Automatic elevator car systems, i.e., systems in which the car door automatically opens when the car reaches a landing floor and closes before the car leaves a landing floor, are well-known in the art. Conventional elevator systems also may have either an automatic sliding or a manually operable, swinging hoistway door. In such systems, the hoistway door may be automatically opened and closed or may be manually opened and closed. In such systems, there usually is a switch or switches operable when the hoistway door is closed and a switch or switches operable when the car door or gate is closed which permits the car hoisting system to move the car to another landing floor when all switches have been operated to obtain a predetermined switching state, such as closed. Also, such systems usually include locking assemblies which prevent opening of the doors unless the car is substantially level with the floor at which the doors control entrance and egress from the car, and include an edge detector on one or more of the doors to reopen the doors and prevent starting of a car from a floor when closing of a door is obstructed.
Various locking assemblies are available that operate to unlock and open an elevator car door only when the locking assembly engages with a corresponding engagement assembly on a hoistway door. In such assemblies, the unlocking and opening of the elevator car through the engagement of the locking assembly with the engagement assembly can occur only when the elevator car arrives at or near a landing floor. If the elevator car stops between floors, the locking assembly under normal operation prevents unlocking and opening of the elevator car, as engagement with the corresponding engagement assembly on a hoistway door does not occur.
There are occasions when movement of an elevator car stops for various reasons, e.g., a power or control failure etc. If the car stops close to a landing floor where a passenger may exit from the car, there is no objection to permitting a passenger to force the car doors open manually since the hoistway doors may be opened, or are open, and the passenger may exit safely. However, if the floor of the car is a substantial distance from level with the landing floor, a passenger, while exiting from the car, may fall under the car into the hoistway.
Although a separate door position detection assembly may be used in conjunction with a locking assembly to detect whether the locking assembly is an unlocked or locked state and provide information, via electronic means, indicating the locking state, and thus whether the elevator car is opened or closed, to an elevator control unit, such detection assembly is an additional component adding cost and complexity to components used to operate elevator car doors and hoistway doors of an elevator system. In addition, when the door position detection assembly and the locking assembly operate independently from one another, there is a risk that one may be disabled without also disabling the other, causing a disconnect between the two assemblies.
There is a need for a simple and inexpensive elevator car locking system that is operable to unlock and lock an elevator car door based on the position of an elevator car door in relation to a hoistway door and to supply information indicating whether the locking system is in an unlocked or locked state, thereby indicating whether the elevator car door is open or closed.
The present disclosure may permit the addition to an existing elevator system of a relatively simple locking system which may integrate an electronic lock detector with an interlock in a locking apparatus of the locking system. The locking system may cause the interlock to transition from the locked state to the unlocked state so that the closed elevator car door of the elevator system is opened, only when the locking apparatus is in an engaged state with an engagement apparatus of the locking system mounted to a hoistway door. The locking apparatus may ensure normal operation of an elevator car regardless of malfunction or tampering, such as, by preventing of opening the elevator car doors when they are not aligned with hoistway doors. The electronic lock detector of the locking system may supply, to an elevator control unit, detected information indicating whether the locking system is in an unlocked or locked state, thereby indicating to the control unit whether the elevator car door is in an open or closed state. In addition, the principles of the present disclosure are also applicable to newly installed elevator systems.
Overview
An elevator system may have a door system that includes one or more elevator car doors for each elevator car and one or more hoistway doors for each floor. The elevator system may be configured to include a locking apparatus that engages with an engagement apparatus coupled to the one or more hoistway doors when the one or more elevator car doors are aligned with the one or more hoistway doors. An interlock configured to unlock when the locking apparatus including the interlock is engaged with the one or more hoistway doors via the engagement apparatus, thereby permitting opening of the one or more closed elevator car doors, may be included in the elevator system. The elevator system may further be configured to detect that both an elevator car door of a given elevator car at a given floor and a hoistway door of the given floor are aligned, before the elevator car door is permitted to be opened. The elevator system may further include an electronic interlock controller, or any type of detection device, that may detect whether the interlock is in a locked or unlocked state, and provide information indicating the state of the interlock to an elevator control unit of the elevator system. In this way, the resulting elevator system may be safer and more secure than some of the existing elevator systems.
Example Systems
As shown in
In
The first vertical arm 308 may be connected to a second vertical arm 312 via a second pivot point 314. The second pivot point 314 is positioned at a lower end of the first vertical arm 308 and an upper end of the second vertical arm 312. In the locking apparatus locked position, the first vertical arm 308 is collinear with the second vertical arm 312. More distal from the upper end of the second vertical arm 312 than the second pivot point 314, the second vertical arm 312 is connected to two rocking arms 316, 318 via pins 320, 322, respectively. Pin 320 is positioned in a middle portion of the second vertical arm 312, and pin 322 is positioned at a lower end of the second vertical arm 312. Between the pins 320, 322 may be an opening 324 positioned around a center pin 326 which limits the movement of the second vertical arm 312 to a range of motion corresponding to the area of the opening 324. Alternatively, other designs for limiting the movement of the second vertical arm 312 may be implemented.
Each rocking arm comprises two members, which are joined at a middle point with a corresponding pin 327a or 327b. A first member of a given rocking arm and a second member of the given rocking arm may form an obtuse angle. The pins 327a, 327b attach both members of the rocking arms 316, 318 to a third vertical arm 328. The first member of the given rocking arm attaches to the second vertical arm 312 via corresponding pin 320 or 322, and the second member of the given rocking arm attaches to a sensing vane 330 via corresponding pin 331a or 331b. Sensing vane 330 is generally vertical, and may have angled ends that curve slightly in a direction towards the rocking arms 316, 318.
An upper pivot 332 is attached to the third vertical arm 328 at a third pivot point 334. The third pivot point 334 is positioned at an upper end of the third vertical arm 328 and at a first attachment point of the upper pivot 332. The upper pivot 332 is also attached to a fourth vertical arm 336 via a fourth pivot point 338. The fourth pivot point 338 is positioned at a second attachment point of the upper pivot 332, which is a distance from the first attachment point, and is positioned at an upper end of the fourth vertical arm 336. The fourth vertical arm 336 may be approximately the same length as the third vertical arm 328, and may be positioned parallel to the third vertical arm 328. A fixed vane 340 is mounted on the fourth vertical arm 336, such that the fixed vane 340 is fixed relative to the fourth vertical arm 336. The fixed vane 340 may be approximately the same length as the sensing vane 330. The upper pivot 332 is configured to rotate about the pin 342, which is positioned between the third pivot point 334 and the fourth pivot point 338.
The upper pivot 332 also has an upper arm 343 that extends upwards from the pin 342 in relation to center pin 326. The upper arm 343 is contacted by a pin 344 that is configured to apply a force that results in a torque about the pin 342. In other words, the pin 344 may contact the upper arm 343 at a distance away from the pin 342 and apply the force in a direction substantially perpendicular to the pin 342. The pin 344 may include a torsion spring or other component that is configured to apply the force. Furthermore, the pin 344 may be configured to fit within an opening a base plate 346 where a proximal end of the pin 344, which contacts the upper arm 343, may be on one side of the opening and a distal end of the pin 344 may be on the other side of the opening. The torsion spring may be located along the distal end between the base plate 346 and the upper arm 343. At the distal end of the pin 344 may be a bolt or other type of stopper that is larger than the opening in the base plate 346 in order to stop the pin 344 from moving completely through the opening.
The upper pivot 332 is configured to move when the force from the pin 344 is combined with an external force, illustrated in
The locking apparatus 300A is attached to a base plate 346, which is mounted to the elevator car door 106. In particular, the locking apparatus 300A may be attached to the base plate 344 via the fulcrum 306, the center pin 326, and the pin 342. The locking apparatus 300A may be attached to the base plate 346 such that the locking apparatus 300A is completely or mostly above the elevator car 102, as previously shown in
As shown in
In
The hoistway door latch arm 350 has a fulcrum 354 at the proximate end of the hoistway door latch arm and is connected to a first roller 356 via a series of arms. The series of arms may include arms 358, 360, 362, 364 connected end to end via attachment points 359, 361, and 363. The arm 358 is integral with the hoistway door latch arm 350, forming a fixed angle with the hoistway door latch arm, such as about 90 degrees. Alternatively, the arm 350 may be a separate member attached to the fulcrum 354 at the fixed angle. The arm 360 links arm 358 and 362 via attachment points 359 and 361, forming an angle less than 180 degrees with arm 362. Arm 362 and arm 364 are a unitary component forming an angle less than 180 degrees. For example, the unitary component may be a solid aluminum casting. The attachment point 363 is in fact a fixed pivot point of the unitary component that is fixed on a base plate 368. Alternatively, arm 362 and arm 364 may be separate components that are joined at attachment point 363 at a fixed angle and that are configured to rotate about attachment point 363 as a unitary component. At the end of arm 364 opposite arm 362, the first roller 356 is attached.
The first roller 356 is configured to move relative to the fulcrum 354, between a proximal position and a distal position. The proximal position is located between the fulcrum 354 and a stopper 357 that is mounted on the base plate 368 along the same or similar axis as the first roller 356 and a second roller 366. The distal position is farther away from the fulcrum 354 than the proximal position, and is located where the first roller 356 comes into contact with the stopper 357. The stopper 357 may be adjustable, and may be used to adjust the location of the distal position. For example, the stopper 357 may comprise a threaded bolt with a nut that may be moved along the threaded portion of the bolt to adjust the position of the stopper. A biasing force causes the first roller 356 to be biased in the proximal position. The biasing force may be provided by gravity, a weight attached to one or more of the series of arms, a spring in one or more of the attachment points, and/or other type of external force. When in the engagement apparatus locked position, the first roller 356 may be at rest at the proximal position, as shown in
The engagement apparatus 300C is attached to a base plate 368, which is mounted to the hoistway door 108. Namely, the fulcrum 354, the first roller 356, the stopper 357, the attachment point 363, and the second roller 366 are attached to the base plate 368. The engagement apparatus 300C may be attached to the base plate 368 such that the engagement apparatus 300C is completely or mostly above the hoistway door 108, as previously shown in
From the contact stage, the sensing vane 330 remains fixed with respect to the first roller 356 and is limited in movement by the resistance force and the range of motion of first roller 356. Meanwhile, the third vertical arm 358 continues to move unimpeded downward with respect to the pin 342 and away from the second vertical arm 312. The sensing vane 330 (as well as the second member of each rocking arm) may begin to move closer to the third vertical arm 358, similar to a motion of closing scissor blades. As a result, rocking arms 316, 318 may begin to rotate counterclockwise about the pins 327a, 327b, respectively, which may push the second vertical arm 312 downward with respect to the pin 342. The elevator door latch arm 302 may therefore begin to lift out of the catch 304 at this stage, with the shorting bar 303 removed from the contacts 305.
As the sensing vane 340 pushes the first roller 356 towards the stopper 357, the series of arms causes the hoistway door latch arm 350 to pivot clockwise about its fulcrum 354. For example, the first roller 356 may be pushed towards the stopper 357 by the sensing vane 330, which may rotate both arms 362, 364 about attachment arm 363 in a counterclockwise direction. The counterclockwise rotation of arm 362 may cause the angle between arms 362 and 360 to straighten, which may push arm 360 in the direction of the catch 352. The attachment point 359 may be moved towards the catch 352 as a result, and may cause arm 358 and hoistway door latch arm 350 to rotate about fulcrum 354 in a counterclockwise direction lifting the distal end of the hoistway door latch arm 350 out of the catch 352, thereby obtaining the interlock unlocked position. If the hoistway door latch arm 350 has a shorting arm 351 that is in contact with two or more contacts 353, the shorting arm 351 would be removed from the contacts 353 at this stage.
The fixed vane 340 in the engagement position continues to move upward in the direction of the pin 342 and away from pins 320, 322. As a result, the second roller 366 rolls along the fixed vane 340 to a third location on the fixed vane that is farther from an end of the fixed vane which is proximal the pin 342 than the second location on the fixed vane.
In situations where the locking apparatus 300A is not properly aligned with the engagement apparatus 300C, the elevator door latch 302 does not rotate to obtain the interlock unlocked position. For example, this situation may occur when the elevator car door 106 is not aligned with a hoistway door 108, in which case the elevator car door should not be unlocked and opened for safety and security purposes. The locking apparatus 300A in these situations will still transition from the locking system locked position to the intermediate position, as described above with respect to
The locking system 300 also includes an electronic interlock, comprising the elevator door latch arm 302, shorting bar 303, catch 304, and at least two contacts 305, that provides an indication of whether the elevator car door 106 is locked or unlocked. As discussed above, the elevator door latch arm 302 includes the shorting bar 303 that is configured to contact the corresponding at least two contacts 305 at the catch 304 for elevator door latch arm. As shown in
As shown in
Memory 514 stores information accessible by the one or more processors 512, including data 516 and instructions 518 that may be executed by the one or more processors 512. The memory may be of any type capable of storing information accessible by the processor, including a computer-readable medium such as a hard-drive, memory card, ROM, RAM, DVD or other optical disks, as well as other write-capable and read-only memories. The system and method may include different combinations of the foregoing, whereby different portions of the instructions and data are stored on different types of media.
Data 516 may be retrieved, stored or modified by the one or more processors 512 in accordance with the instructions 518. For instance, although the system and method is not limited by any particular data structure, the data 516 may be stored in computer registers, in a relational database as a table having a plurality of different fields and records, XML documents or flat files. The data 516 may also be formatted in any computer-readable format such as, but not limited to, binary values or Unicode. By further way of example only, image data may be stored as bitmaps comprised of grids of pixels that are stored in accordance with formats that are compressed or uncompressed, lossless (e.g., BMP) or lossy (e.g., JPEG), and bitmap or vector-based (e.g., SVG), as well as computer instructions for drawing graphics. The data 516 may comprise any information sufficient to identify the relevant information, such as numbers, descriptive text, proprietary codes, references to data stored in other areas of the same memory or different memories (including other network locations) or information that is used by a function to calculate the relevant data. Data may include threshold voltage and current amounts in a locking state circuit that indicates whether the elevator car door is locked or unlocked.
Instructions 518 may be any set of instructions to be executed directly (such as machine code) or indirectly (such as scripts) by the one or more processors 512. For example, the instructions 518 may cause the one or more processors 512 to detect a locking state of the elevator car door (i.e., whether the elevator car door is locked or unlocked), to transmit an indication of the locking state to a central controller, to keep the elevator car door close, to keep the elevator car stationary, or to perform another step. The instructions 518 may be stored as computer code on the computer-readable medium. In that regard, the terms “instructions” and “programs” may be used interchangeably herein. The instructions 518 may be stored in object code format for direct processing by the one or more processors 512, or in any other computer language including scripts or collections of independent source code modules that are interpreted on demand or compiled in advance. Functions, methods and routines of the instructions 518 are explained in more detail below.
In some examples, there is also an electronic interlock on the hoistway door, comprising the hoistway door latch arm 350, shorting bar 351, catch 352, and contacts 353, that functions similar to the electronic interlock on the elevator car door. In these examples, there may also be an electronic interlock controller on the hoistway side similar to the electronic interlock controller 500 described above.
Example Methods
In
At block 602, the one or more processors 512 may detect whether there is an electrical contact between the shorting bar 303 on the elevator door latch arm 302 and the contacts 305 in the catch 304. The detection may be made by receiving and identifying a current or a signal indicating that a locking state circuit that includes the contacts 305 is closed or open at the interlock. At block 604, the one or more processors 512 may determine whether the elevator car door 106 is locked or unlocked, or a locking state of the elevator car door, based on the detection. When the electrical contact is detected, the one or more processors 512 may determine the elevator car door 106 is locked. When the electrical contact is not detected, the one or more processors 512 may determine the elevator car door 106 is unlocked.
At block 606, the one or more processors 512 may send an indication of the locking state of the elevator car door to a central controller of the elevator system 100. The indication may be used with or without other information to make other determinations of the elevator car door 106 and decisions regarding how to operate the elevator system 100. For example, the indication may be used to determine whether the elevator car door 106 is closed or open. In other examples, the indication may be used to determine whether the elevator system 100 has malfunctioned or been compromised in some way by comparing the locking state indication to other indications for the elevator system 100. Decisions that may be made based on the indication may include whether to keep the elevator car door closed when the elevator car door 106 is determined to be unlocked in error, whether to close the elevator car door when the elevator car door has already been opened, whether to keep the elevator car stationary, or whether to apply brakes to cause the elevator car to be stationary when the elevator car is already in motion.
In another example, the blocks described above may additionally or alternatively be performed by an electronic interlock controller on the hoistway side that detects electrical contact at an interlock on the hoistway door.
The features described above may provide for an elevator system that more reliably ensures that both the elevator car door 106 and the hoistway door 108 are closed before moving an elevator car. Integrating the electronic interlock with the mechanical locking system means it is harder to bypass one independent of the other. In addition, using the features described, the unlocking of the elevator car door may be performed without moving the elevator car door. Elevator rides using the elevator system may therefore be safer and smoother.
Unless otherwise stated, the foregoing alternative examples are not mutually exclusive, but may be implemented in various combinations to achieve unique advantages. As these and other variations and combinations of the features discussed above can be utilized without departing from the subject matter defined by the claims, the foregoing description of the embodiments should be taken by way of illustration rather than by way of limitation of the subject matter defined by the claims. In addition, the provision of the examples described herein, as well as clauses phrased as “such as,” “including” and the like, should not be interpreted as limiting the subject matter of the claims to the specific examples; rather, the examples are intended to illustrate only one of many possible embodiments. Further, the same reference numbers in different drawings can identify the same or similar elements.
Number | Name | Date | Kind |
---|---|---|---|
3912049 | Holland | Oct 1975 | A |
4926975 | Morris | May 1990 | A |
5005673 | Rivera | Apr 1991 | A |
5105916 | Steacy | Apr 1992 | A |
5427204 | Salmon | Jun 1995 | A |
5690189 | Karner | Nov 1997 | A |
5819877 | Rivera | Oct 1998 | A |
5899302 | O'Donnell | May 1999 | A |
6446759 | Kulak | Sep 2002 | B1 |
6508332 | Fahl | Jan 2003 | B2 |
7607517 | Karner | Oct 2009 | B2 |
20120298453 | Fujii | Nov 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20190084806 A1 | Mar 2019 | US |