The present description relates to methods and systems for data usage accounting and more particularly, to methods and systems for data usage accounting in computing devices with secure enterprise applications and personal applications.
In an effort to increase productivity, many employers allow their workers to conduct business related to the employer on their personal mobile devices. In some cases, employers also provide some of their employees with company-issued mobile devices. In either arrangement, an employer understands that a single device may include sensitive data related to that employer in addition to data that is personal to the employee. Several advances have been made in an effort to protect an employer's data in these circumstances. For example, OpenPeak Inc. of Boca Raton, Fla. has developed solutions that enable a mobile device to include both enterprise and personal data but that isolate the enterprise data from the personal data. As part of these solutions, an employee may download secure applications that may be used to conduct transactions related to the enterprise.
Because the employee's device may include both personal and secure applications, it may be desirable to bifurcate the process of data usage accounting. In particular, the employer may wish to receive an accounting of the data usage associated with the secure applications that have been installed on the employee's device on behalf of the employer. This accounting, however, needs to be separate from data accounting that may be attributable to unsecure applications that the employee may have installed for personal use.
A method for enabling data usage accounting through a relay is described herein. The method can be practiced on a computing device that has secure applications and unsecure applications installed thereon. Initially, a request for a data session that includes a final endpoint can be received through a secure application. The request for the data session can be intercepted and modified to cause the request to be redirected back to the secure application. In addition, a connection with a relay component can be initiated instead of the final endpoint such that data usage accounting for the data session is to be conducted at a remote location.
In one example, the final endpoint can be provided to the relay server to enable the relay component to establish a connection with the final endpoint. In another example, the connection with the relay component that is initiated can be transparent to the secure application, and the connection with the relay component that is initiated may be based on a protocol that is non-native to the secure application. This arrangement can mean that some portion of the secure application, such as the original code of the target application that comprises the secure application, may be abstracted away from the connection with the relay component, while some other portion of the secure application, like a secure framework and/or other code that has been integrated with the target application to create the secure application, may enable the abstraction and may facilitate the connection with the relay component. As such, the original code of the target application does not have to be restructured, altered or re-written to account for the redirection of the request or for the (incompatible) protocol of the relay component.
In one embodiment, data from the secure application can be buffered while the connection with the relay component or the final endpoint is being established. Initiating the connection with the relay component may include providing an internet protocol (IP) address of the computing device to the relay component. Further, the connection that is initiated with the relay component is configured to support the transport of both unencrypted data and encrypted data for the secure application.
Another method of enabling segregated data usage accounting on a computing device is described herein. At first, a secure application that is installed on the device can be launched in which the device may have unsecure applications installed thereon in addition to the secure application. Through the secure application, content may be requested from a final destination. In response, the content request may be redirected back to the secure application, and a connection with a relay server can be initiated to enable retrieval of the requested content from the final destination and to enable an accounting of data of the retrieved content. In one arrangement, the initiation of the connection with the relay server only occurs for the secure application and not for the unsecure applications.
Additionally, the final destination and an IP address of the computing device may be provided to the relay server. Like the previous method, the connection of the relay server may be based on a protocol that is non-native to the secure application and redirecting the content request back to the secure application may include natively redirecting the content request back to the secure application. Natively redirecting may refer to the secure application relying on native calls when initially generating the data session request. Also like the previous method, initiating the connection with the relay server may include transparently initiating the relay connection with the relay server.
In one embodiment, the content request can be redirected back to the secure application for a plurality of predetermined networking calls from the secure application. As an example, the connection with the relay server may be predefined and able to accommodate each of the predetermined networking calls. As another example, initiating the connection with the relay server may include authenticating the computing device with the relay server prior to permitting data exchange between the secure application and the relay server. In some cases, data from the secure application can be buffered while the connection with the relay server is established.
In another arrangement, it can be determined whether the computing device is operating on a Wi-Fi communication network. In response to the determination, a setting can be activated that prevents the content request from being redirected back to the secure application and the initiation of the connection with the relay server.
A method of counting data associated with secure applications is also described herein. In the method, a request can be received to establish a relay connection with a requesting secure application installed on a computing device that includes both secure applications and unsecure applications. In response, the computing device can be authenticated. If the device is authenticated, the relay connection with the requesting secure application can be established, and a connection with a final destination specified by the requesting secure application can be initiated. In addition, data associated with the final destination connection can be counted such that a data usage amount is determined for the requesting secure application. The counting of the data may only be performed for the secure applications.
Further, data associated with the final destination connection may be returned to the secure application over the relay connection. As with the previous methods, the relay connection may be based on a protocol that is non-native to the requesting secure application. As another example, receiving the request to establish the relay connection may include receiving the final destination specified by the requesting secure application and an IP address of the computing device. Establishing the relay connection with the requesting secure application may include establishing the relay connection with the requesting secure application only if the computing device is operating on a predetermined cellular network. This predetermined cellular network may be owned, operated or maintained by the same entity that performs the counting of the data associated with the final destination. A report that details the data usage of the secure applications installed on the computing device may also be generated.
A computing device is also described herein. The computing device may include a display that is configured to display both secure and unsecure applications that are installed on the computing device and may also include a processing unit that is communicatively coupled to the display. The processing unit can be configured to receive a data access request through one of the secure applications in which the data access request may include a final destination. The processing unit may also be configured to cause a redirection of the data access request back to the secure application and to cause a connection with a relay server to be initiated to enable an accounting of data associated with the data access request. The relay server can be configured to establish a connection with the final destination specified by the secure application. The processing unit can be further configured to cause the redirection of the data access request and the connection with the relay server for the secure applications but not for the unsecure applications.
In one arrangement, the computing device can include a Wi-Fi communications stack that is communicatively coupled to the processing unit. The processing unit can be further configured to cause a setting to be activated to prevent the redirection of the data access request and the connection with the relay server if the computing device is connected to a Wi-Fi network through the Wi-Fi communications stack. This feature may be applicable to other networks. For example, the setting may be activated if the computing device is camped on a roaming network or a network in which data usage charges are not applicable or not otherwise incurred for access or use.
The computing device may also include memory that is communicatively coupled to the processing unit. In this case, the processing unit can be further configured to cause data from the secure application to be buffered in the memory while the connection with the relay server is established. As another example, similar to the methods described above, the connection with the relay server may be based on a protocol that is non-native to the requesting secure application, and the processing unit is further configured to cause the connection with the relay server to be initiated transparently with respect to the requesting secure application. In one embodiment, the connection with the relay server can be configured to support unencrypted traffic between the secure application and the final destination. In another embodiment, the processing unit can be further configured to cause the connection with the relay server to be initiated by causing a listening socket on a loopback interface to be generated and a back-end socket to be generated.
Further features and advantage, as well as the structure and operation of various embodiments, are described in detail below with reference to the accompanying drawings. It is noted that this description is not limited to the specific embodiments presented herein. Such embodiments are provided for illustrative purposes only. Additional embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein.
The accompanying drawings, which are incorporated herein and form part of the specification, illustrate embodiments of the subject matter described herein and, together with the description, further serve to explain the principles of such subject matter and to enable a person skilled in the relevant art(s) to make and use the subject matter.
The features and advantages of the embodiments herein will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, in which like reference characters identify corresponding elements throughout. In the drawings, like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements.
The following detailed description refers to the accompanying drawings that illustrate exemplary embodiments; however, the scope of the present claims is not limited to these embodiments. Thus, embodiments beyond those shown in the accompanying drawings, such as modified versions of the illustrated embodiments, may nevertheless be encompassed by the present claims.
References in the specification to “one embodiment,” “an embodiment,” “an example embodiment,” “one arrangement,” “an arrangement” or the like, indicate that the embodiment or arrangement described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment or arrangement. Furthermore, when a particular feature, structure, or characteristic is described in connection with an embodiment or arrangement, it is submitted that it is within the knowledge of one skilled in the art to implement such feature, structure, or characteristic in connection with other embodiments or arrangements whether or not explicitly described. The word “among,” as it is used throughout this description, should not necessarily be interpreted as requiring exchanges or interaction among three or more applications, irrespective of grammar rules. The word “a” is not necessarily limited to a singular instance of something, as it may mean one or more.
Several definitions that apply throughout this document will now be presented. The term “exemplary” as used herein is defined as an example or an instance of an object, apparatus, system, entity, composition, method, step or process. The term “communicatively coupled” is defined as a state in which two or more components are connected such that communication signals are able to be exchanged (directly or indirectly) between the components on a unidirectional or bidirectional (or multi-directional) manner, either wirelessly, through a wired connection or a combination of both. A “computing device” is defined as a component that is configured to perform some process or function for a user and includes both mobile and non-mobile devices. The term “computer readable storage medium” is defined as one or more components that are configured to store instructions that are to be executed by one or more processing units.
An “application” is defined as a program or programs that perform one or more particular tasks on a computing device. Examples of an application include programs that may present a user interface for interaction with a user or that may run in the background of an operating environment that may not present a user interface while in the background. The term “operating system” is defined as a collection of software components that directs a computing device's operations, including controlling and scheduling the execution of other programs and managing storage, input/output and communication resources. A “processing unit” or “processor” is defined as one or more components that execute sets of instructions, and the components may be disparate parts or part of a whole unit and may not necessarily be located in the same physical location.
The terms “memory,” “memory element” or “repository” are defined as one or more components that are configured to store data, either on a temporary or persistent basis. The term “shared memory” is memory, a memory element or a repository that is accessible (directly or indirectly) by two or more applications or other processes. An “interface” is defined as a component or a group of components that enable(s) a device to communicate with one or more different devices, whether through hard-wired connections, wireless connections or a combination of both. An “input/output device” is defined as a device that is configured to at least receive input from a user or a machine that is intended to cause some action or other effect on a component with which the input device is associated. A “display” is defined as an apparatus that presents information in visual form and may or may not receive input through a touch screen.
The term “file system” is defined as an abstraction that is used to organize, store and retrieve data. The term “secure application” is defined as an application that has been modified or enhanced from its original form to restrict communications between the application and unauthorized programs, applications or devices and to restrict operation of the application based on policy or to alter, augment or add features associated with the operation of the application (or any combination thereof) or—in the case of the application not being modified—an application that is part of a secure workspace that is protected from data exchanges with applications that are part of a personal or an unsecure workspace. A “target application” is defined as an application that has been selected for conversion into a secure application. An “unsecure application” is defined as an application that has not undergone the modification required to convert the application into a secure application and, as such, is unable to obtain data from a secure application in view of an obfuscation scheme employed by that secure application or is an application that is not part of a secure workspace and is restricted from accessing data from the secure workspace. A “hub application” is defined as an application that receives input from one or more secure applications and establishes connections with external entities on behalf of the secure applications that provide such input. A “virtual machine” is defined as a platform-independent execution environment that emulates a physical machine.
The term “personal workspace” is defined as a workspace, profile or partition that is configured to contain the personal content and unsecure applications or other unsecure programs associated with a user of a computing device on which the personal workspace sits. The term “secure workspace” is defined as a workspace, profile or partition that is configured to contain secure content, secure applications and other secure programs and requires some form of authentication to be accessed.
The term “content provider” is defined as a site that offers data for consumption by a computing device. The term “system service” is defined as an application or a set of applications on a computing device that offer one or more features for access by an unsecure application or a secure application. A “secure connection” is defined as a connection in which at least some portion of the data that is exchanged over the connection is encrypted or otherwise obfuscated from unauthorized parties, entities or processes. To “consume data” means to receive data from a source, transmit data to a recipient or both. An “external network entity” means an entity—such as a component or a service—that is part of a network that is external to or located remotely from a computing device. An “external entity” is defined as an entity to which an application wishes to establish a connection. A “final endpoint” or “final destination” is the external entity with which an application or process intends to establish a connection based on a data request. A “relay server” is a server that facilitates a connection between a computing device and a remote or content server or some other final endpoint or destination.
As explained earlier, solutions have been developed that enable a mobile device to include both personal and enterprise data. Accordingly, it may be useful to segregate data usage accounting associated with the enterprise side from usage associated with the personal space. This process can enable an enterprise to determine how much data that is consumed by the mobile device is the responsibility of the enterprise.
In view of this need, a method and system for enabling data usage accounting is described herein. As an example, the method can be practiced on a computing device that has secure applications and unsecure applications installed thereon. A request for a data session that includes a final endpoint or destination can be received through a secure application. The request for the data session can be intercepted and modified to cause the request to be re-directed back to the secure application. In addition, a connection with a relay server can be initiated instead of the final endpoint such that data usage accounting for the data session is to be conducted at a remote location. Moreover, this technique can be limited to the secure applications on the computing device, meaning the unsecure applications are unaffected. Virtually any type of data can be tracked and counted under this scheme, including digitized voice signals and other forms of communication, including messaging.
Through this arrangement, data tracking can be conducted for secure applications or other applications associated with an enterprise or organization that are installed on a user's computing device based on that user's relationship with that enterprise or organization. This tracking can also be kept apart from any accounting performed for a user's personal usage, such as that associated with unsecure applications on the device. Accordingly, an enterprise can accurately determine its accountability for data usage by a computing device that includes both enterprise and personal data. This solution may be particularly useful for counting the data of the sessions at a remote location.
Referring to
In one arrangement, the hardware layer 20 may include any number and type of hardware components, such as one or more displays 55, one or more input/output (I/O) devices 60, one or more processing units 65 and any suitable type and number of memory devices 70 and interfaces 75. Examples of the I/O devices 60 include speakers, microphones, physical keypads, etc. In addition, the display 55 can serve as an I/O device 60 in the form of a touch-screen display. The interlace 75 can be configured to support various types of communications, including wired or wireless and through any suitable type of standards and protocols. As an example, the interface 75 can include one or more cellular communication stacks and one or more Wi-Fi communication stacks to enable the computing device 15 to conduct bidirectional communications with one or more cellular networks and one or more Wi-Fi networks, respectively. In one arrangement, the hardware layer 20 may also include a calculation unit 77, which can be configured to calculate or determine (or at least assist in the determination or calculation of) data usage totals associated with any type of session conducted on the computing device 15, including those originating from the application layer 50. The calculation unit 77 may be a separate component or may be part of the processing unit 65. In another arrangement, the calculation unit 77 may be remotely located such that it is external to the computing device 15. In such a case, information regarding the sessions may be sent to a remote location that supports the calculation unit 77, and the unit 77 can perform its calculation functions once it receives the information.
In addition, the runtime environment 35 can support any suitable number of virtual machines 80 and core libraries 85, although a virtual machine may not be needed in other arrangements, such as where native code is employed. The system server 40 can serve as an abstraction for the underlying layers for the applications in the application layer 50 and can provide numerous system services for the applications. As is known in the art, a system framework, which may be part of an application's process, can be employed to enable interaction with the system server 40 or other components. In this example, the application layer 50 may include any number of unsecure applications 90 and any number of secure applications 95, one of which may be a core secure application 100. The secure framework 45 can function in a manner similar to that of a conventional framework, but the secure framework 45 can facilitate the encapsulation of a number of secure applications 95 to selectively restrict their data exchanges with the unsecure applications 90. In particular, the secure framework 45 can be configured to intercept and modify certain calls from the secure applications 95, prior to passing them to the system server 40. In one arrangement, these calls may be from the secure applications 95 or the system framework.
In many cases, the unsecure applications 90 are associated with the personal data of a user of the computing device 15. In contrast, the secure applications 95 are typically associated with confidential or otherwise sensitive information that belongs to or is associated with an enterprise or some other organization, and the user of the device 15 may work for such an entity. In one arrangement, a virtual partition or workspace may be created on the computing device 15 in which the secure applications 95 (and the core secure application 100) are part of a secure workspace 105, and the unsecure applications 90 are part of a personal workspace 110. In certain cases, a user may be required to provide authentication information, such as a password, PIN or biometric data, to gain access to the secure workspace 105 or to any individual or group of secure applications 95.
In some cases, some of the unsecure applications 90 may be system services 115 that provide features or functionality that is associated with the type of operating system that is installed on the computing device 15. In some cases, the system service 115 may be an application or a set of applications that live in the background and support different tasks associated with the operating system of the device 15. System services 115 may facilitate the exposure of low-level functions of the hardware layer 20 and the kernel layer 25 to the higher-level application layer 50. Many system services 115 may operate with elevated privileges, in comparison to other applications. For example, a common system service 115 that is typically found on computing devices 15 is a media player, which processes and presents media data for a user. Another example of a system service 115 may be a photo viewer, which presents digital images for the user. As those skilled in the art will appreciate, the examples listed here are not meant to be limiting, and there are other system services 115 that may be available on the computing device 15.
In another embodiment, the system services 115 may be trusted unsecure applications 90 that secure applications 95 are permitted to share or otherwise exchange data with. An example of a trusted unsecure application 90 may be an unsecure application 90 that is by default installed on the computing device 15, such as by the manufacturer of the device 15 or a wireless carrier or other entity that provides services to the device 15. Another example of a trusted unsecure application 90 may be an unsecure application 90 that is listed on an application whitelist for one or more secure applications 95. By being part of the application whitelist, the trusted unsecure application 90 may be preapproved for data exchange with the relevant secure application(s) 95. Additional information on application whitelisting can be found in U.S. patent application Ser. No. 14/669,911, filed on Mar. 26, 2015, which is incorporated by reference herein in its entirety.
As noted above, the secure applications 95 and the system architecture may be configured to enable at least some of the calls to the system server 40 to be intercepted. There are several processes available for such a process. For example, U.S. patent application Ser. No. 14/811,158, which was filed on Jul. 28, 2015 and is herein incorporated by reference in its entirety, describes a method and system in which some of the system classes are overridden by classes associated with the core secure application 100, which can allow runtime hooks to be applied against certain system calls. Based on this technique, some of the calls that the secure applications 95 (or a system framework) make to the system services 115 can be intercepted and modified, a process that will described below.
As another example, U.S. Patent Application Publication No. 2015/0113506, which was filed on Mar. 12, 2014, and U.S. Patent Application No. 2015/0113502, which was also filed on Mar. 12, 2014, each of which is herein incorporated by reference in its entirety, present methods and systems by which target applications are encapsulated as secure applications for distribution. Once installed and initiated on a computing device 15, the encapsulated application described in these references is loaded into memory, and runtime hooks are set to enable application programming interface (API) calls from the secure application to be intercepted. Similar to the description above, at least some of the calls to the system services 115 from the secure applications 95 (or a system framework) can be modified once they are intercepted. Other information on the process of intercepting certain functions of secure applications can be found in U.S. Pat. No. 8,695,060, issued on Apr. 8, 2014, which is also herein incorporated by reference in its entirety.
As described in these incorporated references, a secure application 95 can be configured to provide additional features that may not have been otherwise available prior to it being converted into a secure application 95. As an example, a secure application 95 can be arranged to track the amount of data that it uses (or a particular session. This process enables an administrator to determine data usage on a per-application basis. Of course, secure applications 95 may be managed in accordance with many other policies or configurations, as is known in the art.
While many applications (or target applications) are able to be converted into secure applications 95, there are some applications that may not be so modified. For example, many system services 115 are default applications that are provided as part of the base configuration of the computing device 15. The developer of the operating system that provides these system services 115 may not permit the system services 115 to be converted into secure applications 95. As such, many system services 115 may remain as unsecure applications 90 on the computing device 15. Accordingly, the operation of a system service 115 may not be amenable to being controlled or managed, as is the case with secure applications 95. The relevance of this condition will be explained below.
In one embodiment a hub application 120 may be part of the application layer 50. The hub application 120 may serve as a connection point for any number of secure applications 95 to enable the secure applications 95 to connect to any suitable external entity, including various network components. In particular, if a secure application 95 requires a connection with an external entity, the secure application 95 can request the hub application 120 to facilitate the communication. The hub application 120 can accept such requests from any of the secure applications 95, including from a single secure application 95 at a time or from multiple secure applications simultaneously. In accordance with the description herein, such a technique can facilitate the accounting of data usage associated with secure applications 95. In one example, the hub application 120 can be a daemon or some other process that runs in the background. Because the hub application 120 accepts requests from the secure applications 95, it may be considered as part of the secure workspace 105 and may not be permitted to accept requests from the unsecure applications 90. As an option, a similar arrangement can be made for the unsecure applications 90, or, alternatively, the hub application 120 can be configured to accept requests from both secure applications 95 and unsecure applications 90.
In an alternative arrangement, the computing device 15 may contain personal applications and enterprise applications. In this example, the personal applications are designed for the personal interactions of a user, while the enterprise applications may be developed for the work or business interactions of a user. The enterprise applications in this setting may not necessarily be secure applications 95, as described herein. In addition, a partition may be implemented in the computing device 15 to separate the personal applications from the enterprise applications. For example, a user may have separate log-ins for gaining access to the personal applications and to the enterprise applications. In this example, separate billing paths may be established for the personal applications and the enterprise applications, as is presented herein.
Referring to
When operating the computing device 15, a user may wish to access data from any one of the remote servers 205. In some cases, the data access request may originate from an unsecure application 90. In the standard flow, the unsecure application 90 may sometimes forward the request to a relevant system service 115. For example, if a user wishes to view a video associated with one of the remote servers 205 through an unsecure application 90, the unsecure application 90 passes the request to a media player of the computing device 15. The media player then retrieves the data from the appropriate server 205 and presents such data to the user.
In the case of a secure application 95, a similar request would normally be passed to the media player, as well. In addition, the media player would conventionally establish a connection with the relevant remote server 205 and would present the requested data to the user. But because the system services 115 are typically not permitted to be converted into secure applications 95, implementing the feature of data accounting in them, as can be done with secure applications 95, may not be possible. In this instance, difficulties are presented in determining the percentage of data usage that is associated with secure applications 95 in comparison to the consumption of data by unsecure applications 90.
A solution is described here, however, that enables such an accounting to take place. In particular, the initial data request from the secure application 95 can be intercepted and modified prior to being passed to the media player. In view of the modification, the media player (or other system service 115) can direct the request back to the secure application 95, and a connection can be established between the secure application 95 and the appropriate remote server 205 to facilitate the exchange of data between the secure application 95 and the remote server 205. This redirection of the request through the secure application 95 can enable an accounting of the amount of data that is associated with this particular session, a feature that can be incorporated into secure applications 95. Accordingly, an accurate accounting of data usage associated with at least some or all secure applications 95 on the computing device 15 is now possible. As previously mentioned, the counting of the data associated with a secure application 95 is not limited to being performed by the secure application 95 or even the computing device 15, as the calculation can be performed remotely.
This arrangement can enable an entity to determine the percentage of data usage that is attributable to it and to the user on a personal basis. Because data usage may be segregated between enterprise use and personal use, the enterprise may be able to craft more accurate data plans with wireless carriers or other similar entities. Moreover, the user, who may own the computing device 15, would understand that the user would not be charged for data usage associated with that user's work or business and that the user would only be paying for personal data consumption.
Referring to
At step 305, in a setting that includes both secure applications and unsecure applications, a request to access data can be received via one of the secure applications in which the request is intended for a content provider via a system service. The request intended for the content provider via the system service can be intercepted, as shown at step 310. At step 315, the intercepted request can be modified, which can cause the system service to direct the request back to the secure application instead of the content provider. A connection can be established with the content provider for the request through the secure application to enable data usage accounting of data that is returned by the content provider, as shown at step 320. Additionally, at step 325, content from the content provider can be received at the secure application, and the received content from the content provider can be forwarded to the system service for processing, as shown at step 330. An amount of data that is carried over the established connection associated with the secure application can be determined, as shown at step 335.
Referring to
In
Based on conventional techniques, the uniform resource indicator (URI) related to this dam request may be a uniform resource locator (URL) with the associated content available via the hypertext transfer protocol (HTTP) or the hypertext transfer protocol secure (HTTPS). As part of the modification process, the URL may be changed prior to being passed to the system service 115. The modification of the URL, in one embodiment, may be based on a port number that is provided by the operating system. For example, the secure application 95 may create a listening socket on a loopback interface by requesting a socket and port number from the operating system. As is known in the art, the loopback interface can support inter-process or inter-app communications on the computing device 15. The requested port may be a predetermined value or may be simply a request to the operating system to provide an available port number. Continuing with the example, the URL may be converted into a local-host URL that includes the assigned port number and the rest of the information from the original URL. The modified URL may then be passed across to the system service 115, in this case, the media player. As will be explained later, multiple listening sockets and ports may be requested from the operating system as part of this process.
Consider the following specific but non-limiting example. A user may select a link through a secure application 95, which may have the following exemplary URL associated with it:
http://www.youtube.com/watch?v=uWHRqspFke0
As noted earlier, the secure application 95 may request a socket and port value from the operating system, and the port value can factor into the modified URL. In this example, the original URL may be transformed into the following local-host URL;
http://localhost:4444?t=www.youtube.com&p=watch&r=v=uWHRqspFke0
Here, the port value “4444” is now part of the URL siring, which can cause the system service 115 to point back to this port created by the secure application 95. In addition, as can be seen, the original hostname can be encoded in the “t=” parameter, the original path can be encoded in the “p=” parameter and the original parameters can be encoded in the “r=” parameter. Thus, the modified URL can include the port value, and the remote information can be added as parameters in the modified URL. A similar example for an HTTPS request will be presented below.
In some arrangements, as part of this process, the secure application 95 can create a proxy when the data is initially requested through the secure application 95. The proxy can act as the intermediary between the system service 115 and the remote server 205. In doing so, the proxy may listen in on any sockets that were created for the overall modification of the data access request. As an example, each secure application 95 can be individually configured to generate the proxy for relevant data requests that it receives.
In another arrangement, the secure application 95 may record a copy of the information associated with the original data request and can map that information to the redirect address that has been created. For example, in the example above, the secure application 95 may record the information associated with the original URL in any suitable database, such as the memory 70 of
Moving back to
As previously noted, the secure application 95 may be configured to track data usage. In this case, the secure application 95 can determine an amount of data that is carried over the connection that is established with the remote server 205. This can include both incoming (i.e., from remote server 205 to secure application 95) and outgoing (i.e., from secure application 95 to remote server 205) content. For example, the calculation unit 77 of
If the secure applications 95 are associated with an enterprise, the enterprise can determine the amount of data usage that is tied to each of its secure applications 95. This feature can enable the enterprise to determine data usage on the device 15 that is solely attributable to it. As a result, data usage tracking associated with the secure applications can be segregated from data usage that originates from the unsecure applications.
In one embodiment, the connection that is established between the secure application 95 and the remote server 205 can be a secure connection. For example, as is Known in the art, the secure application 95 can be configured to establish virtual private network (VPN) connections with remote locations. Such a VPN connection is individual to the secure application 95 and is different from a system-level VPN. If desired, however, the connection between the secure application 95 and the remote server 205 is not required to be a secure connection. In addition, in another embodiment, the secure application 95 may use a system-level VPN.
The description above may apply to other protocols that facilitate the exchange of data. For example, HTTPS traffic may also be tracked in accordance with the procedures presented herein. In one embodiment, additional steps can be taken when dealing with HTTPS traffic to ensure accurate and complete accounting. For example, if a user is accessing an HTTPS link through the secure application 95, the original URL may be modified similar to the HTTP examples above, but the connection between the system service 115 and the secure application 95 may be left in the open.
Consider the following example. If an HTTPS request is generated, the secure application 95 can convert the HTTPS request to an HTTP request when the secure application 95 modifies the URL for purposes of directing the system service 115 back to the secure application 95. That is, the secure application 95 can change the connection type of the data request from a secure connection to an open connection when the data request is modified. Referring back to the URL example above, the following HTTPS URL may be received:
https://www.youtube.com/watch?v=uWHRqspFke0
The secure application 95 can determine that this is an HTTPS request and can modify the URL. An exemplary conversion is presented here:
http://localhost:4444?s=www.youtube.com&p=watch&r=v=uWHRqspFke0
As reflected in the string, the HTTPS request is convened to an HTTP request. As a result, the connection between the system service 115 and the secure application 95 can be out in the open. As will be explained below, this feature can enable the secure application 95 to handle re-directs from the remote server 205.
As can also be seen in the siring, the “s=” parameter can provide an indication that the original URL was an HTTPS request. Accordingly, when the secure application 95 establishes the connection between it and the remote server 205, an HTTPS connection can be created. In other words, the system service 115 may not be responsible for establishing the HTTPS connection, and the secure application 95 may be in control of any security-related handshaking and getting the encryption keys in place. The session between the secure application 95 and the remote server 205 can be a transport layer security (TLS) connection, which can terminate at the secure application 95.
As explained earlier, the secure application 95 may be configured to arrange VPN connections in an individual manner. Such an application-level VPN can support any type of traffic that is exchanged between the secure application 95 and the remote server 205, including both HTTP and HTTPS streams. In other words, the ability of the secure application 95 to provide an application-level VPN does not impede the ability of the secure application 95 to modify data access requests and then convert them back to their original form, as described above. Further, these techniques can be practiced if the secure application 95 is using a system-level VPN or is not relying on a VPN connection at all.
As is known in the art, some initial data access requests are answered with a re-direct, which instructs the requesting source to another destination to retrieve the desired content. For example, in the case of an HTTP request, the requesting device may receive an HTTP re-direct from the server, which causes the device to generate another HTTP request based on the re-direct destination. In addition, in some cases, a URL playlist may be sent from the server, which may include a plurality of URLs. This particular feature may support HTTP live-streaming, a protocol that enables a client to select from a number of different alternate streams containing the same material encoded at a variety of data rates, which can allow the streaming session to adapt to the available data rate.
In one arrangement, the secure application 95 may be configured to account for these re-directs. For example, if the initial data request is an HTTP request and the remote server 205 returns an HTTP re-direct, the secure application 95 may transform that HTTP re-direct in accordance with the modification process described above. By doing so, the secure application 95 can ensure that the system service 115 establishes the new re-direct connection with the secure application 95. As such, when the secure application 95 detects a re-direct, the secure application 95 can request another socket and port from the operating system to account for the new destination that originates from the re-direct. The secure application 95 can then open a connection between itself and the new (and appropriate) remote server 205. This process can be expanded to account for re-direct playlists, such that socket/port pairs are generated when needed for the URLs that make up the playlists.
As can be gleaned from this example, the secure application 95 may be required to detect the re-directs in the incoming streams. If the original data access request is not based on a secure protocol, like HTTPS, then the secure application 95 is easily able to detect the re-directs. If the original request is based on a secure protocol, however, complications may arise because the traffic being streamed to the system service 115 may be encrypted. As noted above, when dealing with a secure protocol, the termination point for the secure connection can be placed at the secure application 95, not the system service 115. As a result, the secure application 95 can decrypt the incoming traffic and can detect the re-directs, similar to how it would for an unsecure protocol. Thus, as an example, redirects can be handled for both HTTP and HTTPS.
In some cases, other components may assist in the calculation of data for purposes of usage accounting. For example, some system services 115 may offer notifications based on certain events that may be related to data usage. In one particular example, the secure applications 95 can register for certain callbacks from the system services 115 that are equipped to provide such notifications. As an example, if a data session is initiated through a secure application 95, the system service 115 can provide one or more notifications that inform the secure application 95 of the start of the session and its eventual ending. Statistics related to the amount of data that was consumed during the session can be incorporated into the notifications, which the secure application 95 can use to track its data usage. The overall total usage related to all or at least some of the secure applications 95 can be determined, which can allow the segregation of data consumption between secure and personal profiles, as described earlier. In this ease, however, the modification of the data access requests is not required, and the system service may fetch data in its conventional manner. When available with the system services 115, this feature may be useful for data accounting, particularly when application-level VPNs are not incorporated into the secure applications 95.
The description herein has been presented primarily in terms of a secure application 95 handling the modification of data requests and the data usage tracking. The description, however, is not so limited. In particular, these features can be implemented into an unsecure application such that data usage can be tracked for these types of applications on an individual basis. Similarly, the system service that is involved in this process is not limited to a media player. In fact, any system service that is involved in the exchange of data with a remote location may be applicable to the description provided herein. For example, other system services that apply here may include a texting application, a dialer or any other application that facilitates or otherwise supports voice communications, a video or camera application, or a map application or other application that supports mapping features. In fact, the description herein may apply to any type of application, whether secure or unsecure, that may involve the consumption of content or the use of services in which it may be necessary to distinguish between personal use of such content and services and secure or workspace or enterprise use of the content and services.
In some cases, it may not be necessary to invoke the system service 115 to handle a request for a data session. That is, the request for the data session may not require the launching of a separate application to handle the request. For example, the secure application 95 may be a secure web browser, through which a user may attempt to retrieve some data. As is known in the art, in prior art cases, an application may work with the operating system of a computing device to establish a connection to an external entity, such as a web server. In a typical mobile device setting, the application may be configured to generate calls for an application programming interface (API) defined by the portable operating system interface (POSIX). In response, the operating system can establish a connection to the external entity on behalf of the application.
Similar to the description above, techniques can be implemented that enable secure applications 95 to have such calls natively redirected back to them for the purpose of establishing a connection with the appropriate external entity and for enabling an accounting of the data session. This process can also make possible a scheme in which data usage for secure applications 95 is counted separately from that associated with unsecure applications 90.
Referring to
At step 505, a request for a data session can be received through a secure application, and at step 510, in response, a listening socket can be created. The request for the data session can be intercepted, as shown at step 515, and the request for the data session can be modified to cause the request to be re-directed back to the secure application, as shown at step 520. At step 525, a connection can be initiated to enable retrieval of the data in response to the request and an accounting of the data session. At step 530, the listening socket can be torn down. In addition, at decision block 535, it can be determined whether a connection with a Wi-Fi network is in place. If no, the method 500 can resume at decision block 535. If yes, a setting can be activated that prevents the request for the data session from being intercepted and modified, as shown at step 540.
To help explain the method 500, reference will be made to
In response to the user interaction, the secure application 95 may generate a request for a data session. As an example, the request may be a POSIX connect call, although the principles outlined herein are not limited to such an arrangement. This request may include addressing information that is intended to be used to establish the connection with the external entity. Examples of addressing information include the following arguments: socket (specifies the file descriptor associated with the socket); address (points to a sockaddr structure containing the peer address); and address_len (specifies the length of the sockaddr structure pointed to by the address argument. Other exemplary arguments and parameters may also be applicable here. In addition, the term “addressing information” is defined as data that is configured to facilitate or enable a connection with one or more destinations. This request may be from the secure application 95 or the system framework associated with the secure application 95. In either case, in response, the secure application 95 can generate a listening socket on the loopback interface—similar to the procedures previously described. In one arrangement, the listening socket can be a temporary socket in that it can be torn down once it serves its purpose of establishing a connection through the secure application 95.
Once the listening socket is created, the secure application 95 can intercept the request for the data session. This interception can occur because the secure framework 45 can be shimmed between the system framework and the operating system and can be configured to recognize predetermined calls for modification or other processing, while allowing others to pass unfettered. In any event, the data session request can be modified by re-writing portions of the request based on the newly-created listening socket. For example, the addressing information of the connect call may be re-written with the addressing information associated with the listening socket. As shown in
As part of the modification process, the original addressing information (or at least some portion or it) can be stored and assigned to the listening socket. The original addressing information includes the final destination address and can be used to establish the intended connection, as will be explained below. As another part of this process, a return can be generated to inform the system framework or the secure application 95 that the requested connect is in progress.
When the operating system receives the data session request, the operating system can redirect the data session request back to the secure application 95, as opposed to the intended final destination address. In particular, the data session request is returned to the listening socket based on the re-written addressing information that replaced the original addressing information. In this case, the operating system can wire up a connection between the relevant socket of the secure application 95 and the listening socket through the loopback interface. Once the redirected connection is established on the listening socket, the secure application 95 can retrieve the original addressing information and can initiate and establish the connection with the external entity, using the original addressing information. Specifically, a connect socket can be generated, and this connect socket can be used to establish a connection with the appropriate socket of the external entity. Further, once the connection with the intended external entity has been initiated (or completed), the secure application 95 can tear down the listening socket to return system resources.
In this case, similar to the process associated with the system service redirection described above, the redirection here can be transparent to the secure application 95 or the system framework. That is, no changes are required to be made to the secure application 95 or the system framework to enable the interception and modification of the data session request. These objects can continue to make their native calls when seeking to exchange data with an external entity, and they are unaware that their calls are being manipulated in this manner. The terms “transparent redirection of a request” or “transparently redirecting a request” are defined as a redirection of a request in which the source of the request is unaware of its redirection, and examples of a request include a call, command or function. The terms “native redirection of a request” or “natively redirecting a request” are defined as a redirection of a request in which the source of the request maintains its reliance on native or pre-existing protocols or structure to generate or to facilitate the request.
The connection between the secure application 95 and the external entity may support various types of formats or protocols. In some cases, the connection to the external entity may be through an application-level virtual private network (VPN), as the secure application 95 may be configured to provide such a feature. The connection may also utilize a system-level VPN, if desired. In this case, the socket of the external entity can be the appropriate socket of the VPN, as opposed to a native socket for the back-end location. Moreover, the connection with the external entity is not necessarily limited to being a secure connection, as unsecure connections may be used.
As noted earlier, the computing device 15 in which the previously described techniques may be practiced may include a Wi-Fi communications stack. The Wi-Fi stack can enable the device 15 to exchange data with external entities over a Wi-Fi network using any of the protocols within that family for which the device 15 is configured. In some cases, it may not be necessary to track data usage associated with secure applications 95 (or even unsecure applications 90) when the device 15 is camped on a Wi-Fi network. In fact, it may not be necessary to do so when the device 15 is operating on any non-cellular network or other networks that do not bill users for access. In this instance, when the device 15 is using a Wi-Fi network or other non-billable or free network for data access, a setting in the device may be activated to prevent the process of redirecting data access requests. That is, because users are typically permitted to access Wi-Fi networks for free, it may not be necessary to track data usage when the device 15 is using such a network, thereby obviating the need to intercept and modify the data access requests in accordance with the processes described above. When the computing device 15 leaves the Wi-Fi network and returns to the billing network, the setting can be deactivated, and the process of data usage counting can begin again.
In another arrangement, the tracking of data usage may be limited to a particular network, such as a predefined cellular network. Thus, the processes described herein may only be executed on this predetermined network. When the computing device 15 is operating on any other network, the redirection process may not be carried out. For example, if the computing device 15 is roaming on a network, or operating on a network that is not its home network, the setting that prevents the redirection process may be activated, even though use of the roaming network may cause the user to incur data usage charges. Nonetheless, if desired, data usage tracking based on the techniques described herein may be conducted on roaming networks or Wi-Fi or other free-access networks.
As previously noted, the counting or calculation of data can be performed at a location that is remote to the computing device 15. For example, an arrangement may be configured in which certain data sessions are facilitated by a remote relay to enable data tracking at the relay or some other suitable location. Referring to
In one arrangement, the network 210 may include one or more relay servers 705, and at least some of the relay servers 705 may include a calculation unit 710. The calculation unit 710 may be a part of the relay server 705 or may be an independent component that is communicatively coupled to the relay server 705. In either case, connections may be established between any of the relay servers 705 and any of the computing devices 15 and between any of the relay servers 705 and any of the remote servers 205. As will be explained further below, when such connections are established, the data that is transferred between the computing devices 15 and the remote servers 205 may be calculated or counted, such as by the appropriate calculation units 710. To enable the segregation of data usage accounting between enterprise and personal use, such tracking may only be conducted for secure applications 95 or other processes associated with the enterprise and not the user's personal activities.
As mentioned above, there may be numerous networks 210 involved to handle the exchange of data between the computing devices 15 and the remote servers 205. The relay servers 705, however, may be associated with a predetermined network, such that the computing device 15 is directed to a server 705 in this particular network 210. Moreover, the use of the relay servers 705 (and hence, the calculation units 710) may be selective in nature. For example, this arrangement may only be utilized for secure applications 95 and when the computing device 15 is camped on a certain network 210 for service, such as a predetermined cellular network.
Referring to
At step 805, on a computing device that has secure applications and unsecure applications installed thereon, a request for a data session can be received through a secure application. The request may include a final endpoint. At step 810, the request for the data session can be intercepted, and the request can be modified to cause the request to be redirected back to the secure application, as shown at step 815. At step 820, a connection can be initiated with a relay server instead of the final endpoint such that data usage accounting for the data session is to be conducted at a remote location.
In addition, at step 825, the computing device can be authenticated with the relay server prior to permitting data exchange between the secure application and the relay server. At step 830, the final endpoint can be provided to the relay server to enable the relay server to establish a connection with the final endpoint. At step 835, data from the secure application may be buffered while the connection with the relay server or the final endpoint is being established. Data associated with the final endpoint may be counted such that a data usage amount is determined for the requesting secure application, as shown at step 840. At step 845, a report can be generated that details the data usage of the secure applications installed on the computing device. Additionally, at decision block 850, it can be determined whether the computing device is operating on a Wi-Fi communication network. If not, the method 800 can resume at decision block 850. If yes, in response to such a determination, a setting can be activated that prevents the data session request to be redirected back to the secure application and the initiation of the connection with the relay server, as shown at step 855.
To help explain the method 800, reference will be made to
As an example, a user may initiate a data session request through a secure application 95, which may be intercepted and modified to be redirected back to the secure application 95. This process may be similar to the exemplary techniques described above with respect to re-writing URLs and addressing information. That is, the secure application 95, via the secure framework 45, may set up a listening socket on a loopback interface, and the relevant data can be re-written to cause the request to be redirected to the listening socket. Here, however, the secure application 95 can initiate a connection with the relay server 705. The relay server 705, which can be any suitable combination of hardware and software, can be used to initiate and establish a connection with the final endpoint of the data session request, which may be the remote server 205.
For example, when the data session request is intercepted, the secure application 95 can re-write the addressing information of the request with the addressing information of the listening socket of the loopback interface and can store the replaced addressing information. The stored addressing information may be the addressing information of the final endpoint. As before, a return can be generated to inform the system framework or the secure application 95 that the requested connect is in progress. When the operating system establishes the connection between the socket of the secure application 95 and the listening socket, the secure application 95 may then generate an accepted or connected socket. The connected socket may enable data to be passed to and from the secure application 95 through the loopback interface. As an example, after the connected socket is generated, the listening socket may be torn down to preserve system resources, although such a step may be bypassed in other circumstances.
In one arrangement, when the connection is accepted on the listening socket, the secure application 95 may generate a back-end socket for initiating and establishing the connection with, for example, the appropriate relay server 705, which may be listening for connections on its public IP address. As part of initiating the connection with the relay server 705, the connection protocol with the relay server 705 may be negotiated, which may include authentication of the computing device 15 or some other process, service or component that is part of the device 15. As an example, the IP address of the computing device 15 may be provided to enable the authentication of the device 15.
While the connection between the secure application 95 and the relay server 705 is being negotiated, any data that may be generated by the secure application 95 may be buffered, at least until, for example, the connection with the relay server 705 is established. In particular, the connection between the relevant socket of the secure application 95 and the connected socket of the loopback interface may be operatively the same as a connection with a final endpoint. In view of this connection, a one-to-one mapping between the socket of the secure application 95 and the connected socket may exist. As such, the secure application 95 may behave naturally and to support this feature, any portion of the data generated by the secure application 95 during the negotiation with the relay server 705 can be saved for eventual transmission to the relay server 705.
In one arrangement, once the connection with the relay server 705 is established, the secure application 95 can send the final endpoint of the data session request to the relay server 705. For example, the secure application 95 may, in accordance with the protocol of the relay server 705, package the addressing information of the final endpoint as part of a payload for the relay server 705. In one arrangement, any buffered data from the secure application 95 may be sent to the relay server 705. The relay server 705 can establish the connection with the remote server 205 (i.e., final endpoint) on behalf of the secure application 95. If necessary, the relay server 705 may also buffer data during its negotiation with the remote server 205. Once the connection is established between the relay server 705 and the remote server 205, data exchanges may occur between the secure application 95 of the computing device 15 and the remote server 205, via the relay server 705. In an alternative arrangement, the buffered data may be held at the computing device 15 until the connection between the relay server 705 and the remote server 205 is completed.
Eventually, the data session may end, either through the secure application 95, the relay server 705, the remote server 205 or some other process or component. In either case, the components/processes may tear down the connections and release any relevant system resources. As an example, the secure application 95 may close the loopback interface (and any associated sockets) in the event the session is completed. These principles may also apply in the event that any of the connections are unable to be established in response to the initial request.
As noted previously, uniform resource locators (URL) may be re-written, particularly in the case of calls being made to a system service 115. The process of establishing the connection with the relay server 705 and the remote server 205 is similar to that described above. In this case, however, during the time the connection with the relay server 705 is being established, the secure application 95 can perform a domain name system (DNS) look-up of the original host name to determine the appropriate IP address for the final endpoint. Once the IP address is retrieved and the connection with the relay server 705 is established, the secure application 95 can provide the IP address as part of the addressing information that is packaged and sent to the relay server 705. That is, the re-written URL may be resolved into an address that can be used to establish the connection with the appropriate remote server 205 through the relay server 705.
In either arrangement, any data that is exchanged between the secure application 95 and the remote server 205 may be routed through the relay server 705. As such, the relay server 705 can be configured to facilitate the remote tracking of data usage for the secure application 95 for this exchange, as well as other sessions in the future. For example, the calculation unit 710 may determine the data usage for the secure application 95, as well as other secure applications 95, and can generate one or more reports that indicate the details of such usage. As an example, the data usage can be correlated with a particular computing device 15 through the received IP address of the device 15. The report can include usage totals on an individual or group basis for any number of secure applications 95. These reports may then be disseminated to the relevant parties for purposes of billing.
As illustrated here, a relay scheme can be leveraged to enable remote data counting for the computing device 15. There are other alternatives, however, that may apply. For example, the counting of the data based on the exchanges with the external entity may be performed at the computing device 15, such as through the secure application 95 that requested the session or a hub application 120 (see
As explained earlier, this process of establishing a connection with a relay server 705 to enable data exchange with a final destination and for tracking and counting the data associated with such sessions may be restricted to secure applications 95, such as those installed on the computing device 15. As such, this procedure may not be performed for any data sessions associated with unsecure applications 90. Because the secure applications 95 may likely be associated with or sponsored by an enterprise, the process presented here can allow for separate data usage charges for the computing device 15 with respect to a user's personal data and that affiliated with, for example, the user's employer. Of course, such an arrangement may be implemented for any application, including individual applications or for certain groups of applications, and may not necessarily be limited only to secure applications 95.
In another arrangement, the process of establishing the connection with the relay server 705 as described above may be transparent to the secure application 95. As another example, this connection may be based on a protocol that is non-native to the secure application 95. As is known in the art, a secure application 95 is created from a target application that is typically available to one or more parties for download, such as through an app store or some other electronic storefront. The original portions of the target application that make up the secure application 95 may be unaware of the connection with the relay server 705 and such portions may continue to make calls in their native formats. This principle also applies to the system framework. The secure framework 45 of the secure application 95, however, may be configured to abstract the necessary calls and protocol associated with establishing the connection with the relay server 705. As such, the original developer is relieved of having to change any of the original code to facilitate the relaying arrangement or to operate in accordance with the non-native protocol of the relay server 705.
In one embodiment, the protocol for the connection to the relay server 705 can be configured to traverse firewalls or other security features to permit access to protected internal resources. For example, this connection may be based on a layer 4 solution (transport) per the open systems interconnection (OSI) model, as opposed to tunneling or networking technologies associated with layer 3 of the OSI model. This arrangement reduces the complexities of the connection because there are no addressing resolution issues, as would be the case for a VPN solution. This is, the transport layer solution obviates the need to deploy a networking infrastructure, and the non-native protocol can be resolved by the secure framework 45. Almost any type of data may flow over the relay connection, as well, including encrypted and unencrypted traffic.
The secure application 95 may be configured to connect to an external entity in multiple ways. For example, the secure application 95 may use blocking or non-blocking sockets or transmission control protocol (TCP) or user datagram protocol (UDP) connections. The solutions presented here can accommodate all or at least a portion of the possible ways a secure application 95 may be designed to connect to the external entity. That is, the secure framework 45 may be constructed to intercept the various networking calls of the secure application 95 and to perform the redirects and connection-initiation with the relay server 705 in accordance with the protocol of the relay server 705, as described above. Thus, in one arrangement, a plurality of predetermined disparate networking calls or functions of the secure applications 95 that are based on various connection modes may be identified. These calls or functions may then be manipulated when they are activated in accordance with the descriptions above to permit data exchange over a relay connection that is based on a single connection mode.
In some cases, the execution of this relaying process may hinge on the type of network to which the computing device 15 is connected. For example, if the computing device 15 is camped on a Wi-Fi network or some other public, private or free access network, a setting may be activated that prevents the data session request from being redirected back to the secure application or the initiation of the connection with the relay server 705, or both. In addition, the relaying process may only be conducted if the computing device 15 is camped on a predetermined network, such as its home cellular network. As such, if the device 15 is roaming, the setting described above may be activated. Of course, these embodiments are not meant to be limiting, as the techniques presented here may be applicable to any one of the networks with which the computing device 15 may conduct communications.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be understood by those skilled in the relevant art(s) that various changes in form and details may be made therein without departing from the spirit and scope of the subject matter as defined in the appended claims. Accordingly, the breadth and scope of the present subject matter should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
The flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
This patent application is a continuation of U.S. patent application Ser. No. 15/658,015, filed on Jul. 24, 2017, which is a divisional of U.S. patent application Ser. No. 14/822,150, filed on Aug. 10, 2015, which is a divisional of U.S. patent application Ser. No. 14/669,120, filed on Mar. 26, 2015 (issued as U.S. Pat. No. 9,106,538 on Aug. 11, 2015), which is a continuation of U.S. patent application Ser. No. 14/615,799, filed on Feb. 6, 2015, which is a continuation-in-part of U.S. patent application Ser. No. 14/608,662, filed on Jan. 29, 2015 (issued as U.S. Pat. No. 9,232,013 on Jan. 5, 2016), which is a continuation-in-part of U.S. patent application Ser. No. 14/573,601, filed on Dec. 17, 2014 (issued as U.S. Pat. No. 9,232,012 on Jan. 5, 2016), which is a continuation of U.S. patent application Ser. No. 14/478,066, filed on Sep. 5, 2014 (issued as U.S. Pat. No. 8,938,547 on Jan. 20, 2015), each of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5265951 | Kumar | Nov 1993 | A |
5294782 | Kumar | Mar 1994 | A |
5357585 | Kumar | Oct 1994 | A |
5381348 | Ernst et al. | Jan 1995 | A |
5386106 | Kumar | Jan 1995 | A |
5484989 | Kumar et al. | Jan 1996 | A |
5489001 | Yang | Feb 1996 | A |
5489773 | Kumar | Feb 1996 | A |
5519783 | Kumar | May 1996 | A |
5521369 | Kumar | May 1996 | A |
5548477 | Kumar et al. | Aug 1996 | A |
5548478 | Kumar | Aug 1996 | A |
5616906 | Kumar | Apr 1997 | A |
5632373 | Kumar et al. | May 1997 | A |
5638257 | Kumar et al. | Jun 1997 | A |
5648760 | Kumar | Jul 1997 | A |
5696496 | Kumar | Dec 1997 | A |
5708560 | Kumar et al. | Jan 1998 | A |
5774869 | Toader | Jun 1998 | A |
5872699 | Nishii et al. | Feb 1999 | A |
5902991 | Kumar | May 1999 | A |
5925873 | Kumar | Jul 1999 | A |
6023721 | Cummings | Feb 2000 | A |
6027021 | Kumar | Feb 2000 | A |
6052709 | Paul | Apr 2000 | A |
6072401 | Kumar | Jun 2000 | A |
6084769 | Moore et al. | Jul 2000 | A |
6104451 | Matsuoka et al. | Aug 2000 | A |
6151606 | Mendez | Nov 2000 | A |
6181553 | Cipolla et al. | Jan 2001 | B1 |
6223815 | Shibasaki | May 2001 | B1 |
6266539 | Pardo | Jul 2001 | B1 |
6275983 | Orton et al. | Aug 2001 | B1 |
6276448 | Maruno | Aug 2001 | B1 |
6397246 | Wolfe | May 2002 | B1 |
6449149 | Ohashi et al. | Sep 2002 | B1 |
6457030 | Adams et al. | Sep 2002 | B1 |
6473768 | Srivastava et al. | Oct 2002 | B1 |
6571221 | Stewart et al. | May 2003 | B1 |
6647103 | Pinard et al. | Nov 2003 | B2 |
6674640 | Pokharna et al. | Jan 2004 | B2 |
6681238 | Brice, Jr. et al. | Jan 2004 | B1 |
6708221 | Mendez et al. | Mar 2004 | B1 |
6799277 | Colvin | Sep 2004 | B2 |
6952617 | Kumar | Oct 2005 | B1 |
6952671 | Kolesnik et al. | Oct 2005 | B1 |
6983311 | Haitsuka et al. | Jan 2006 | B1 |
7039041 | Robohm et al. | May 2006 | B2 |
7058088 | Tomita et al. | Jun 2006 | B2 |
7120462 | Kumar | Oct 2006 | B2 |
7130193 | Hirafuji et al. | Oct 2006 | B2 |
7149543 | Kumar | Dec 2006 | B2 |
7184801 | Farcasiu | Feb 2007 | B2 |
7236770 | Sankaramanchi | Jun 2007 | B2 |
7243163 | Friend et al. | Jul 2007 | B1 |
7275073 | Ganji et al. | Sep 2007 | B2 |
7301767 | Takenoshita et al. | Nov 2007 | B2 |
7392531 | Thurston et al. | Jun 2008 | B2 |
7447799 | Kushner | Nov 2008 | B2 |
7552196 | Levi et al. | Jun 2009 | B2 |
7574177 | Tupman et al. | Aug 2009 | B2 |
7574200 | Hassan et al. | Aug 2009 | B2 |
7577462 | Kumar | Aug 2009 | B2 |
7620001 | Ganji | Nov 2009 | B2 |
7620392 | Maurya et al. | Nov 2009 | B1 |
7627343 | Fadell et al. | Dec 2009 | B2 |
7688952 | Light et al. | Mar 2010 | B2 |
7702322 | Maurya et al. | Apr 2010 | B1 |
7778035 | Huang et al. | Aug 2010 | B2 |
7788382 | Jones et al. | Aug 2010 | B1 |
7821984 | Wilson | Oct 2010 | B2 |
7823214 | Rubinstein et al. | Oct 2010 | B2 |
7869789 | Hassan et al. | Jan 2011 | B2 |
7885645 | Postma et al. | Feb 2011 | B2 |
7890091 | Puskoor et al. | Feb 2011 | B2 |
7912994 | Cornwell et al. | Mar 2011 | B2 |
7958245 | Thomas et al. | Jun 2011 | B2 |
7970386 | Bhat et al. | Jun 2011 | B2 |
7992084 | Ozawa | Aug 2011 | B2 |
8000736 | Forstall et al. | Aug 2011 | B2 |
8010701 | Wilkinson et al. | Aug 2011 | B2 |
8012219 | Mendez et al. | Sep 2011 | B2 |
8023425 | Raleigh | Sep 2011 | B2 |
8051432 | Dash et al. | Nov 2011 | B2 |
8054211 | Vidal | Nov 2011 | B2 |
8060074 | Danford et al. | Nov 2011 | B2 |
8078157 | Maurya et al. | Dec 2011 | B2 |
8078739 | Somasundaram et al. | Dec 2011 | B1 |
8086332 | Dorogusker et al. | Dec 2011 | B2 |
8099090 | Postma et al. | Jan 2012 | B2 |
8099541 | Serebrin | Jan 2012 | B2 |
8180893 | Spertus | May 2012 | B1 |
8181264 | Linn et al. | May 2012 | B2 |
8185149 | Forstall et al. | May 2012 | B2 |
8199507 | Shohet et al. | Jun 2012 | B2 |
8254902 | Bell et al. | Aug 2012 | B2 |
8272048 | Cooper et al. | Sep 2012 | B2 |
8375369 | Mensch et al. | Feb 2013 | B2 |
8484728 | De Atley et al. | Jul 2013 | B2 |
8549656 | Blaisdell et al. | Oct 2013 | B2 |
8601579 | Kristic et al. | Dec 2013 | B2 |
8693358 | Hodges | Apr 2014 | B2 |
8695060 | Wade et al. | Apr 2014 | B2 |
8831517 | Shankaranarayanan | Sep 2014 | B2 |
8832652 | Mueller et al. | Sep 2014 | B2 |
8850424 | Friedman et al. | Sep 2014 | B2 |
8869235 | Qureshi | Oct 2014 | B2 |
8893261 | Fainkichen et al. | Nov 2014 | B2 |
8893298 | Roark et al. | Nov 2014 | B2 |
8924970 | Newell | Dec 2014 | B2 |
8938547 | Roberge et al. | Jan 2015 | B1 |
8955068 | Venkataramani et al. | Feb 2015 | B1 |
8955152 | Enderwick et al. | Feb 2015 | B1 |
8959579 | Barton et al. | Feb 2015 | B2 |
8966574 | Kiehtreiber et al. | Feb 2015 | B2 |
8977842 | McCorkendale et al. | Mar 2015 | B1 |
8978110 | Dabbiere et al. | Mar 2015 | B2 |
8984657 | Nerger et al. | Mar 2015 | B2 |
8990116 | Ferino et al. | Mar 2015 | B2 |
8990901 | Aravindakshan et al. | Mar 2015 | B2 |
8990920 | Pontillo et al. | Mar 2015 | B2 |
9232012 | Roberge | Jan 2016 | B1 |
9232338 | Henry et al. | Jan 2016 | B1 |
20010047363 | Peng | Nov 2001 | A1 |
20020013852 | Janik | Jan 2002 | A1 |
20020032609 | Wilkman | Mar 2002 | A1 |
20020103879 | Mondragon | Aug 2002 | A1 |
20020131404 | Mehta et al. | Sep 2002 | A1 |
20020133534 | Forslow | Sep 2002 | A1 |
20020138828 | Robohm | Sep 2002 | A1 |
20020143956 | Tanimoto | Oct 2002 | A1 |
20020172336 | Postma et al. | Nov 2002 | A1 |
20020178381 | Lee et al. | Nov 2002 | A1 |
20030002637 | Miyauchi et al. | Jan 2003 | A1 |
20030083988 | Reith | May 2003 | A1 |
20030090864 | Kuo | May 2003 | A1 |
20030130984 | Quinlan et al. | Jul 2003 | A1 |
20030177207 | Nagasaka et al. | Sep 2003 | A1 |
20030229718 | Tock et al. | Dec 2003 | A1 |
20040019675 | Hebeler et al. | Jan 2004 | A1 |
20040030887 | Harrisville-Wolff et al. | Feb 2004 | A1 |
20040034853 | Gibbons et al. | Feb 2004 | A1 |
20040047348 | O'Neill et al. | Mar 2004 | A1 |
20040052343 | Glaser et al. | Mar 2004 | A1 |
20040060687 | Moss, II | Apr 2004 | A1 |
20040078812 | Calvert | Apr 2004 | A1 |
20040083125 | Almeida et al. | Apr 2004 | A1 |
20040098449 | Bar-Lavi et al. | May 2004 | A1 |
20040128665 | Gouleau et al. | Jul 2004 | A1 |
20040139170 | Shen et al. | Jul 2004 | A1 |
20040162092 | Marsico et al. | Aug 2004 | A1 |
20040190256 | Genova et al. | Sep 2004 | A1 |
20050107114 | Ocock | May 2005 | A1 |
20050120331 | Asare et al. | Jun 2005 | A1 |
20050131885 | Komatsu et al. | Jun 2005 | A1 |
20050144445 | Yeap et al. | Jun 2005 | A1 |
20050149726 | Joshi et al. | Jul 2005 | A1 |
20050177506 | Rissanen | Aug 2005 | A1 |
20050188318 | Tamir et al. | Aug 2005 | A1 |
20050213331 | Lewis | Sep 2005 | A1 |
20060030341 | Pham | Feb 2006 | A1 |
20060085645 | Bangui | Apr 2006 | A1 |
20060121880 | Cowsar et al. | Jun 2006 | A1 |
20060143250 | Peterson et al. | Jun 2006 | A1 |
20060184788 | Sandhu et al. | Aug 2006 | A1 |
20060200658 | Penkethman | Sep 2006 | A1 |
20060277209 | Kral et al. | Dec 2006 | A1 |
20060277311 | Franco et al. | Dec 2006 | A1 |
20070041536 | Koskinen et al. | Feb 2007 | A1 |
20070080823 | Fu et al. | Apr 2007 | A1 |
20070093243 | Kapadekar et al. | Apr 2007 | A1 |
20070150388 | Mendiratta et al. | Jun 2007 | A1 |
20070156870 | McCollum | Jul 2007 | A1 |
20070165654 | Chai et al. | Jul 2007 | A1 |
20070169105 | Amberny et al. | Jul 2007 | A1 |
20070183772 | Baldwin et al. | Aug 2007 | A1 |
20070209061 | Dekeyzer et al. | Sep 2007 | A1 |
20070239878 | Bowers et al. | Oct 2007 | A1 |
20070294380 | Natarajan et al. | Dec 2007 | A1 |
20080060085 | Samzelius et al. | Mar 2008 | A1 |
20080070495 | Stricklen et al. | Mar 2008 | A1 |
20080115225 | Jogand-Coulomb et al. | May 2008 | A1 |
20080125079 | O'Neil et al. | May 2008 | A1 |
20080126736 | Heil | May 2008 | A1 |
20080134325 | Kim et al. | Jun 2008 | A1 |
20080140969 | Lawrence | Jun 2008 | A1 |
20080201453 | Assenmacher | Aug 2008 | A1 |
20080207178 | Tischer | Aug 2008 | A1 |
20080222621 | Knight et al. | Sep 2008 | A1 |
20080271014 | Serebrin et al. | Oct 2008 | A1 |
20080281953 | Blaisdell | Nov 2008 | A1 |
20080287096 | Aaltonen et al. | Nov 2008 | A1 |
20080297481 | Higginson | Dec 2008 | A1 |
20080299989 | King et al. | Dec 2008 | A1 |
20090126017 | Chahal | May 2009 | A1 |
20090132828 | Kiester et al. | May 2009 | A1 |
20090150970 | Hinds et al. | Jun 2009 | A1 |
20090187726 | Serebrin et al. | Jul 2009 | A1 |
20090219899 | Dostal et al. | Sep 2009 | A1 |
20100004959 | Weingrad | Jan 2010 | A1 |
20100008337 | Bajko | Jan 2010 | A1 |
20100042478 | Reisman | Feb 2010 | A1 |
20100042990 | Kinder | Feb 2010 | A1 |
20100077035 | Li et al. | Mar 2010 | A1 |
20100115113 | Short et al. | May 2010 | A1 |
20100157543 | Shohet et al. | Jun 2010 | A1 |
20100157989 | Krzyzanowski et al. | Jun 2010 | A1 |
20100157990 | Krzyzanowski et al. | Jun 2010 | A1 |
20100159898 | Krzyzanowski et al. | Jun 2010 | A1 |
20100180276 | Jiva | Jul 2010 | A1 |
20100192207 | Raleigh | Jul 2010 | A1 |
20100208634 | Eng | Aug 2010 | A1 |
20100222097 | Gisby et al. | Sep 2010 | A1 |
20100235233 | Goldberg et al. | Sep 2010 | A1 |
20100328064 | Rogel | Dec 2010 | A1 |
20100330953 | Rogel et al. | Dec 2010 | A1 |
20100330961 | Rogel | Dec 2010 | A1 |
20100332635 | Rogel et al. | Dec 2010 | A1 |
20100333088 | Rogel et al. | Dec 2010 | A1 |
20110004941 | Mendez et al. | Jan 2011 | A1 |
20110029779 | Sekiya et al. | Feb 2011 | A1 |
20110038120 | Merz et al. | Feb 2011 | A1 |
20110040607 | Shkedi | Feb 2011 | A1 |
20110058052 | Bolton et al. | Mar 2011 | A1 |
20110082789 | Boyd | Apr 2011 | A1 |
20110082900 | Nagpal et al. | Apr 2011 | A1 |
20110093583 | Piemonte et al. | Apr 2011 | A1 |
20110145932 | Nerger et al. | Jun 2011 | A1 |
20110167492 | Ghosh et al. | Jul 2011 | A1 |
20110178863 | Daigle | Jul 2011 | A1 |
20110179483 | Paterson et al. | Jul 2011 | A1 |
20110208838 | Thomas et al. | Aug 2011 | A1 |
20110215949 | Yamold et al. | Sep 2011 | A1 |
20110225252 | Bhat et al. | Sep 2011 | A1 |
20120005746 | Wei et al. | Jan 2012 | A1 |
20120066223 | Schentrup et al. | Mar 2012 | A1 |
20120070017 | Dorogusker et al. | Mar 2012 | A1 |
20120079423 | Bender et al. | Mar 2012 | A1 |
20120084184 | Raleigh et al. | Apr 2012 | A1 |
20120088481 | Postma et al. | Apr 2012 | A1 |
20120096364 | Wilkinson et al. | Apr 2012 | A1 |
20120096365 | Wilkinson et al. | Apr 2012 | A1 |
20120102564 | Schentrup et al. | Apr 2012 | A1 |
20120102574 | Schentrup et al. | Apr 2012 | A1 |
20120117274 | Lydon et al. | May 2012 | A1 |
20120144050 | Shah | Jun 2012 | A1 |
20120151464 | Koren et al. | Jun 2012 | A1 |
20120158829 | Ahmavaara et al. | Jun 2012 | A1 |
20120159567 | Toy et al. | Jun 2012 | A1 |
20120184282 | Malkamaki et al. | Jul 2012 | A1 |
20120185767 | Schlegel | Jul 2012 | A1 |
20120185879 | Van Vechten et al. | Jul 2012 | A1 |
20120202449 | Meyer | Aug 2012 | A1 |
20120210443 | Blaisdell et al. | Aug 2012 | A1 |
20120246484 | Blaisdell et al. | Sep 2012 | A1 |
20120246731 | Blaisdell et al. | Sep 2012 | A1 |
20120296744 | Cue et al. | Nov 2012 | A1 |
20120302204 | Gupta et al. | Nov 2012 | A1 |
20120304280 | Hayashida | Nov 2012 | A1 |
20120304310 | Blasidell | Nov 2012 | A1 |
20120309348 | De Atley et al. | Dec 2012 | A1 |
20120311697 | Swingler et al. | Dec 2012 | A1 |
20120311702 | Krstic et al. | Dec 2012 | A1 |
20120324057 | Macris | Dec 2012 | A1 |
20130055341 | Cooper et al. | Feb 2013 | A1 |
20130065585 | Pelletier | Mar 2013 | A1 |
20130091543 | Wade | Apr 2013 | A1 |
20130091557 | Gurrapu | Apr 2013 | A1 |
20130117805 | Kent et al. | May 2013 | A1 |
20130130652 | Deasy et al. | May 2013 | A1 |
20130132854 | Raleigh et al. | May 2013 | A1 |
20130132941 | Lindeman et al. | May 2013 | A1 |
20130145278 | Newell et al. | Jun 2013 | A1 |
20130145448 | Newell | Jun 2013 | A1 |
20130226669 | Chiang et al. | Aug 2013 | A1 |
20130247147 | Pontillo et al. | Sep 2013 | A1 |
20130254401 | Marshall et al. | Sep 2013 | A1 |
20130260713 | Toy et al. | Oct 2013 | A1 |
20130260730 | Toy et al. | Oct 2013 | A1 |
20130316703 | Girard et al. | Nov 2013 | A1 |
20140006237 | Chiang et al. | Jan 2014 | A1 |
20140006347 | Qureshi | Jan 2014 | A1 |
20140007222 | Qureshi et al. | Jan 2014 | A1 |
20140047532 | Sowatskey | Feb 2014 | A1 |
20140059525 | Jawa et al. | Feb 2014 | A1 |
20140059573 | Jawa et al. | Feb 2014 | A1 |
20140059703 | Hung et al. | Feb 2014 | A1 |
20140082641 | Clark | Mar 2014 | A1 |
20140089376 | Caldas et al. | Mar 2014 | A1 |
20140089487 | Debate | Mar 2014 | A1 |
20140173747 | Govindaraju | Jun 2014 | A1 |
20140177839 | Wagner et al. | Jun 2014 | A1 |
20140181518 | Kim et al. | Jun 2014 | A1 |
20140181803 | Cooper et al. | Jun 2014 | A1 |
20140208397 | Peterson | Jul 2014 | A1 |
20140230008 | Feroz et al. | Aug 2014 | A1 |
20140230011 | Drewry et al. | Aug 2014 | A1 |
20140250505 | Kim et al. | Sep 2014 | A1 |
20140279454 | Raman et al. | Sep 2014 | A1 |
20140280934 | Reagan et al. | Sep 2014 | A1 |
20140280955 | Stuntebeck et al. | Sep 2014 | A1 |
20140282828 | Stunebeck | Sep 2014 | A1 |
20140282829 | Dabbiere et al. | Sep 2014 | A1 |
20140282846 | DeWeese et al. | Sep 2014 | A1 |
20140282869 | Dabbiere | Sep 2014 | A1 |
20140282894 | Manton | Sep 2014 | A1 |
20140282897 | Stuntebeck | Sep 2014 | A1 |
20140282929 | Tse | Sep 2014 | A1 |
20140317679 | Wade et al. | Oct 2014 | A1 |
20140337528 | Barton et al. | Nov 2014 | A1 |
20150033324 | Fainkichen et al. | Jan 2015 | A1 |
20150109967 | Hogan et al. | Apr 2015 | A1 |
20150150092 | Raizada | May 2015 | A1 |
20150208336 | Iihoshi | Jul 2015 | A1 |
20150271739 | Numakami | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
00984639 | Jun 2006 | KR |
9705551 | Feb 1997 | WO |
2010080498 | Jul 2010 | WO |
2010080500 | Jul 2010 | WO |
2012024418 | Feb 2012 | WO |
2012037064 | Mar 2012 | WO |
2012047275 | Apr 2012 | WO |
2012061046 | May 2012 | WO |
2012061047 | May 2012 | WO |
2012064870 | May 2012 | WO |
2013050602 | Apr 2013 | WO |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT/US2009/068475, dated Apr. 23, 2010, 17 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2009/068482, dated Feb. 23, 2010, 12 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2011/051302, dated Jan. 26, 2012, 2 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2011/057351, dated May 9, 2012, 10 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2011/057354, dated May 9, 2012, 10 pages. |
International Search Report for Int'l Appln. No. PCT/US2011/38184, dated Aug. 26, 2011, 2 pages. |
International Search Report and Written Opinion for Int'l Appln. No. PCT/US2011/060023, dated May 25, 2012, 10 pages. |
International Search Report and Written Opinion for Int'l Appln. No. PCT/US2011/048109, dated Dec. 12, 2011, 10 pages. |
International Search Report and Written Opinion for Int'l Appln. No. PCT/US2012/045923, dated Oct. 4, 2012, 8 pages. |
A Closer Look at Horizon App Manager, Printout from Website: http://www.horizonmanager.com/?page_id=211, copyright 2011 VMware, Inc. |
Fulton, S.M., “Xerox Goes Up Against RIM in ‘BYOD’ Mobile Device Management,” dated Feb. 22, 2012 [retrieved Aug. 2, 2012] retrieved from the Internet: <http://www.readwriteweb.com/cloud/2012/02/xerox-goes-up-against-rim-in-b.php>, 4 pgs. |
International Search Report and Written Opinions for International Patent Application No. PCT/US2012/058689, dated Mar. 21, 2013, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 13/626,470, dated Jan. 6, 2014, 7 pages. |
Amendment and Reply for U.S. Appl. No. 13/626,470, dated Jan. 16, 2014, 21 pages. |
Non-Final Office Action for U.S. Appl. No. 14/615,799, dated Feb. 6, 2015, mailed 9, 2015, 17 pages. |
Non-Final Office Action for U.S. Appl. No. 14/658,998, dated Mar. 16, 2015, mailed 19, 2015, 21 pages. |
Notice of Allowance and Examiners Amendment for U.S. Appl. No. 14/669,120, dated Jun. 25, 2015, 31 pages. |
Non-Final Office Action for U.S. Appl. No. 14/608,662, dated Jun. 4, 2015, 19 pages. |
IBM, “Application Protection Inside an Untrusted OS,” Feb. 9, 2010, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 14/205,686, dated Dec. 5, 2014, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 14/205,661, dated Dec. 22, 2014, 12 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2014/060657, dated Jan. 29, 2015, 10 pages. |
Multifaceted Resource Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers', 11th IEEE/ACM International Conference on Grid Computing, 2010 pp. 25-32. See abstract and sections I-II. |
Extended European Search Report and Search Opinion for European Application No. 12839583.7, dated Apr. 19, 2015, 6 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2014/060838, dated Apr. 23, 2015, 15 pages. |
Amendment and Reply for U.S. Appl. No. 14/205,686, filed May 1, 2015, 11 pages. |
Amendment and Reply for U.S. Appl. No. 14/205,661, filed May 1, 2015, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 14/641,795, dated May 15, 2015, 16 pages. |
U.S. Appl. No. 14/710,208, filed May 12, 2015, 80 pages. |
U.S. Appl. No. 14/608,662, filed Jan. 29, 2015, 42 pages. |
U.S. Appl. No. 14/641,795, filed Mar. 9, 2015, 61 pages. |
U.S. Appl. No. 14/658,998, filed Mar. 16, 2015,41 pages. |
U.S. Appl. No. 14/615,799, filed Feb. 6, 2015, 50 pages. |
Jack Madden, “Good Technology will soon let you bundle mobile data with their email app”, Brian Madden, dated Jul. 31, 2014, 2 pages. |
Jack Madden,“After mobile app management, the next step for BYOD can be split phone numbers and split billing”, Brian Madden, dated Jan. 27, 2015, 2 pages. |
U.S. Appl. No. 14/573,601, filed Dec. 17, 2014, 30 pages. |
Non-Final Office Action for U.S. Appl. No. 14/573,601, dated Apr. 24, 2015, 18 pages. |
Final Office Action for U.S. Appl. No. 14/615,799, dated Nov. 20, 2015, 18 pages. |
Amendment and Reply and Declaration in Support of Amendment for U.S. Appl. No. 14/608,662, filed Sep. 4, 2015,20 pages. |
Amendment and Reply and Declaration in Support of Amendment for U.S. Appl. No. 14/615,799, filed Sep. 9, 2015, 20 pages. |
International Search Report for Int'l Appln. No. PCT/US2011/038184, dated Aug. 26, 2011, 2 pages. |
U.S. Appl. No. 14/669,120, filed Mar. 26, 2015, 51 pages_. |
Extended European Search Report and Search Opinion for European Application No. 12839583.7, dated Apr. 9, 2015, 6 pages. |
U.S. Appl. No. 14/802,701, filed Jul. 17, 2015,79 pages. |
U.S. Appl. No. 14/816,385, filed Aug. 3, 2015, 60 pages. |
Number | Date | Country | |
---|---|---|---|
20190362285 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14822150 | Aug 2015 | US |
Child | 15658015 | US | |
Parent | 14669120 | Mar 2015 | US |
Child | 14822150 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15658015 | Jul 2017 | US |
Child | 16533094 | US | |
Parent | 14615799 | Feb 2015 | US |
Child | 14669120 | US | |
Parent | 14478066 | Sep 2014 | US |
Child | 14573601 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14608662 | Jan 2015 | US |
Child | 14615799 | US | |
Parent | 14573601 | Dec 2014 | US |
Child | 14608662 | US |