This application claims priority to U.S. Provisional Patent Application No. 62/005,930, filed May 30, 2014, which is hereby incorporated by reference in its entirety.
This application is related to U.S. patent application Ser. No. 14/272,363, filed May 8, 2014, entitled “Three-Dimensional Memory Device Having Stacked Conductive Channels,” U.S. patent application Ser. No. 14/272,951, filed May 8, 2014, entitled “Memory Access Technique for a Memory Having a Three-Dimensional Memory Configuration,” U.S. patent application Ser. No. 14/273,005, filed May 8, 2014, entitled “Error Correcting Code Technique for a Memory Having a Three-Dimensional Memory Configuration,” U.S. patent application Ser. No. 14/273,031, filed May 8, 2014, entitled “Structure Variation Detection for a Memory Having a Three-Dimensional Memory Configuration,” and U.S. patent application Ser. No. 14/321,701, filed Jul. 1, 2014, entitled “Method and System for Recharacterizing the Storage Density of a Memory Device or a Portion Thereof,” each of which is incorporated herein by reference in its entirety.
The disclosed embodiments relate generally to memory systems, and in particular, to improving the reliability with which a storage device (e.g., a three-dimensional (3D) memory device) retains data.
Non-volatile data storage devices have enabled increased portability of data and software applications. For example, multi-level cell (MLC) storage elements of a flash memory device may each store multiple bits of data, enhancing data storage density as compared to single-level cell (SLC) flash memory devices. Consequently, flash memory devices enable users to store and access a large amount of data. As a number of bits stored per cell increases, bit errors in stored data typically increase. A data storage device may encode and decode data using an error correcting code (ECC) technique to correct certain bit errors in data. The ECC technique may utilize parity information that decreases data storage capacity for other information, such as user data.
To further increase data storage capacity, advances in memory device technology have resulted in memory devices that have a three-dimensional (3D) configuration. For example, a 3D memory device includes a plurality of memory cells that are vertically stacked and positioned in different layers (e.g., different levels) of multiple vertically stacked layers. A group of memory cells that is vertically stacked may be coupled with a conductive channel. During manufacturing of the 3D memory device, a hole may be created through the multiple vertically stacked layers to enable formation of the conductive channel. However, as a number of layers that the hole extends through increases, controlling formation of the hole becomes difficult. For example, a shape of the hole may not be a cylindrical shape through all of the multiple layers; rather, the hole may have a tapered shape through one or more of the multiple layers. To illustrate, a cross-section of the hole through the multiple layers may have a conical shape or a funnel shape. When the hole does not have a consistent shape (e.g., a consistent diameter) through all of the multiple layers, physical dimensions of one or more memory cells may be affected which may result in reduced performance of those memory cells.
In some embodiments, a memory controller is configured to perform operations with/on a storage device (e.g., a 3D memory device). In some embodiments, the memory controller dynamically adjusts one or more configuration parameters (e.g., ECC encoding strength, programming parameters, and/or storage density) associated with a respective word line of the storage device after detecting a trigger condition. The trigger condition is optionally based one or more status metrics for the respective word line (e.g., a count of program-erase (PE) cycles performed on the respective word line, a number of bytes written to the respective word line, and a bit error rate (BER) for data read from pages of the respective word line, or a combination thereof).
So that the present disclosure can be understood in greater detail, a more particular description may be had by reference to the features of various implementations, some of which are illustrated in the appended drawings. The appended drawings, however, merely illustrate the more pertinent features of the present disclosure and are therefore not to be considered limiting, for the description may admit to other effective features.
In accordance with common practice the various features illustrated in the drawings may not be drawn to scale. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may not depict all of the components of a given system, method or device. Finally, like reference numerals may be used to denote like features throughout the specification and figures.
The various implementations described herein include systems, devices, and/or methods that may improve the reliability with which data can be retained by a storage device (e.g., a 3D memory device). Some implementations include systems, devices, and/or methods to dynamically adjust configuration parameters on a word line basis for a 3D memory device.
In some embodiments, a method of operation in a storage device that includes a three-dimensional array of memory cells, including multiple blocks of memory cells, each block including a plurality of word lines arranged in different vertical positions relative to a substrate of the storage device is performed by a memory controller (e.g., embedded in the storage device or separate from the storage device). For a respective block of the multiple blocks, the method includes: configuring the plurality of word lines corresponding to the respective block in a first configuration, where the first configuration includes a respective set of configuration parameters for each word line of the plurality of word lines determined at least in part on the vertical positions of each word line relative to the substrate of the storage device; and, while the plurality of word lines are configured in accordance with the first configuration, writing data to the respective block and reading data from the respective block. For the respective block, the method includes: in response to detecting a first trigger condition as to a respective word line of the plurality of word lines, adjusting a first parameter in the respective set of configuration parameters corresponding to the respective word line; and, after adjusting the first parameter in the respective set of configuration parameters corresponding to the respective word line, writing data to the respective word line and reading data from the respective word line.
Some embodiments include an electronic system or device (e.g., data storage system 100,
Numerous details are described herein in order to provide a thorough understanding of the example implementations illustrated in the accompanying drawings. However, some embodiments may be practiced without many of the specific details, and the scope of the claims is only limited by those features and aspects specifically recited in the claims. Furthermore, well-known methods, components, and circuits have not been described in exhaustive detail so as not to unnecessarily obscure more pertinent aspects of the implementations described herein.
Computer system 110 is coupled with memory controller 120 through data connections 101. However, in some embodiments, computer system 110 includes memory controller 120 as a component and/or a sub-system. Computer system 110 may be any suitable computing device, such as a desktop computer, a laptop computer, a tablet device, a netbook, an internet kiosk, a personal digital assistant, a mobile phone, a smart phone, a gaming device, a wearable computing device, a computer server, or any other computing device. Computer system 110 is sometimes called a host or host system. In some embodiments, computer system 110 includes one or more processors, one or more types of memory, a display, and/or other user interface components such as a keyboard, a touch screen display, a mouse, a track-pad, a digital camera, and/or any number of supplemental devices to add I/O functionality.
Storage device 130 is coupled with memory controller 120 through connections 103. Connections 103 are sometimes called data connections, but typically convey commands in addition to data, and optionally convey metadata, error correction information, and/or other information in addition to data values to be stored in storage device 130 and data values read from storage device 130. In some embodiments, however, memory controller 120 and storage device 130 are included in the same device as components thereof. Furthermore, in some implementations memory controller 120 and storage device 130 are embedded in a host device, such as a mobile device, tablet, other computer, or computer controlled device, and the methods described herein are performed by the embedded memory controller. Storage device 130 may include any number (i.e., one or more) of memory devices including, without limitation, non-volatile semiconductor memory devices, such as flash memory. For example, flash memory devices can be configured for enterprise storage suitable for applications such as cloud computing, or for caching data stored (or to be stored) in secondary storage, such as hard disk drives. Additionally and/or alternatively, flash memory can also be configured for relatively smaller-scale applications such as personal flash drives or hard-disk replacements for personal, laptop and tablet computers.
In
For example, one block includes a number of pages (e.g., 64 pages, 128 pages, 256 pages, or another suitable number of pages). In some implementations, blocks in a die are grouped into a plurality of zones. Typically, each block zone of the die is in a physically distinct region of the due, such as a particular half or particular quadrant of the memory cell array in the die. In some implementations, each block zone is independently managed to some extent, which increases the degree of parallelism for parallel operations and simplifies management of storage device 130.
In some embodiments, memory controller 120 includes a management module 121, an input buffer 123, an output buffer 124, an error control module 125, and a storage medium interface (I/O) 128. In some embodiments, memory controller 120 includes various additional features that have not been illustrated for the sake of brevity and so as not to obscure more pertinent features of the example embodiments disclosed herein, and that a different arrangement of features may be possible. Input buffer 123 and output buffer 124 provide an interface to computer system 110 through data connections 101. Similarly, storage medium I/O 128 provides an interface to storage device 130 though connections 103. In some embodiments, storage medium I/O 128 includes read and write circuitry, including circuitry capable of providing reading signals to storage device 130 (e.g., reading threshold voltages for NAND-type flash memory).
In some embodiments, management module 121 includes one or more processing units (CPU(s), also sometimes called one or more processors) 122 configured to execute instructions in one or more programs (e.g., in management module 121). In some embodiments, one or more CPUs 122 are shared by one or more components within, and in some cases, beyond the function of memory controller 120. Management module 121 is coupled with input buffer 123, output buffer 124 (connection not shown), error control module 125, and storage medium I/O 128 in order to coordinate the operation of these components.
Error control module 125 is coupled with storage medium I/O 128, input buffer 123 and output buffer 124. Error control module 125 is provided to limit the number of uncorrectable errors inadvertently introduced into data. In some embodiments, error control module 125 is executed in software by one or more CPUs 122 of management module 121, and, in other embodiments, error control module 125 is implemented in whole or in part using special purpose circuitry to perform encoding and decoding functions. To that end, error control module 125 includes an encoder 126 and a decoder 127. In some embodiments, error control module 125 is configured to encode data (i.e., with encoder 126) and decode raw read data (i.e., with decoder 127) according to one of a plurality of ECC techniques (or ECC strengths), such as Reed-Solomon, turbo-code, Bose-Chaudhuri-Hocquenghem (BCH), low-density parity check (LDPC), or other error control codes, or a combination thereof.
Those skilled in the art will appreciate that various error control codes have different error detection and correction capacities, and that particular codes are selected for various applications for reasons beyond the scope of this disclosure. As such, an exhaustive review of the various types of error control codes is not provided herein. Moreover, those skilled in the art will appreciate that each type or family of error control codes may have encoding and decoding algorithms that are particular to the type or family of error control codes. On the other hand, some algorithms may be utilized at least to some extent in the decoding of a number of different types or families of error control codes. As such, for the sake of brevity, an exhaustive description of the various types of encoding and decoding algorithms generally available and known to those skilled in the art is not provided herein.
During a write operation, input buffer 123 receives data to be stored in storage device 130 from computer system 110 (e.g., write data). The data held in input buffer 123 is made available to encoder 126, which encodes the data by applying an error control code to produce one or more codewords. The one or more codewords are made available to storage medium I/O 128, which transfers the one or more codewords to storage device 130 in a manner dependent on the type of storage medium being utilized. A read operation is initiated when computer system (host) 110 sends one or more host read commands on control line 111 to memory controller 120 requesting data from storage device 130. Memory controller 120 sends one or more read access commands to storage device 130, via storage medium I/O 128, to obtain raw read data in accordance with memory locations (addresses) specified by the one or more host read commands. Storage medium I/O 128 provides the raw read data (e.g., comprising one or more codewords) to decoder 127. Decoder 127 applies a decoding process to the encoded data to recover the data, and to correct errors in the recovered data within the error correcting capability of the error control code. If the decoding is successful, the decoded data is provided to output buffer 124, where the decoded data is made available to computer system 110. In some embodiments, if the decoding is not successful, memory controller 120 may resort to a number of remedial actions or provide an indication of an irresolvable error condition.
Flash memory devices utilize memory cells to store data as electrical values, such as electrical charges or voltages. Each flash memory cell typically includes a single transistor with a floating gate that is used to store a charge, which modifies the threshold voltage of the transistor (i.e., the voltage needed to turn the transistor on). The magnitude of the charge, and the corresponding threshold voltage the charge creates, is used to represent one or more data values. In some implementations, during a read operation, a reading threshold voltage is applied to the control gate of the transistor and the resulting sensed current or voltage is mapped to a data value.
The terms “cell voltage” and “memory cell voltage,” in the context of flash memory cells, means the threshold voltage of the memory cell, which is the minimum voltage that needs to be applied to the gate of the memory cell's transistor in order for the transistor to conduct current. Similarly, reading threshold voltages (sometimes also called reading signals and reading voltages) applied to a flash memory cells are gate voltages applied to the gates of the flash memory cells to determine whether the memory cells conduct current at that gate voltage. In some implementations, when a flash memory cell's transistor conducts current at a given reading threshold voltage, indicating that the cell voltage is less than the reading threshold voltage, the raw data value for that read operation is a “1” and otherwise the raw data value is a “0.”
Each of the above identified elements may be stored in one or more of the previously mentioned memory devices, and corresponds to a set of instructions for performing a function described above. The above identified modules or programs (i.e., sets of instructions) need not be implemented as separate software programs, procedures or modules, and thus various subsets of these modules may be combined or otherwise re-arranged in various embodiments. In some embodiments, memory 206 may store a subset of the modules and data structures identified above. Furthermore, memory 206 may store additional modules and data structures not described above. In some embodiments, the programs, modules, and data structures stored in memory 206, or the computer readable storage medium of memory 206, provide instructions for implementing any of the methods described below with reference to FIGS. 10 and 11A-11C.
Although
In some embodiments, characterization data stored in characterization vector 250 includes one or more status metrics 258, non-limiting examples of which include: (a) a bytes written field 260 indicating a number of bytes of data written to the respective portion of storage device 130; (b) a PE cycle field 262 indicating a current count of the number of PE cycles performed on the respective portion of storage device 130; (c) a bit error rate (BER) field 264 indicating a number of errors included in a codeword read from a page of the respective portion of storage device 130 or an average number of errors included in the previous N codewords read from page(s) of the respective portion of storage device 130; and (d) other usage information 266 indicating the health, performance, and/or endurance of the respective portion of storage device 130.
In some embodiments, characterization data stored in characterization vector 250 optionally includes a combined status metric (represented by status metric 258 in
As discussed below with reference to
Sequential voltage ranges 301 and 302 between source voltage VSS and drain voltage VDD are used to represent corresponding bit values “1” and “0,” respectively. Each voltage range 301, 302 has a respective center voltage V1 301b, V0 302b. As described above, in many circumstances the memory cell current sensed in response to an applied reading threshold voltages is indicative of a memory cell voltage different from the respective center voltage V1 301b or V0 302b corresponding to the respective bit value written into the memory cell. Errors in cell voltage, and/or the cell voltage sensed when reading the memory cell, can occur during write operations, read operations, or due to “drift” of the cell voltage between the time data is written to the memory cell and the time a read operation is performed to read the data stored in the memory cell. For ease of discussion, these effects are collectively described as “cell voltage drift.” Each voltage range 301, 302 also has a respective voltage distribution 301a, 302a that may occur as a result of any number of a combination of error-inducing factors, examples of which are identified above.
In some implementations, a reading threshold voltage VR is applied between adjacent center voltages (e.g., applied proximate to the halfway region between adjacent center voltages V1 301b and V0 302b). Optionally, in some implementations, the reading threshold voltage is located between voltage ranges 301 and 302. In some implementations, reading threshold voltage VR is applied in the region proximate to where the voltage distributions 301a and 302a overlap, which is not necessarily proximate to the halfway region between adjacent center voltages V1 301b and V0 302b.
In order to increase storage density in flash memory, flash memory has developed from single-level (SLC) cell flash memory to multi-level cell (MLC) flash memory so that two or more bits can be stored by each memory cell (sometimes also herein called “X2”). As discussed below with reference to
Sequential voltage ranges 321, 322, 323, 324 between the source voltage VSS and drain voltages VDD are used to represent corresponding bit-tuples “11,” “01,” “00,” “10,” respectively. Each voltage range 321, 322, 323, 324 has a respective center voltage 321b, 322b, 323b, 324b. Each voltage range 321, 322, 323, 324 also has a respective voltage distribution 321a, 322a, 323a, 324a that may occur as a result of any number of a combination of factors, such as electrical fluctuations, defects in the storage medium, operating conditions, device history (e.g., a number of PE cycles), and/or imperfect performance or design of write-read circuitry.
Ideally, during a write operation, the charge on the floating gate of the MLC would be set such that the resultant cell voltage is at the center of one of the ranges 321, 322, 323, 324 in order to write the corresponding bit-tuple to the MLC. Specifically, the resultant cell voltage would be set to one of V11 321b, V01 322b, V00 323b, and V10 324b in order to write a corresponding one of the bit-tuples “11,” “01,” “00,” and “10.” In reality, due to the factors mentioned above, the initial cell voltage may differ from the center voltage for the data written to the MLC.
Reading threshold voltages VRA, VRB, and VRC are positioned between adjacent center voltages (e.g., positioned at or near the halfway point between adjacent center voltages) and, thus, define threshold voltages between the voltage ranges 321, 322, 323, 324. During a read operation, one of the reading threshold voltages VRA, VRB, and VRC is applied to determine the cell voltage using a comparison process. However, due to the various factors discussed above, the actual cell voltage, and/or the cell voltage received when reading the MLC, may be different from the respective center voltage V11 321b, V01 322b, V00 323b, or V10 324b corresponding to the data value written into the cell. For example, the actual cell voltage may be in an altogether different voltage range, which strongly indicates that the MLC is storing a different bit-tuple than was written to the MLC. More commonly, the actual cell voltage may be close to one of the read comparison voltages, making it difficult to determine with certainty which of two adjacent bit-tuples is stored by the MLC.
Errors in cell voltage, and/or the cell voltage received when reading the MLC, can occur during write operations, read operations, or due to “drift” of the cell voltage between the time data is written to the MLC and the time a read operation is performed to read the data stored in the MLC. For ease of discussion, sometimes errors in cell voltage, and/or the cell voltage received when reading the MLC, are collectively called “cell voltage drift.”
One way to reduce the impact of a cell voltage drifting from one voltage range to an adjacent voltage range is to gray-code the bit-tuples. Gray-coding the bit-tuples includes constraining the assignment of bit-tuples such that a respective bit-tuple of a particular voltage range is different from a respective bit-tuple of an adjacent voltage range by only one bit. For example, as shown in
One of ordinary skill in the art will appreciate how to apply the above discussion of 1-bit SLC and 2-bit MLC to N-bit memory cells. Sometimes herein, a memory cell configured to store 1 bit is referred to as X1, a memory cell configured to store 2 bits is referred to as X2, and a memory cell configured to store 3 bits is referred to as X3. Additionally, a retired memory cell, which is not available for further programming, is referred to as X0.
In some embodiments, column 400 includes storage elements (e.g., SLC or MLC flash memory cells) formed within multiple layers of materials that are formed on a substrate 408 (e.g., a silicon substrate). To illustrate,
In some embodiments, column 400 further includes a structure 402. To form structure 402, an etch process is performed to etch through layers of column 400 to form an etched region (e.g., a cavity, such as a “memory hole”). After etching through layers of column 400 to form the etched region, the etched region is filled with one or more materials to form structure 402. For example, structure 402 has a circular or substantially circular shape. In this example, a cross section of structure 402 that is perpendicular to a surface of substrate 408 is circular.
In some embodiments, column 400 includes multiple storage elements, such as representative storage elements 404 and 406 (e.g., SLC or MLC flash memory cells). For example, storage element 404 is included in a first physical page of a first word line of storage device 130 in
In some embodiments, structure 402 has a variation. For example, as illustrated in
By identifying location 420, accuracy of operations at storage device 130 can be improved. For example, by identifying location 420, storage elements 404 and 406 may be associated with different ECC parameters and/or different memory access parameters to compensate for differences in physical characteristics of storage elements 404 and 406 due to tapering of structure 402. Differences in physical characteristics of storage elements are described further with reference to
In some embodiments, control gates 452 and 460 and oxide region 458 are formed within multiple layers of storage device 130. For example, control gate 452 is formed within a polysilicon layer, oxide region 458 is formed within an oxide layer, and control gate 460 is formed within another polysilicon layer. In some embodiments, control gates 452 and 460 and oxide region 458 are formed within one or more “physical layers” of storage device 130. For example, a physical layer includes control gate 452 and oxide region 458.
It should be appreciated that one or more additional materials may be formed within structure 402. For example, charge trap structure 454 is separated from control gate 452 and conductive channel 456 by a gate dielectric, such as a silicon oxide. In some embodiments, charge trap structure 454 includes an insulating material, such as silicon nitride. In some embodiments, conductive channel 456 includes a conductive material, such as a metal (e.g., copper).
In some embodiments, portion 450 is biased to write a value to storage element 404 and to sense a value stored at storage element 404. In some embodiments, portion 450 is biased to write a value to storage element 406 and to sense a value stored at storage element 406. For example, charge is injected into or drained from charge trap structure 454 by biasing control gate 452 relative to conductive channel 456. In this example, the amount of charge in charge trap structure 454 affects the amount of current through conductive channel 456 during a read operation of storage element 404 and indicates one or more bit values stored in storage element 404. As another example, charge is injected into or drained from charge trap structure 454 by biasing control gate 460 relative to conductive channel 456. In this example, the amount of charge in charge trap structure 454 affects the amount of current through conductive channel 456 during a read operation of storage element 406 and indicates a state of storage element 406. The state of storage element 406 corresponds to one or more bit values stored by storage element 406.
Alternatively or additionally, in accordance with some embodiments, a variation of structure 402 causes gate-to-channel distance 466 associated with storage element 404 to be greater than gate-to-channel distance 468 associated with storage element 406. In this case, charge trap structure 454 has a greater taper effect than conductive channel 456. During a write operation that programs a state of storage element 404, a greater voltage (relative to storage element 406) is applied to control gate 452 to accumulate charge within charge trap structure 454 (e.g., by drawing electrons from conductive channel 456 to within charge trap structure 454). Therefore, tapering of structure 402 causes programming operations of storage element 404 to differ relative to storage element 406, which results in an “incorrect” state being programmed to and/or sensed from storage element 404.
In
In
In
In some embodiments, level 610 intersects each of blocks 500, 604, and 606 at a common level k. Alternatively, in some embodiments, depending on the particular fabrication process used to fabricate 3D memory device 600, level 610 intersects two or more of blocks 500, 604, and 606 at different locations. As an example, level 610 intersects block 500 at a first distance from substrate 408, intersects block 604 at a second distance from substrate 408, and intersects block 606 at a third distance from substrate 408. In this example, level 610 corresponds to a “non-uniform” plane, such as an inclined plane.
In some embodiments, memory controller 120 or a component thereof (e.g., location determination module 222,
In some embodiments, location determination module 222 determines the variation location for each column or block of storage device 130 upon the first power-on of storage device 130. In some embodiments, memory controller 120 or a component thereof (e.g., location update module 224,
In some embodiments, location table 226 stores a determined location 420 for each block of storage device 130 indicating the end of a taper region for columns within a respective block. For example, for the respective block, determined location 420 indicates a page or word line at which the taper region ends relative to the substrate. In some embodiments, location table 226 stores a determined location 420 for each column of storage device 130 indicating the end of a taper region for a respective column. For example, for the respective column, determined location 420 indicates a page or word line at which the taper region ends relative to the substrate. As such, in some embodiments, memory controller 120 is able to selectively encode, write, read, and/or decode data from pages or word lines above and below determined location 420 for the respective column. For example, for the respective column, data written to pages or word lines above determined location 420 are encoded with a first ECC technique, and data written to pages or word lines below determined location 420 are encoded with a second ECC technique.
In
In some embodiments, 3D memory device 700 includes multiple erase blocks, including a first block (block 0) 750, a second block (block 1) 752, and a third block (block 2) 754. In
In some embodiments, read/write circuitry 760 (i.e., read/write circuitry 135 or alternatively read/write circuitry within storage medium I/O 128) is coupled with conductive channels via multiple conductive lines, illustrated as a first bit line (BL0) 730, a second bit line (BL1) 732, and a third bit line (BL2) 734 at a “top” end of the conducive channels (e.g., relative to substrate 704) and a first source line (SL0) 740, a second source line (SL1) 742, and a third source line (SL2) 744) at a “bottom” end of the conductive channels (e.g., relative to substrate 704). In
In some embodiments, each of bit lines 730-734 and each of source lines 740-744 are coupled with the same end (e.g., the top end or the bottom end) of different conductive channels. For example, a respective bit line is coupled with the top of conductive channel 792 and a respective source line is coupled with the top of conductive channel 712. Continuing with this example, the bottom of conductive channel 792 is coupled (e.g., electrically coupled) to the bottom of conductive channel 712. Accordingly, in this example, conductive channel 792 and conductive channel 712 are coupled in series and are coupled with the respective bit line and the respective source line.
Although each of the conductive channels (e.g., conductive channels 712, 792) in
In some embodiments, read/write circuitry 760 receives memory operation commands from memory controller 120 (e.g., a read command from data read module 212, a write command from data write module 214, or an erase command from data erase module 216). For example, data is stored in storage elements coupled with word line 728 and read/write circuitry 760 reads bit values from these storage elements. As another example, the read/write circuitry 760 applies selection signals to control lines coupled with word lines 720-728, bit lines 730-734, and source lines 740-742 to cause a programming voltage (e.g., a voltage pulse or series of voltage pulses associated with a threshold voltage) to be applied across selected storage element(s) of the selected word line (e.g., fourth word line 728) so as to write/program data to the selected storage element(s).
For example, during a read operation, memory controller 120 receives a request from the host (e.g., computer system 110,
In
In
In
In some embodiments, each bit line is coupled with more than one word line. In
For example, during a write operation, memory controller 120 receives data from the host (e.g., computer system 110,
In some embodiments, read/write circuitry 804 writes the data received from memory controller 120 to storage elements of memory device 800 according to the destination of the data. For example, read/write circuitry 804 applies selection signals to selection control lines coupled with word line drivers 808 and bit line drivers 806 to cause a write voltage to be applied across a selected storage element. For example, to select first storage element 830, read/write circuitry 804 activates word line drivers 808 and bit line drivers 806 to drive a programming current (also referred to as a write current) through first storage element 830. For example, a first write current is used to write a first logical value (e.g., a value corresponding to a high-resistance state) to first storage element 830, and a second write current is used to write a second logical value (e.g., a value corresponding to a low-resistance state) to first storage element 830. In this example, programming current is applied by generating a programming voltage across first storage element 830 by applying a first voltage to first bit line 810 and to word lines other than first word line 820 and applying a second voltage to first word line 820. In some embodiments, the first voltage is applied to other bit lines (e.g., bit lines 814 and 815) to reduce leakage current in memory device 800.
For example, during a read operation, memory controller 120 receives a request the host (e.g., computer system 110,
In some embodiments, characterization vector table 234 (
For example, in first configuration 900, the respective characterization vector for word line N includes initial values for the set of configuration parameters. In first configuration 900, the set of configuration parameters associated with a word line depends on the word line's vertical position relative to the substrate of storage device 130 due to the tapering effect discussed herein. In some embodiments, location determination module 222 (
In some embodiments, in first configuration 900, the set of configuration parameters associated with word line 0 (i.e., the word line closest to the substrate of storage device 130) indicates a lower storage density for memory cells in word line 0, a stronger ECC strength for data stored, or to be stored, in pages of word line 0, and stronger (i.e., more intense, destructive, or stressful) programming parameters for data stored, or to be stored, in pages of word line 0 as compared to the set of configuration parameters for word line N (i.e., the word line farthest from the substrate of storage device 130). For example, in first configuration 900, the set of configuration parameters associated with word line 0 indicates that the memory cells in word line 0 are configured to store 1 bit of data (i.e., X1), data stored in the pages of word line 0 are encoded with an LDPC code associated with P parity bits and/or a decoding limit of C CPU cycles or decoding cycles to decode data (e.g., a codeword) encoded with the LDPC code, and that data is programmed to the pages of word line 0 with programming voltage X. Continuing with this example, in comparison, in first configuration 900, the set of configuration parameters associated with word line N indicates that the memory cells in word line N are configured to store 3 bits of data (i.e., X3), data stored in the pages of word line N are encoded with a LDPC code associated with M parity bits and/or a decoding limit of D CPU cycles or decoding cycles to decode data encoded with the LDPC code (where M<P and/or D<C), and that data is programmed to the pages of word line N with programming voltage Y (where Y<X).
In the following discussion, for implementations in which configurations, configuration parameters and status parameters are maintained for groups of contiguous word lines, herein called word line zones, the configurations and configuration parameters for a respective word line are configurations and configuration parameters for the word line zone that includes the respective word line, and the status metrics for a respective word line are status metrics for the word line zone that includes the respective word line.
In some embodiments, in addition to the initial storage density, initial ECC encoding technique, and one or more initial programming parameters associated with the respective word line, a characterization vector for the respective word line (or for a word line zone that includes the word line) includes one or more status metrics associated with the health, endurance, and/or performance of the respective word line (or the word line zone that includes the respective word line). In some embodiments, the one or more status metrics include (a) a number of bytes written to the respective word line (or the word lines in a word line zone) or an average number of bytes written to each page of the respective word line (or word line zone), (b) a count of PE cycles performed on the respective word line (or word line zone), (c) a most recently determined BER for data read from pages of the respective word line (or word line zone) or an average BER for data read from pages of the respective word line (or word line zone), and (d) other usage information associated with the health, endurance, and/or performance of the respective word line (or the word lines in the word line zone). In some embodiments, a combined status metric is computed from the above mentioned factors based on a predetermined algorithm.
For example, in first configuration 900, the one or more configuration parameters for the respective word line indicate that: the memory cells in the respective word line are configured to store 3 bits (i.e., X3); data stored, or to be stored, in pages of the respective word line is encoded with a weak ECC code; and data stored, or to be stored, in pages of the respective word line is programmed with a programming voltage Q. For example, the weak ECC code adds X parity bits to the write data included in a codeword, and/or a codeword encoded with the weak ECC code has a decoding limit of Y CPU cycles or Y decoding cycles to decode.
The flow diagram in
In some embodiments, the memory controller increases (1002) the ECC encoding strength for data stored in pages of the respective word line. In response to detecting a first trigger condition (e.g., a BER for data read from pages of the respective word line exceeds a first predefined threshold), memory controller 120 or a component thereof (e.g., adjustment module 232,
In some embodiments, the memory controller increases (1004) the intensity of the programming parameter(s) for programming memory cells in the respective word line. In response to detecting a second trigger condition (e.g., a BER for data read from pages of the respective word line exceeds a second predefined threshold that is greater than the first predefined threshold), memory controller 120 or a component thereof (e.g., adjustment module 232,
In some embodiments, the memory controller decreases (1006) the storage density of memory cells in the respective word line (e.g., X3 to X2). In response to detecting a third trigger condition (e.g., a count of PE cycles performed on the word line exceeds a first predetermined count, or the BER exceeds a predefined threshold after operation 1002 and/or operation 1004 have been performed), memory controller 120 or a component thereof (e.g., adjustment module 232,
In some embodiments, the memory controller increases (1008) the ECC encoding strength for data stored in pages of the respective word line (e.g., LDPC). After the recharacterizing in operation 1006 and in response to detecting the first trigger condition (e.g., a BER for data read from pages of the respective word line exceeds the first predefined threshold), memory controller 120 or a component thereof (e.g., adjustment module 232,
In some embodiments, the memory controller increases (1010) the intensity of the programming parameter(s) for memory cells in the respective word line. After the recharacterizing in operation 1006 and in response to detecting the second trigger condition (e.g., a BER for data read from pages of the respective word line exceeds the second predefined threshold that is greater than the first predefined threshold), memory controller 120 or a component thereof (e.g., adjustment module 232,
In some embodiments, the memory controller decreases (1012) the storage density of memory cells in the respective word line (e.g., X2 to X1). In response to detecting a fourth trigger condition (e.g., a count of PE cycles performed on the word line exceeds a second predetermined count greater than the first predetermined count), memory controller 120 or a component thereof (e.g., adjustment module 232,
In some embodiments, the memory controller increases (1014) the ECC encoding strength for data stored in pages of the respective word line (e.g., max iterations of LDPC). After the recharacterizing in operation 1012 and in response to detecting the first trigger condition (e.g., a BER for data read from pages of the respective word line exceeds the first predefined threshold), memory controller 120 or a component thereof (e.g., adjustment module 232,
In some embodiments, the memory controller increases (1016) the intensity of the programming parameter(s) for memory cells in the respective word line. After the recharacterizing in operation 1012 and in response to detecting the second trigger condition (e.g., a BER for data read from pages of the respective word line exceeds the second predefined threshold that is greater than the first predefined threshold), memory controller 120 or a component thereof (e.g., adjustment module 232,
In some embodiments, the memory controller retires (1018) the respective word line. In response to detecting a fifth trigger condition (e.g., a count of PE cycles performed on the word line exceeds a third predetermined count greater than the first and second predetermined counts), memory controller 120 or a component thereof (e.g., adjustment module 232,
The example sequence of adjustment operations in
In some embodiments, characterization vectors are stored on a word line zone basis (i.e., a subset of the word lines in a block), instead of an individual word line basis. As a result, trigger conditions are detected on a word line zone basis and, in response, configuration parameters are adjusted on a word line zone basis as well. For example, when 12 word lines comprise a block, the 12 word lines are split into two or three word line zones, which may or may not include equal number of word lines. In another example, when a block is divided by a determined variation location for the block, word lines above the variation location (i.e., farther from the substrate) are included in a first word line zone and word lines below the variation location (i.e., closer to the substrate) are included in a second word line zone.
In some embodiments, the storage device (e.g., storage device 130,
In some embodiments, the plurality of word lines include a set of word lines at each vertical position of X distinct vertical positions relative to the substrate of the storage device, where X is an integer greater than two. In some embodiments, each word line includes one or more pages, each page for storing user data and ECC values for detecting and correcting errors in the user data stored in the page. In
The memory controller configures (1102) the plurality of word lines corresponding to the respective block in a first configuration, where the first configuration includes a respective set of configuration parameters for each word line of the plurality of word lines determined at least in part on the vertical positions of each word line relative to the substrate of the storage device.
In some embodiments, the respective set of configuration parameters includes (1104) at least one of a storage density, an ECC encoding strength, and one or more programming parameters. In some embodiments, characterization vector table 234 stores characterization vectors 235 for word lines N, N−1, . . . 1, 0 of the respective block of storage device 130. With respect to
In some embodiments, while in the first configuration (1106): a first subset of the plurality of word lines corresponding to the respective block, at a first subset of the vertical positions, is configured (1128) to store data at a first storage density, the first storage density corresponding to storage of B bits per memory cell, where the predefined number of bits, B, is greater than zero; and a second subset of the plurality of word lines corresponding to the respective block, at a second subset of the vertical positions, is configured to store data at a second storage density, the second storage density corresponding to storage of M bits per memory cell, where M is greater than zero and M is less than B. With reference to
In some embodiments, while in the first configuration (1106): a first subset of the plurality of word lines corresponding to the respective block, at a first subset of the vertical positions, is configured (1130) to store data encoded with a first ECC encoding strength; and a second subset of the plurality of word lines corresponding to the respective block, at a second subset of the vertical positions, is configured to store data encoded with a second ECC encoding strength greater than the first ECC encoding strength. For example, the second ECC encoding strength requires more ECC or parity bits per codeword, and/or has a higher decoding limit than the first ECC encoding strength. With reference to
In some embodiments, while in the first configuration (1106): a first subset of the plurality of word lines corresponding to the respective block, at a first subset of the vertical positions, is configured (1132) to store data according to a first set of one or more programming parameters; and a second subset of the plurality of word lines corresponding to the respective block, at a second subset of the vertical positions, is configured to store data according to a second set of one or more programming parameters. With reference to
In some embodiments, the second set of one or more programming parameters exposes (1134) memory cells in the second subset of the plurality of word lines corresponding to the respective block to a greater amount of stress than the first set of one or more programming parameters. In some embodiments, the one or more programming parameters correspond to a programming voltage, a number of programming pulses, a step, width, or duration of each programming pulse, and/or one or more reading threshold voltages for each state of memory cells in the respective word line. For example, the second set of one or more programming parameters includes a higher programming voltage for programming memory cells in the respective word line in comparison to the programming voltage in the first set of one or more programming parameters. Continuing with this example, the higher programming voltage is more stressful or destructive on the memory cells in the respective word line; in other words, the higher programming voltage causes memory cells programmed using the higher programming voltage to wear faster that memory cells programmed using a lower programming voltage.
In some embodiments, the second subset of the vertical positions corresponding to the second subset of the plurality of word lines corresponding to the respective block are (1136) closer to the substrate of the storage device than the first subset of the vertical positions corresponding to the first subset of the plurality of word lines corresponding to the respective block. For example, with reference to the word lines in
While the plurality of word lines are configured in accordance with the first configuration, the memory controller writes (1108) data to the respective block and reads data from the respective block. In some embodiments, memory controller 120 causes data to be written to and read from pages in a respective word line of the respective block according to the one or more configuration parameters (e.g., storage density, ECC encoding strength, and programming parameter(s)) indicated in a characterization vector for the respective word line. For example, memory controller 120 receives a command from the host (e.g., computer system 110,
In some embodiments, the memory controller maintains (1110) one or more status metrics for each of the plurality of word lines corresponding to the respective block. In some embodiments, memory controller 120 or a component thereof (e.g., metric maintaining module 228,
In some embodiments, memory controller 120 or a component thereof (e.g., metric maintaining module 228,
In some embodiments, in accordance with a determination that one of the one or more status metrics for the respective word line of the plurality of word lines satisfies one or more predefined criteria, the memory controller detects (1112) a first trigger condition as to the respective word line. In some embodiments, in accordance with a determination that one of the one or more status metrics corresponding to a respective word line satisfy the one or more predefined criteria, memory controller 120 or a component thereof (e.g., trigger detection module 230,
In some embodiments, the memory controller receives (1114) a command as to the respective word line of the respective block and, in response to receiving the command, detects the first trigger condition as to the respective word line. In some embodiments, memory controller 120 or a component thereof (e.g., trigger detection module 230,
In response to detecting a first trigger condition (e.g., based on BER or a command) as to a respective word line of the plurality of word lines, the memory controller adjusts (1116) a first parameter in the respective set of configuration parameters corresponding to the respective word line. In this context, “adjusting” means “changing a value of” In some embodiments, in response to detecting the first trigger condition as to the respective word line, memory controller 120 or a component thereof (e.g., adjustment module 232,
For example, in response to detecting the first trigger condition as to the respective word line, adjustment module 232 increases the ECC encoding strength for data stored, or to be stored, in pages(s) of the respective word line by changing the value in ECC encoding strength field 254 of the characterization vector corresponding to the respective word line. Alternatively, the ECC encoding strength for the respective word line is increased by associating with the respective word line a predefined characterization vector that specifies the increased ECC encoding strength. Continuing with this example, the previous value in ECC encoding strength field 254 of the characterization vector corresponding to the respective word line indicated that data was stored, or to be stored, in pages(s) of the respective word line with a first code (e.g., a BCH code) whereas the adjusted value in ECC encoding strength field 254 of the characterization vector corresponding to the respective word line indicates that data is stored, or to be stored, in pages(s) of the respective word line with a second code (e.g., an LDPC code) with more parity bits and/or a higher decoding limit than the first code.
After adjusting the first parameter in the respective set of configuration parameters corresponding to the respective word line, the memory controller writes (1118) data to the respective word line and reads data from the respective word line. For example, after updating the characterization vector for the respective word line by adjusting the value of the ECC encoding strength field, memory controller 120 causes data to be written to and read from pages in the respective word line of the respective block according to the configuration parameters (e.g., storage density, adjusted ECC encoding strength, and programming parameter(s)) indicated in the updated characterization vector for the respective word line.
In some embodiments, after adjusting the first parameter in the respective set of configuration parameters corresponding to the respective word line, the memory controller detects (1120) a second trigger condition as to the respective word line of the plurality of word lines, where the second trigger condition is different from the first trigger condition. In some embodiments, in accordance with a determination that the at least one of the one or more status metrics corresponding to a respective word line satisfies one or more predefined criteria, memory controller 120 or a component thereof (e.g., trigger detection module 230,
In some embodiments, in response to detecting the second trigger condition as to the respective word line of the plurality of word lines, the memory controller adjusts (1122) a second parameter in the respective set of configuration parameters corresponding to the respective word line, where the second parameter is different from the first parameter. For example, after updating the characterization vector corresponding to the respective word line by adjusting the value of the ECC encoding field in operation 1116 (or, alternatively, by adjusting value of the programming parameter(s) field) in response to detecting the first trigger condition, memory controller 120 or a component thereof (e.g., adjustment module 232,
In some embodiments, after adjusting the second parameter in the respective set of configuration parameters corresponding to the respective word line, the memory controller detects (1124) a predefined retirement condition as to the respective word line of the plurality of word lines. In some embodiments, controller 120 or a component thereof (e.g., trigger detection module 230,
In some embodiments, in response to detecting the predefined retirement condition as to the respective word line of the plurality of word lines, the memory controller retires (1126) the respective word line, where subsequent data is not written to the respective word line. In some embodiments, memory controller 120 or a component thereof (e.g., adjustment module 232,
Semiconductor memory devices include volatile memory devices, such as dynamic random access memory (“DRAM”) or static random access memory (“SRAM”) devices, non-volatile memory devices, such as resistive random access memory (“ReRAM”), electrically erasable programmable read only memory (“EEPROM”), flash memory (which can also be considered a subset of EEPROM), ferroelectric random access memory (“FRAM”), and magnetoresistive random access memory (“MRAM”), and other semiconductor elements capable of storing information. Each type of memory device may have different configurations. For example, flash memory devices may be configured in a NAND or a NOR configuration.
The memory devices can be formed from passive and/or active elements, in any combinations. By way of non-limiting example, passive semiconductor memory elements include ReRAM device elements, which in some embodiments include a resistivity switching storage element, such as an anti-fuse, phase change material, etc., and optionally a steering element, such as a diode, etc. Further by way of non-limiting example, active semiconductor memory elements include EEPROM and flash memory device elements, which in some embodiments include elements containing a charge storage region, such as a floating gate, conductive nanoparticles, or a charge storage dielectric material.
Multiple memory elements may be configured so that they are connected in series or so that each element is individually accessible. By way of non-limiting example, flash memory devices in a NAND configuration (NAND memory) typically contain memory elements connected in series. A NAND memory array may be configured so that the array is composed of multiple strings of memory in which a string is composed of multiple memory elements sharing a single bit line and accessed as a group. Alternatively, memory elements may be configured so that each element is individually accessible (e.g., a NOR memory array). NAND and NOR memory configurations are exemplary, and memory elements may be otherwise configured.
The semiconductor memory elements located within and/or over a substrate may be arranged in two or three dimensions, such as a two dimensional memory structure or a three-dimensional memory structure.
In a two dimensional memory structure, the semiconductor memory elements are arranged in a single plane or a single memory device level. Typically, in a two dimensional memory structure, memory elements are arranged in a plane (e.g., in an x-z direction plane) which extends substantially parallel to a major surface of a substrate that supports the memory elements. The substrate may be a wafer over or in which the layer of the memory elements are formed or it may be a carrier substrate which is attached to the memory elements after they are formed. As a non-limiting example, the substrate may include a semiconductor such as silicon.
The memory elements may be arranged in the single memory device level in an ordered array, such as in a plurality of rows and/or columns. However, the memory elements may be arrayed in non-regular or non-orthogonal configurations. The memory elements may each have two or more electrodes or contact lines, such as bit lines and word lines.
A three-dimensional memory array is arranged so that memory elements occupy multiple planes or multiple memory device levels, thereby forming a structure in three dimensions (i.e., in the x, y and z directions, where the y direction is substantially perpendicular and the x and z directions are substantially parallel to the major surface of the substrate).
As a non-limiting example, a three-dimensional memory structure may be vertically arranged as a stack of multiple two dimensional memory device levels. As another non-limiting example, a three-dimensional memory array may be arranged as multiple vertical columns (e.g., columns extending substantially perpendicular to the major surface of the substrate, i.e., in the y direction) with each column having multiple memory elements in each column. The columns may be arranged in a two dimensional configuration (e.g., in an x-z plane), resulting in a three-dimensional arrangement of memory elements with elements on multiple vertically stacked memory planes. Other configurations of memory elements in three dimensions can also constitute a three-dimensional memory array.
By way of non-limiting example, in a three-dimensional NAND memory array, the memory elements may be coupled together to form a NAND string within a single horizontal (e.g., x-z) memory device level. Alternatively, the memory elements may be coupled together to form a vertical NAND string that traverses across multiple horizontal memory device levels. Other three-dimensional configurations can be envisioned wherein some NAND strings contain memory elements in a single memory level while other strings contain memory elements which span through multiple memory levels. Three-dimensional memory arrays may also be designed in a NOR configuration and in a ReRAM configuration.
Typically, in a monolithic three-dimensional memory array, one or more memory device levels are formed above a single substrate. Optionally, the monolithic three-dimensional memory array may also have one or more memory layers at least partially within the single substrate. As a non-limiting example, the substrate may include a semiconductor such as silicon. In a monolithic three-dimensional array, the layers constituting each memory device level of the array are typically formed on the layers of the underlying memory device levels of the array. However, layers of adjacent memory device levels of a monolithic three-dimensional memory array may be shared or have intervening layers between memory device levels.
Then again, two dimensional arrays may be formed separately and then packaged together to form a non-monolithic memory device having multiple layers of memory. For example, non-monolithic stacked memories can be constructed by forming memory levels on separate substrates and then stacking the memory levels atop each other. The substrates may be thinned or removed from the memory device levels before stacking, but as the memory device levels are initially formed over separate substrates, the resulting memory arrays are not monolithic three-dimensional memory arrays. Further, multiple two dimensional memory arrays or three-dimensional memory arrays (monolithic or non-monolithic) may be formed on separate chips and then packaged together to form a stacked-chip memory device.
Associated circuitry is typically required for operation of the memory elements and for communication with the memory elements. As non-limiting examples, memory devices may have circuitry used for controlling and driving memory elements to accomplish functions such as programming and reading. This associated circuitry may be on the same substrate as the memory elements and/or on a separate substrate. For example, a controller for memory read-write operations may be located on a separate controller chip and/or on the same substrate as the memory elements.
The term “three-dimensional memory device” (or 3D memory device) is herein defined to mean a memory device having multiple layers or multiple levels (e.g., sometimes called multiple memory levels) of memory elements, including any of the following: a memory device having a monolithic or non-monolithic 3D memory array, some non-limiting examples of which are described above; or two or more 2D and/or 3D memory devices, packaged together to form a stacked-chip memory device, some non-limiting examples of which are described above.
A person skilled in the art will recognize that the invention or inventions descried and claimed herein are not limited to the two dimensional and three-dimensional exemplary structures described here, and instead cover all relevant memory structures suitable for implementing the invention or inventions as described herein and as understood by one skilled in the art.
It will be understood that, although the terms “first,” “second,” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first trigger condition could be termed a second trigger condition, and, similarly, a second trigger condition could be termed a first trigger condition, without changing the meaning of the description, so long as all occurrences of the “first trigger condition” are renamed consistently and all occurrences of the “second trigger condition” are renamed consistently. The first trigger condition and the second trigger condition are both trigger conditions, but they are not the same trigger condition.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the claims. As used in the description of the embodiments and the appended claims, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
As used herein, the term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in accordance with a determination” or “in response to detecting,” that a stated condition precedent is true, depending on the context. Similarly, the phrase “if it is determined [that a stated condition precedent is true]” or “if [a stated condition precedent is true]” or “when [a stated condition precedent is true]” may be construed to mean “upon determining” or “in response to determining” or “in accordance with a determination” or “upon detecting” or “in response to detecting” that the stated condition precedent is true, depending on the context.
The foregoing description, for purpose of explanation, has been described with reference to specific implementations. However, the illustrative discussions above are not intended to be exhaustive or to limit the claims to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The implementations were chosen and described in order to best explain principles of operation and practical applications, to thereby enable others skilled in the art.
Number | Name | Date | Kind |
---|---|---|---|
4916652 | Schwarz et al. | Apr 1990 | A |
5519847 | Fandrich et al. | May 1996 | A |
5530705 | Malone | Jun 1996 | A |
5537555 | Landry | Jul 1996 | A |
5551003 | Mattson et al. | Aug 1996 | A |
5657332 | Auclair et al. | Aug 1997 | A |
5666114 | Brodie et al. | Sep 1997 | A |
5708849 | Coke et al. | Jan 1998 | A |
5943692 | Marberg et al. | Aug 1999 | A |
5982664 | Watanabe | Nov 1999 | A |
6000006 | Bruce et al. | Dec 1999 | A |
6016560 | Wada et al. | Jan 2000 | A |
6018304 | Bessios | Jan 2000 | A |
6070074 | Perahia et al. | May 2000 | A |
6138261 | Wilcoxson et al. | Oct 2000 | A |
6182264 | Ott | Jan 2001 | B1 |
6192092 | Dizon et al. | Feb 2001 | B1 |
6295592 | Jeddeloh et al. | Sep 2001 | B1 |
6311263 | Barlow et al. | Oct 2001 | B1 |
6442076 | Roohparvar | Aug 2002 | B1 |
6449625 | Wang | Sep 2002 | B1 |
6484224 | Robins et al. | Nov 2002 | B1 |
6516437 | Van Stralen et al. | Feb 2003 | B1 |
6678788 | O'Connell | Jan 2004 | B1 |
6757768 | Potter et al. | Jun 2004 | B1 |
6775792 | Ulrich et al. | Aug 2004 | B2 |
6810440 | Micalizzi, Jr. et al. | Oct 2004 | B2 |
6836808 | Bunce et al. | Dec 2004 | B2 |
6836815 | Purcell et al. | Dec 2004 | B1 |
6842436 | Moeller | Jan 2005 | B2 |
6871257 | Conley et al. | Mar 2005 | B2 |
6895464 | Chow et al. | May 2005 | B2 |
6978343 | Ichiriu | Dec 2005 | B1 |
6980985 | Amer-Yahia et al. | Dec 2005 | B1 |
6981205 | Fukushima et al. | Dec 2005 | B2 |
6988171 | Beardsley et al. | Jan 2006 | B2 |
7020017 | Chen et al. | Mar 2006 | B2 |
7032123 | Kane et al. | Apr 2006 | B2 |
7043505 | Teague et al. | May 2006 | B1 |
7100002 | Shrader et al. | Aug 2006 | B2 |
7111293 | Hersh et al. | Sep 2006 | B1 |
7162678 | Saliba | Jan 2007 | B2 |
7173852 | Gorobets et al. | Feb 2007 | B2 |
7184446 | Rashid et al. | Feb 2007 | B2 |
7328377 | Lewis et al. | Feb 2008 | B1 |
7516292 | Kimura et al. | Apr 2009 | B2 |
7523157 | Aguilar, Jr. et al. | Apr 2009 | B2 |
7527466 | Simmons | May 2009 | B2 |
7529466 | Takahashi | May 2009 | B2 |
7571277 | Mizushima | Aug 2009 | B2 |
7574554 | Tanaka et al. | Aug 2009 | B2 |
7596643 | Merry et al. | Sep 2009 | B2 |
7681106 | Jarrar et al. | Mar 2010 | B2 |
7685494 | Varnica et al. | Mar 2010 | B1 |
7707481 | Kirschner et al. | Apr 2010 | B2 |
7761655 | Mizushima et al. | Jul 2010 | B2 |
7774390 | Shin | Aug 2010 | B2 |
7840762 | Oh et al. | Nov 2010 | B2 |
7870326 | Shin et al. | Jan 2011 | B2 |
7890818 | Kong et al. | Feb 2011 | B2 |
7913022 | Baxter | Mar 2011 | B1 |
7925960 | Ho et al. | Apr 2011 | B2 |
7934052 | Prins et al. | Apr 2011 | B2 |
7954041 | Hong et al. | May 2011 | B2 |
7971112 | Murata | Jun 2011 | B2 |
7974368 | Shieh et al. | Jul 2011 | B2 |
7978516 | Olbrich | Jul 2011 | B2 |
7996642 | Smith | Aug 2011 | B1 |
8006161 | Lestable et al. | Aug 2011 | B2 |
8032724 | Smith | Oct 2011 | B1 |
8069390 | Lin | Nov 2011 | B2 |
8190967 | Hong et al. | May 2012 | B2 |
8254181 | Hwang et al. | Aug 2012 | B2 |
8312349 | Reche et al. | Nov 2012 | B2 |
8412985 | Bowers et al. | Apr 2013 | B1 |
20020024846 | Kawahara et al. | Feb 2002 | A1 |
20020083299 | Van Huben et al. | Jun 2002 | A1 |
20020152305 | Jackson et al. | Oct 2002 | A1 |
20020162075 | Talagala et al. | Oct 2002 | A1 |
20020165896 | Kim | Nov 2002 | A1 |
20030041299 | Kanazawa et al. | Feb 2003 | A1 |
20030043829 | Rashid | Mar 2003 | A1 |
20030088805 | Majni et al. | May 2003 | A1 |
20030093628 | Matter et al. | May 2003 | A1 |
20030188045 | Jacobson | Oct 2003 | A1 |
20030189856 | Cho et al. | Oct 2003 | A1 |
20030198100 | Matsushita et al. | Oct 2003 | A1 |
20030212719 | Yasuda et al. | Nov 2003 | A1 |
20040024957 | Lin et al. | Feb 2004 | A1 |
20040024963 | Talagala et al. | Feb 2004 | A1 |
20040073829 | Olarig | Apr 2004 | A1 |
20040153902 | Machado et al. | Aug 2004 | A1 |
20040181734 | Saliba | Sep 2004 | A1 |
20040199714 | Estakhri et al. | Oct 2004 | A1 |
20040237018 | Riley | Nov 2004 | A1 |
20050060456 | Shrader et al. | Mar 2005 | A1 |
20050060501 | Shrader | Mar 2005 | A1 |
20050114587 | Chou et al. | May 2005 | A1 |
20050172065 | Keays | Aug 2005 | A1 |
20050172207 | Radke et al. | Aug 2005 | A1 |
20050193161 | Lee et al. | Sep 2005 | A1 |
20050201148 | Chen et al. | Sep 2005 | A1 |
20050231765 | So et al. | Oct 2005 | A1 |
20050257120 | Gorobets et al. | Nov 2005 | A1 |
20050273560 | Hulbert et al. | Dec 2005 | A1 |
20050289314 | Adusumilli et al. | Dec 2005 | A1 |
20060039196 | Gorobets et al. | Feb 2006 | A1 |
20060053246 | Lee | Mar 2006 | A1 |
20060085671 | Majni et al. | Apr 2006 | A1 |
20060136570 | Pandya | Jun 2006 | A1 |
20060156177 | Kottapalli et al. | Jul 2006 | A1 |
20060195650 | Su et al. | Aug 2006 | A1 |
20060259528 | Dussud et al. | Nov 2006 | A1 |
20070011413 | Nonaka et al. | Jan 2007 | A1 |
20070058446 | Hwang et al. | Mar 2007 | A1 |
20070061597 | Holtzman et al. | Mar 2007 | A1 |
20070076479 | Kim et al. | Apr 2007 | A1 |
20070081408 | Kwon et al. | Apr 2007 | A1 |
20070083697 | Birrell et al. | Apr 2007 | A1 |
20070113019 | Beukema | May 2007 | A1 |
20070133312 | Roohparvar | Jun 2007 | A1 |
20070147113 | Mokhlesi et al. | Jun 2007 | A1 |
20070150790 | Gross et al. | Jun 2007 | A1 |
20070157064 | Falik et al. | Jul 2007 | A1 |
20070174579 | Shin | Jul 2007 | A1 |
20070180188 | Fujibayashi et al. | Aug 2007 | A1 |
20070208901 | Purcell et al. | Sep 2007 | A1 |
20070234143 | Kim | Oct 2007 | A1 |
20070245061 | Harriman | Oct 2007 | A1 |
20070277036 | Chamberlain et al. | Nov 2007 | A1 |
20070291556 | Kamei | Dec 2007 | A1 |
20070294496 | Goss et al. | Dec 2007 | A1 |
20070300130 | Gorobets | Dec 2007 | A1 |
20080019182 | Yanagidaira et al. | Jan 2008 | A1 |
20080022163 | Tanaka et al. | Jan 2008 | A1 |
20080052446 | Lasser et al. | Feb 2008 | A1 |
20080077841 | Gonzalez et al. | Mar 2008 | A1 |
20080077937 | Shin et al. | Mar 2008 | A1 |
20080086677 | Yang et al. | Apr 2008 | A1 |
20080144371 | Yeh et al. | Jun 2008 | A1 |
20080147964 | Chow et al. | Jun 2008 | A1 |
20080147998 | Jeong | Jun 2008 | A1 |
20080148124 | Zhang et al. | Jun 2008 | A1 |
20080163030 | Lee | Jul 2008 | A1 |
20080168191 | Biran et al. | Jul 2008 | A1 |
20080168319 | Lee et al. | Jul 2008 | A1 |
20080170460 | Oh et al. | Jul 2008 | A1 |
20080229000 | Kim | Sep 2008 | A1 |
20080229003 | Mizushima et al. | Sep 2008 | A1 |
20080229176 | Arnez et al. | Sep 2008 | A1 |
20080270680 | Chang | Oct 2008 | A1 |
20080282128 | Lee et al. | Nov 2008 | A1 |
20080285351 | Shlick et al. | Nov 2008 | A1 |
20090003058 | Kang | Jan 2009 | A1 |
20090037652 | Yu et al. | Feb 2009 | A1 |
20090144598 | Yoon et al. | Jun 2009 | A1 |
20090168525 | Olbrich et al. | Jul 2009 | A1 |
20090172258 | Olbrich et al. | Jul 2009 | A1 |
20090172259 | Prins et al. | Jul 2009 | A1 |
20090172260 | Olbrich et al. | Jul 2009 | A1 |
20090172261 | Prins et al. | Jul 2009 | A1 |
20090172262 | Olbrich et al. | Jul 2009 | A1 |
20090172308 | Prins et al. | Jul 2009 | A1 |
20090172335 | Kulkarni et al. | Jul 2009 | A1 |
20090172499 | Olbrich et al. | Jul 2009 | A1 |
20090193058 | Reid | Jul 2009 | A1 |
20090207660 | Hwang et al. | Aug 2009 | A1 |
20090222708 | Yamaga | Sep 2009 | A1 |
20090228761 | Perlmutter et al. | Sep 2009 | A1 |
20090296466 | Kim et al. | Dec 2009 | A1 |
20090296486 | Kim et al. | Dec 2009 | A1 |
20090319864 | Shrader | Dec 2009 | A1 |
20100061151 | Miwa et al. | Mar 2010 | A1 |
20100103737 | Park | Apr 2010 | A1 |
20100161936 | Royer et al. | Jun 2010 | A1 |
20100199125 | Reche | Aug 2010 | A1 |
20100202196 | Lee et al. | Aug 2010 | A1 |
20100208521 | Kim et al. | Aug 2010 | A1 |
20100262889 | Bains | Oct 2010 | A1 |
20100281207 | Miller et al. | Nov 2010 | A1 |
20100281342 | Chang et al. | Nov 2010 | A1 |
20110083060 | Sakurada et al. | Apr 2011 | A1 |
20110113281 | Zhang et al. | May 2011 | A1 |
20110131444 | Buch et al. | Jun 2011 | A1 |
20110173378 | Filor et al. | Jul 2011 | A1 |
20110205823 | Hemink et al. | Aug 2011 | A1 |
20110213920 | Frost et al. | Sep 2011 | A1 |
20110228601 | Olbrich et al. | Sep 2011 | A1 |
20110231600 | Tanaka et al. | Sep 2011 | A1 |
20120096217 | Son et al. | Apr 2012 | A1 |
20120110250 | Sabbag et al. | May 2012 | A1 |
20120151253 | Horn | Jun 2012 | A1 |
20120195126 | Roohparvar | Aug 2012 | A1 |
20120239976 | Cometti et al. | Sep 2012 | A1 |
20120284587 | Yu et al. | Nov 2012 | A1 |
20130170297 | Nam et al. | Jul 2013 | A1 |
20130242667 | Shim et al. | Sep 2013 | A1 |
20140149641 | Avila et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
1 465 203 | Oct 2004 | EP |
1 990 921 | Nov 2008 | EP |
2002-532806 | Oct 2002 | JP |
WO 2007036834 | Apr 2007 | WO |
WO 2007080586 | Jul 2007 | WO |
WO 2008121553 | Oct 2008 | WO |
WO 2008121577 | Oct 2008 | WO |
WO 2009028281 | Mar 2009 | WO |
WO 2009032945 | Mar 2009 | WO |
WO 2009058140 | May 2009 | WO |
WO 2009084724 | Jul 2009 | WO |
WO 2009134576 | Nov 2009 | WO |
Entry |
---|
Barr, Introduction to Watchdo. Timers, Oct. 2001, 3 pgs. |
Canim, Buffered Bloom ilters on Solid State Storage, ADMS*10, Singapore, Sep. 13-17, 2010, 8 pgs. |
Kang, A Multi-Channel Architecture for High-Performance NAND Flash-Based Storage System, J. Syst. Archit., 53, 9, Sep. 2007, 15 pgs. |
Kim, A Space-Efficient Flash Translation Layer for CompactFlash Systems, May 2002, 10 pgs. |
Lu, A Forest-structured Bloom Filter with Flash Memory, MSST 2011, Denver, CO, May 23-27, 2011, article, 6 pgs. |
Lu, A Forest-structured Bloom Filter with Flash Memory, MSST 2011, Denver, CO, May 23-27, 2011, presentation slides, 25 pgs. |
McLean, Information Technology-AT Attachment with Packet Interface Extension, Aug. 19, 1998, 339 pgs. |
Park et al., “A High Performance Controller for NAND Flash-Based Solid State Disk (NSSD),” Proceedings of Non-Volatile Semiconductor Memory Workshop, Feb. 2006, 4 pgs. |
International Search Report and Written Opinion dated Mar. 7, 2014, received in International Patent Application No. PCT/US2013/074772, which corresponds to U.S. Appl. No. 13/831,218, 10 pages (George). |
International Search Report and Written Opinion dated Mar. 24, 2014, received in International Patent Application No. PCT/US2013/074777, which corresponds to U.S. Appl. No. 13/831,308, 10 pages (George). |
International Search Report and Written Opinion dated Mar. 7, 2014, received in International Patent Application No. PCT/US2013/074779, which corresponds to U.S. Appl. No. 13/831,374, 8 pages (George). |
International Search Report and Written Opinion dated May 14, 2014, received in International Patent Application No. PCT/US2014/017168, which corresponds to U.S. Appl. No. 14/076,115, 6 pages (Fitzpatrick). |
International Search Report and Written Opinion dated May 14, 2014, received in International Patent Application No. PCT/US2014/017169, which corresponds to U.S. Appl. No. 14/076,148, 6 pages (Fitzpatrick). |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88133, Mar. 19, 2009, 7 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88136, Mar. 19, 2009, 7 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88146, Feb. 26, 2009, 10 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88154, Feb. 27, 2009, 8 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88164, Feb. 13, 2009, 6 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88206, Feb. 18, 2009, 8 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88217, Feb. 19, 2009, 7 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88229, Feb. 13, 2009, 7 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88232, Feb. 19, 2009, 8 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88236, Feb. 19, 2009, 7 pgs. |
Pliant Technology, International Search Report /Written Opinion, PCT/US2011/028637, Oct. 27, 2011, 11 pgs. |
Pliant Technology, Supplementary ESR, 08866997.3, Feb. 23, 2012, 6 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/042764, Aug. 31, 2012, 12 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/042771, Mar. 4, 2013, 14 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/042775, Sep. 26, 2012, 8 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/059447, Jun. 6, 2013, 12 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/059453, Jun. 6, 2013, 12 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/059459, Feb. 14, 2013, 9 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/065914, May 23, 2013, 7 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/065916, Apr. 5, 2013, 7 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/065919, Jun. 17, 2013, 8 pgs. |
SanDisk Enterprise IP LLC, Notification of the Decision to Grant a Patent Right for Patent for Invention, CN 200880127623.8, Jul. 4, 2013, 1 pg. |
SanDisk Enterprise IP LLC, Office Action, CN 200880127623.8, Apr. 18, 2012, 12 pgs. |
SanDisk Enterprise IP LLC, Office Action, CN 200880127623.8, Dec. 31, 2012, 9 pgs. |
SanDisk Enterprise IP LLC, Office Action, JP 2010-540863, Jul. 24, 2012, 3 pgs. |
Watchdog Timer and Power Savin Modes, Microchip Technology Inc., 2005, 14 pgs. |
Zeidman, 1999 Verilog Designer's Library, 9 pgs. |
Number | Date | Country | |
---|---|---|---|
62005930 | May 2014 | US |