to prevent fluid flow into the motor 219 and other circuitry in the power section of the DPU 200. Rod seals 213 may be used as backup seals to prevent fluid flow into the motor 219 and other circuitry if the drive shaft seals 205 fail. A spiral retainer ring 214 may be used to keep the rod seals 213 in place and prevent them from blowing out due to internal pressure. Other types of retainers may be used in place of the spiral retainer ring 214.
In certain implementations, a frictional braking system 224, similar to a disk brake or drum brake on a car, may be coupled to the top sub housing 204. The frictional braking system 224 may be another mechanism that may be used to slow the rotation of the drive shaft 207 and the motor 219.
Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present invention. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2012/062155 | 10/26/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/065820 | 5/1/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4651837 | Mayfield | Mar 1987 | A |
5871051 | Mann | Feb 1999 | A |
6179055 | Sallwasser et al. | Jan 2001 | B1 |
20050056427 | Clemens et al. | Mar 2005 | A1 |
20080217038 | Crooks | Sep 2008 | A1 |
20090095466 | Obrejanu | Apr 2009 | A1 |
20090194284 | Jahn | Aug 2009 | A1 |
20110147091 | Bullin | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
0730083 | Sep 1996 | EP |
Entry |
---|
International Search Report and Written Opinion issued in related PCT application No. PCT/US2012/062155, mailed on Jul. 7, 2013 (8 pages). |
International Preliminary Report on Patentability issued in related PCT Application No. PCT/US2012/062155, mailed on May 7, 2015 (6 pages). |
Number | Date | Country | |
---|---|---|---|
20140116730 A1 | May 2014 | US |