This disclosure is generally related to the field of data storage. More specifically, this disclosure is related to a method and system for enhancing a distributed storage system by decoupling computation and network tasks.
The proliferation of the Internet and e-commerce continues to create a vast amount of digital content. Various distributed storage systems have been created to access and store such digital content. In general, a distributed storage system can include computing entities/operations and storage entities/operations. The computing and storage functionality can be separated via a disaggregation or separation of the storage computation. For example, a storage node in a storage cluster of a distributed storage system can be designed to work with entities such as a multi-core powerful central processing unit (CPU), a high-capacity drive, and a high-throughput network. However, as each of these three entities experiences improvement and growth, the issue of synchronization among and between these three entities remains a challenge. For example, there may exist a disorder or mismatch between the evolution and deployment of these three entities in a distributed storage system, which can result in inconsistent behavior and performance in the distributed storage system.
One embodiment provides a computer system. The computer system comprises: a plurality of storage devices; and a first component configured to manage connections to the plurality of storage devices. A respective storage device comprises: a port coupled to the first component; at least one microprocessor; and a plurality of storage drives with non-volatile memory.
In some embodiments, the computer system further comprises a computing device which includes the first component, a central processing unit, and a volatile memory.
In some embodiments, the computing device comprises a single integrated circuit.
In some embodiments, the central processing unit of the computing device is configured to perform one or more of: managing meta-data; placing data; scrubbing, refreshing, or deleting data; communicating with other computing devices via the first component; and handling multiple replicas of data.
In some embodiments, the computing device is configured to: receive a request to write data to a non-volatile memory of the computer system; and transmit the data, via the first component, to a selected storage device. The selected storage device is configured to write the data to a non-volatile memory of a first storage drive of the selected storage device.
In some embodiments, the computing device is further configured to: perform general computation tasks associated with the computer system; process, by the first component, the data to obtain processed data; and transmit the processed data, by the computing device via the first component, to the selected storage device. In writing the data to the non-volatile memory of the first storage drive of the selected storage device, the selected storage device is further configured to: determine, by a flash translation layer module of the selected storage device, the first storage drive of the selected storage device to which to write the processed data; perform, by a controller of the first storage drive, specific in-drive computation tasks on the processed data to obtain further processed data; and write, by the controller of the first storage drive, the further processed data to the non-volatile memory of the first storage drive.
In some embodiments, the computer system further comprises a second component functioning as the network interface card, the access switch, and a central processing unit.
In some embodiments, the first component is further configured to: process data, including operations relating to a cyclic redundancy check, a hash function, and encryption; handle network communication; and handle communication between a pod switch and the plurality of storage devices.
In some embodiments, the first component functions both as a network interface card and as an access switch, the port comprises an Ethernet port, and the respective storage device further comprises a plurality of PCIe lanes via which to access the plurality of storage drives. The at least one microprocessor and the PCIe lanes comprise a storage system on chip (SoC) component of the respective storage drive. The storage SoC component is configured to: manage the plurality of storage drives; and perform operations relating to a file system and a flash translation layer module associated with the storage drives.
In some embodiments, a controller of a respective storage drive is configured to perform one or more of: erasure coding; compression; sorting; and filtering.
In the figures, like reference numerals refer to the same figure elements.
The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the embodiments described herein are not limited to the embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein.
Overview
The embodiments described herein solve the challenges of performance mismatch between and among the CPU, the storage drive, and networking in a distributed storage system, by providing a system which decouples the computing, capacity, and bandwidth in a storage server. The system can provide the flexibility necessary for a scalable and module distributed system with reduced constraints.
As described above, a distributed storage system can include computing entities/operations and storage entities/operations. The computing and storage functionality can be separated via a disaggregation or separation of the storage computation. For example, a storage node in a storage cluster of a distributed storage system can be designed to work with entities such as a multi-core powerful CPU, a high-capacity drive, and a high-throughput network. However, as each of these three entities has experiences improvement and growth, the issue of synchronization among and between these three entities remains a challenge. For example, there may exist a disorder or mismatch between the evolution and deployment of these three entities in a distributed storage system, which can result in inconsistent behavior and performance in the distributed storage system.
Furthermore, existing distributed storage systems may also suffer from the following constraints. First, the process of adding more storage drives to a storage node is limited by the number of PCIe lanes available and that can be provided by a CPU. Second, if a storage node may only have a fixed number of PCIe lanes, the throughput of the drives in the storage node is limited. As the capacity of one server increases, the input/output per second per gigabyte (IOPS/GB) decreases. Third, as the throughput of a network interface card (NIC) and the network both increase (e.g., from 10 GB to 25 GB to 50 GB and to 100 GB), the network bottleneck is significantly reduced, but the bottleneck may remain or move to the throughput of the drive itself. Fourth, using an open-channel solid state drive (SSD) may result in an advantage or improvement in the Quality of Service (QoS) and performance, but may also increase the utilization of the CPU and the memory on the host side, which can result the CPU to rely on or use more cores, which can lead to an increased cost.
The embodiments described herein address these challenges and constraints by providing a “FrontTop” device which includes a “combination NIC” and is coupled to a plurality of “bricks.” In the conventional distributed storage system, a front-end computing device generally includes a NIC for communicating with an access switch (ASW) (which in turn communicates with a pod switch (PSW), etc.) In the embodiments described herein, the FrontTop device instead includes a combination NIC (or a “combo NIC”), which merges the prior ASW and NIC functionality. The combo NIC can provide Ethernet ports with which to connect to the Ethernet ports of each brick, and each brick can include a storage system on chip (SoC) and multiple storage drives (e.g., SSDs, open-channel SSDs, Alibaba Open-Channel (AOC) SSDs, and the like). An exemplary environment depicting the FrontTop device and the plurality of bricks is described below in relation to
Thus, by decoupling the computation, capacity, and bandwidth in a storage server of a distributed storage system, the embodiments described herein can provide more consistent behavior and performance in the distributed storage system, and can result in a more efficient method for deploying storage in a data center. These can result in an increased QoS, and can also result in a more modular and scalable deployment of the storage capacity in a distributed storage system, which can result in a reduced total cost of operation (TCO).
A “storage server” or a “storage node” refers to a computing device which can include multiple storage drives. A distributed storage system can include multiple storage servers.
A “brick” refers to a storage device which includes a storage SoC controller, Ethernet ports, and PCIe lanes which are coupled to a plurality of storage drives, e.g., SSDs, AOC SSDs, and other open-channel SSDs. Each storage drive can include its own controller, e.g., an SSD controller, an AOC SSD controller, etc.
A “combination NIC” or a “combo NIC” refers to a NIC which merges the functionality of an access switch (ASW) (by communicating with upstream or higher level entities, such as a pod switch (PSW)) and the functionality of a conventional NIC (by communicating with the plurality of downstream storage drives or bricks as described in this disclosure).
The terms “FrontTop” device and “Front-Top” device are used interchangeably in this disclosure, and refer to a computing device which includes a combo NIC, memory, and a CPU. A FrontTop device can communicate with a plurality of bricks via Ethernet ports provided by the combo NIC. In some instances, the term “FrontTop” is used in this disclosure, while in other instances (e.g., the Figures) the term “FRONT-TOP” is used.
A “storage drive” refers to a device or a drive with a non-volatile memory which can provide persistent storage of data, e.g., a solid state drive (SSD) or a hard disk drive (HDD). Examples of SSDs include open-channel SSDs.
Exemplary Environment for Data Access in the Prior Art
As described above, this conventional environment can result in challenges relating to performance, lifespan, scalability, and cost. First, the process of adding more storage drives to a storage node is limited by the number of PCIe lanes available and that can be provided by a CPU. Second, if a storage node may only have a fixed number of PCIe lanes, the throughput of the drives in the storage node is limited. As the capacity of one server increases, the input/output per second per gigabyte (IOPS/GB) decreases. Third, as the throughput of a NIC and the network both increase (e.g., from 10 GB to 25 GB to 50 GB and to 100 GB), the network bottleneck is significantly reduced, but the bottleneck may remain or move to the throughput of the drive itself. Fourth, using an open-channel SSD may result in an advantage or improvement in the Quality of Service (QoS) and performance, but may also increase the utilization of the CPU and the memory on the host side, which can cause the CPU to rely on or use more cores, which in turn can lead to an increased TCO.
Exemplary Environment for Facilitating Data Access Using a FrontEnd which Includes a Combo NIC Connected to Multiple Bricks
Computing device 220 can include: a NIC 222; a CPU 228; and DIMMs 224, 226, 230, and 232. Computing device 220 can communicate with an access switch 210 via NIC 222. Access switch 210 can handle communications to/from a pod switch (via a communication 201). Storage devices 240 and 260 can communicate with access switch 210 via an Ethernet port (e.g., an Ethernet port 242 and an Ethernet port 262, respectively). In environment 200, NIC 222 and access switch 210 are depicted as shaded with left-slanting diagonal lines to indicate that computing device 220 includes a first component which is a combination NIC (“combo NIC”) that merges the functionality of NIC 222 and access switch 210 (as depicted in detail below in
Storage device 240 can include: Ethernet port 242 coupled to computing device 220; at least one microprocessor (such as 244, 246, 248, and 250); PCIe lanes 252; and a plurality of storage drives with non-volatile memory (such as SSDs 254 and 256). PCIe lanes 252 can be used for communication with and data transfer to/from SSDs 254-256. Similarly, storage device 260 can include: Ethernet port 262 coupled to computing device 220; at least one microprocessor (such as 264, 266, 268, and 270); PCIe lanes 272; and a plurality of storage drives with non-volatile memory (such as SSDs 280 and 282). PCIe lanes 272 can be used for communication with and data transfer to/from SSDs 274-276. In some embodiments, SSDs 254, 256, 274, and 276 can be open-channel SSDs.
Each FrontTop device can include a combo NIC and can be coupled to a plurality of storage devices (bricks). Each FrontTop device, via its combo NIC, can be coupled or connected to two PSWs for upstream communication, and can be further coupled or connected to a plurality of storage devices (bricks) for downstream communication. Because the combo NIC connects directly to the two PSWs, the overall network path is shortened, which can result in a decrease in latency. At the same time, the system can avoid congestion on the access switch because the functionality of the former ASW can be distributed among multiple combo NICs.
For example, computing device 330/FrontTop device 330 can include a combo NIC 332, can be coupled upstream to PSW 322 and PSW 324, and can further be coupled downstream to storage devices 334/bricks 334. Similarly: computing device 340/FrontTop device 340 can include a combo NIC 342, can be coupled upstream to PSW 324 and PSW 328, and can further be coupled downstream to storage devices 344/bricks 344; and computing device 350/FrontTop device 350 can include a combo NIC 352, can be coupled upstream to PSW 322 and PSW 326, and can further be coupled downstream to storage devices 354/bricks 354.
In topology 300, each FrontTop device is responsible for running software for the distributed storage system and for handling the network connection (via its respective combo NIC), while the storage device (brick) itself is responsible for managing the storage drives. In some embodiments, the FrontTop device is implemented as a powerful SoC in order to realize the functionality and responsibility of the FrontTop device. That is, the whole set of the FrontTop's function may be implemented using one integrated circuit given a sufficient set of CPU cores, bandwidth for the network controller, and physical memory. The embodiments described herein can integrate the memory controller to expand the memory space, which significantly simplifies the storage server, and can result in a more efficient overall distributed storage system.
Thus, in the embodiments described herein, by placing in a FrontTop computing device a combination NIC which functions both as a NIC and an access switch, the system can add storage devices (bricks) which include multiple storage drives (e.g., SSDs) in a modular and scalable fashion. This allows the system to decouple networking tasks from computation tasks (as described below in relation to
Exemplary Task Assignment in a Computer System
Combo NIC 430 can correspond to combo NIC 282 of
Storage SoC 440 can correspond to storage SoC 241 of
SSD controller 450 can correspond to an SSD controller (not shown) for storage drive 251 of
Thus, in the embodiments described herein, the system can assign various computational tasks to multiple levels. Offloading the compute operations into the SSD itself can achieve the goal of in-storage computing, and placing the local storage engine in the storage SoC of each storage device (brick) can result in a flexible organization for the storage device as a resource. Furthermore, placing the network efficiency as well as certain computational tasks (such as encryption and parity checks) into the combo NIC can result in a more efficient system. As a result, the system provides a design for a storage server in a distributed storage system or cluster which can result in a more agile and efficient environment, by renovating and balancing the computation, network, and storage tasks within the distributed storage system or cluster. The system can also be configured into a finer-grained granularity to allocate resources with improved flexibility and to reduce the influencing range of online faults.
In another embodiment, the system can merge the stand-alone CPU of the FrontTop device with the combo NIC as a single SoC, as described below in relation to
Exemplary Converged SoC Design for FrontTop Device
Exemplary Method for Facilitating Data Access in a Computer System
The system processes, by the first component of the computing device, the data to obtain processed data (operation 626). Processing the data can include, e.g., operations relating to a CRC check, a hash function, and encryption/decryption, as depicted above in relation to combo NIC 430 of
The system determines, by a flash translation layer module of the selected storage device, a first storage drive of the selected storage device to which to write the processed data (operation 630). The system can determine the first storage drive of the selected storage device based on a mapping table or other data structure maintained by the FTL module of the selected storage device. The FTL module can handle the mapping of logical addresses to physical addresses. The system performs, by a controller of the first storage drive, specific in-drive computation tasks on the processed data to obtain further processed data (operation 632). These in-drive computation tasks can include, e.g., erasure coding, compression/decompression, sorting, and filtering/re-filtering, as depicted above in relation to SSD controller 450 of
While the methods and computer systems described in this disclosure for facilitating data access in a computer system depict handling an incoming write request, similar operations and components are employed in handling a read operation. The following describes the “read” version corresponding to a previously described operation of
Similarly, the system can perform the read version of the operations described above in relation to
Exemplary Computer System and Apparatus
Content-processing system 712 can include instructions, which when executed by computing device 701, can cause computing device 701 to perform methods and/or processes described in this disclosure. Specifically, content-processing system 712 can include instructions for receiving and transmitting data packets, including data to be read or written, an input/output (I/O) request (e.g., a read request or a write request), and data associated with a read request, a write request, or an I/O request (communication module 714). Content-processing system 712 can also include instructions for receiving, by the computing device, a request to write data to a non-volatile memory of the computer system (communication module 714). Content-processing system 712 can include instructions for transmitting the data, by the computing device via the first component, to a selected storage device (communication module 714). Content-processing system 712 can include instructions for writing the data to a non-volatile memory of a first storage drive of the selected storage device (data-managing module 716).
Content-processing system 712 can include instructions for performing, by the computing device, general computation tasks associated with the computer system (data-managing module 716). Content-processing system 712 can include instructions for processing, by the first component, the data to obtain processed data (data-managing module 716). Content-processing system 712 can include instructions for transmitting the processed data, by the computing device via the first component, to the selected storage device (communication module 714).
Furthermore, content-processing system 712 can include instructions for: managing meta-data; placing data; scrubbing, refreshing, or deleting data; communicating with other computing devices via the first component; and handling multiple replicas of data (data-managing module 716). Content-processing system 712 can include instructions for processing data by the first component, including operations relating to a cyclic redundancy check, a hash function, and encryption (data-managing module 716). Content-processing system 712 can include instructions for handling, by the first component, network communication (communication module 714, functioning as part of combo NIC 706). Content-processing system 712 can include instructions for handling, by the first component, communication between a pod switch and the plurality of storage devices (communication module 714, functioning as part of combo NIC 706).
Storage device (brick) 720 can include Ethernet ports 722, processors/controller 724, PCIe lanes 726, a storage component 728, and a non-volatile memory 730. Storage component 728 can store instructions to be performed by processors/controller 724. Non-volatile memory 730 can correspond to or be associated with a storage drive, such as an SSD (e.g., corresponding to storage drive 251 of
Storage component 728 can include instructions for determining, by a flash translation layer module of the selected storage device, the first storage drive of the selected storage device to which to write the processed data (FTL-managing module 734). Storage component 728 can include instructions for performing, by a controller of the first storage drive, specific in-drive computation tasks on the processed data to obtain further processed data (data-processing module 740). Storage component 728 can include instructions for writing, by the controller of the first storage drive, the further processed data to the non-volatile memory of the first storage drive (communication module 732 and data-writing module 738).
Storage component 728 can include instructions for managing, by the storage SoC, the plurality of storage drives (communication module 732 and drive-managing module 736). Storage component 728 can include instructions for performing, by the storage SoC, operations relating to a file system and a flash translation layer module (communication module 732 and FTL-managing module 734). Storage component 728 can include instructions for performing, by a controller of a respective storage drive, one or more of: erasure coding; compression; sorting; and filtering (data-processing module 740).
Data 718 and data 742 can include any data that is required as input or generated as output by the methods and/or processes described in this disclosure. Specifically, data 718 and data 742 can store at least: data; a request; a read request; a write request; an input/output (I/O) request; data associated with a read request, a write request, or an I/O request; an erasure code (EC); encoded or decoded data; EC-encoded/decoded data; compressed or decompressed data; encrypted or decrypted data; sorted data; filtered or re-filtered data; meta-data; scrubbed, refreshed, or deleted data; a replica; an indicator of a pod switch, an access switch, a port, a PCIe lane, a computing device (or a FrontTop device), a storage device (or a brick), and a storage drive; a CRC verification; a hash function; an encryption algorithm; and a decryption algorithm.
The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system. The computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.
The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.
Furthermore, the methods and processes described above can be included in hardware modules. For example, the hardware modules can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), and other programmable-logic devices now known or later developed. When the hardware modules are activated, the hardware modules perform the methods and processes included within the hardware modules.
The foregoing embodiments described herein have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the embodiments described herein to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the embodiments described herein. The scope of the embodiments described herein is defined by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 16/515,889, titled “Method and System for Enhancing a Distributed Storage System By Decoupling Computation and Network Tasks,” by inventor Shu Li, filed 18 Jul. 2019.
Number | Name | Date | Kind |
---|---|---|---|
3893071 | Bossen | Jul 1975 | A |
4562494 | Bond | Dec 1985 | A |
4718067 | Peters | Jan 1988 | A |
4775932 | Oxley | Oct 1988 | A |
4858040 | Hazebrouck | Aug 1989 | A |
5394382 | Hu | Feb 1995 | A |
5602693 | Brunnett | Feb 1997 | A |
5715471 | Otsuka | Feb 1998 | A |
5732093 | Huang | Mar 1998 | A |
5802551 | Komatsu | Sep 1998 | A |
5930167 | Lee | Jul 1999 | A |
6098185 | Wilson | Aug 2000 | A |
6148377 | Carter | Nov 2000 | A |
6226650 | Mahajan et al. | May 2001 | B1 |
6243795 | Yang | Jun 2001 | B1 |
6457104 | Tremaine | Sep 2002 | B1 |
6658478 | Singhal | Dec 2003 | B1 |
6795894 | Neufeld | Sep 2004 | B1 |
7351072 | Muff | Apr 2008 | B2 |
7565454 | Zuberi | Jul 2009 | B2 |
7599139 | Bombet | Oct 2009 | B1 |
7953899 | Hooper | May 2011 | B1 |
7958433 | Yoon | Jun 2011 | B1 |
8085569 | Kim | Dec 2011 | B2 |
8144512 | Huang | Mar 2012 | B2 |
8166233 | Schibilla | Apr 2012 | B2 |
8260924 | Koretz | Sep 2012 | B2 |
8281061 | Radke | Oct 2012 | B2 |
8452819 | Sorenson, III | May 2013 | B1 |
8516284 | Chan | Aug 2013 | B2 |
8527544 | Colgrove | Sep 2013 | B1 |
8751763 | Ramarao | Jun 2014 | B1 |
8819367 | Fallone | Aug 2014 | B1 |
8825937 | Atkisson | Sep 2014 | B2 |
8832688 | Tang | Sep 2014 | B2 |
8868825 | Hayes | Oct 2014 | B1 |
8904061 | O'Brien, III | Dec 2014 | B1 |
8949208 | Xu | Feb 2015 | B1 |
9015561 | Hu | Apr 2015 | B1 |
9031296 | Kaempfer | May 2015 | B2 |
9043545 | Kimmel | May 2015 | B2 |
9088300 | Chen | Jul 2015 | B1 |
9092223 | Pani | Jul 2015 | B1 |
9129628 | Fallone | Sep 2015 | B1 |
9141176 | Chen | Sep 2015 | B1 |
9208817 | Li | Dec 2015 | B1 |
9213627 | Van Acht | Dec 2015 | B2 |
9280472 | Dang | Mar 2016 | B1 |
9280487 | Candelaria | Mar 2016 | B2 |
9311939 | Malina | Apr 2016 | B1 |
9336340 | Dong | May 2016 | B1 |
9436595 | Benitez | Sep 2016 | B1 |
9495263 | Pang | Nov 2016 | B2 |
9529601 | Dharmadhikari | Dec 2016 | B1 |
9529670 | O'Connor | Dec 2016 | B2 |
9569454 | Ebsen | Feb 2017 | B2 |
9575982 | Sankara Subramanian | Feb 2017 | B1 |
9588698 | Karamcheti | Mar 2017 | B1 |
9588977 | Wang | Mar 2017 | B1 |
9607631 | Rausch | Mar 2017 | B2 |
9671971 | Trika | Jun 2017 | B2 |
9747202 | Shaharabany | Aug 2017 | B1 |
9836232 | Vasquez | Dec 2017 | B1 |
9852076 | Garg | Dec 2017 | B1 |
9875053 | Frid | Jan 2018 | B2 |
9912530 | Singatwaria | Mar 2018 | B2 |
9923562 | Vinson | Mar 2018 | B1 |
9946596 | Hashimoto | Apr 2018 | B2 |
10013169 | Fisher | Jul 2018 | B2 |
10199066 | Feldman | Feb 2019 | B1 |
10229735 | Natarajan | Mar 2019 | B1 |
10235198 | Qiu | Mar 2019 | B2 |
10268390 | Warfield | Apr 2019 | B2 |
10318467 | Barzik | Jun 2019 | B2 |
10361722 | Lee | Jul 2019 | B2 |
10437670 | Koltsidas | Oct 2019 | B1 |
10459663 | Agombar | Oct 2019 | B2 |
10642522 | Li | May 2020 | B2 |
10649657 | Zaidman | May 2020 | B2 |
10678432 | Dreier | Jun 2020 | B1 |
10756816 | Dreier | Aug 2020 | B1 |
10928847 | Suresh | Feb 2021 | B2 |
10990526 | Lam | Apr 2021 | B1 |
20010032324 | Slaughter | Oct 2001 | A1 |
20010046295 | Sako | Nov 2001 | A1 |
20020010783 | Primak | Jan 2002 | A1 |
20020039260 | Kilmer | Apr 2002 | A1 |
20020073358 | Atkinson | Jun 2002 | A1 |
20020095403 | Chandrasekaran | Jul 2002 | A1 |
20020112085 | Berg | Aug 2002 | A1 |
20020161890 | Chen | Oct 2002 | A1 |
20030074319 | Jaquette | Apr 2003 | A1 |
20030145274 | Hwang | Jul 2003 | A1 |
20030163594 | Aasheim | Aug 2003 | A1 |
20030163633 | Aasheim | Aug 2003 | A1 |
20030217080 | White | Nov 2003 | A1 |
20040010545 | Pandya | Jan 2004 | A1 |
20040066741 | Dinker | Apr 2004 | A1 |
20040103238 | Avraham | May 2004 | A1 |
20040143718 | Chen | Jul 2004 | A1 |
20040255171 | Zimmer | Dec 2004 | A1 |
20040267752 | Wong | Dec 2004 | A1 |
20040268278 | Hoberman | Dec 2004 | A1 |
20050038954 | Saliba | Feb 2005 | A1 |
20050097126 | Cabrera | May 2005 | A1 |
20050138325 | Hofstee | Jun 2005 | A1 |
20050144358 | Conley | Jun 2005 | A1 |
20050149827 | Lambert | Jul 2005 | A1 |
20050174670 | Dunn | Aug 2005 | A1 |
20050177672 | Rao | Aug 2005 | A1 |
20050177755 | Fung | Aug 2005 | A1 |
20050195635 | Conley | Sep 2005 | A1 |
20050235067 | Creta | Oct 2005 | A1 |
20050235171 | Igari | Oct 2005 | A1 |
20060031709 | Hiraiwa | Feb 2006 | A1 |
20060101197 | Georgis | May 2006 | A1 |
20060156009 | Shin | Jul 2006 | A1 |
20060156012 | Beeson | Jul 2006 | A1 |
20060184813 | Bui | Aug 2006 | A1 |
20070033323 | Gorobets | Feb 2007 | A1 |
20070061502 | Lasser | Mar 2007 | A1 |
20070101096 | Gorobets | May 2007 | A1 |
20070250756 | Gower | Oct 2007 | A1 |
20070266011 | Rohrs | Nov 2007 | A1 |
20070283081 | Lasser | Dec 2007 | A1 |
20070283104 | Wellwood | Dec 2007 | A1 |
20070285980 | Shimizu | Dec 2007 | A1 |
20080028223 | Rhoads | Jan 2008 | A1 |
20080034154 | Lee | Feb 2008 | A1 |
20080065805 | Wu | Mar 2008 | A1 |
20080082731 | Karamcheti | Apr 2008 | A1 |
20080112238 | Kim | May 2008 | A1 |
20080163033 | Yim | Jul 2008 | A1 |
20080195829 | Wilsey | Aug 2008 | A1 |
20080301532 | Uchikawa | Dec 2008 | A1 |
20090006667 | Lin | Jan 2009 | A1 |
20090089544 | Liu | Apr 2009 | A1 |
20090113219 | Aharonov | Apr 2009 | A1 |
20090125788 | Wheeler | May 2009 | A1 |
20090183052 | Kanno | Jul 2009 | A1 |
20090254705 | Abali | Oct 2009 | A1 |
20090282275 | Yermalayeu | Nov 2009 | A1 |
20090287956 | Flynn | Nov 2009 | A1 |
20090307249 | Koifman | Dec 2009 | A1 |
20090307426 | Galloway | Dec 2009 | A1 |
20090310412 | Jang | Dec 2009 | A1 |
20100031000 | Flynn | Feb 2010 | A1 |
20100169470 | Takashige | Jul 2010 | A1 |
20100217952 | Iyer | Aug 2010 | A1 |
20100229224 | Etchegoyen | Sep 2010 | A1 |
20100241848 | Smith | Sep 2010 | A1 |
20100281254 | Carro | Nov 2010 | A1 |
20100321999 | Yoo | Dec 2010 | A1 |
20100325367 | Kornegay | Dec 2010 | A1 |
20100332922 | Chang | Dec 2010 | A1 |
20110031546 | Uenaka | Feb 2011 | A1 |
20110055458 | Kuehne | Mar 2011 | A1 |
20110055471 | Thatcher | Mar 2011 | A1 |
20110060722 | Li | Mar 2011 | A1 |
20110072204 | Chang | Mar 2011 | A1 |
20110099418 | Chen | Apr 2011 | A1 |
20110153903 | Hinkle | Jun 2011 | A1 |
20110161784 | Selinger | Jun 2011 | A1 |
20110191525 | Hsu | Aug 2011 | A1 |
20110218969 | Anglin | Sep 2011 | A1 |
20110231598 | Hatsuda | Sep 2011 | A1 |
20110239083 | Kanno | Sep 2011 | A1 |
20110252188 | Weingarten | Oct 2011 | A1 |
20110258514 | Lasser | Oct 2011 | A1 |
20110289263 | McWilliams | Nov 2011 | A1 |
20110289280 | Koseki | Nov 2011 | A1 |
20110292538 | Haga | Dec 2011 | A1 |
20110296411 | Tang | Dec 2011 | A1 |
20110299317 | Shaeffer | Dec 2011 | A1 |
20110302353 | Confalonieri | Dec 2011 | A1 |
20110302408 | McDermott | Dec 2011 | A1 |
20120017037 | Riddle | Jan 2012 | A1 |
20120039117 | Webb | Feb 2012 | A1 |
20120084523 | Littlefield | Apr 2012 | A1 |
20120089774 | Kelkar | Apr 2012 | A1 |
20120096330 | Przybylski | Apr 2012 | A1 |
20120117399 | Chan | May 2012 | A1 |
20120147021 | Cheng | Jun 2012 | A1 |
20120151253 | Horn | Jun 2012 | A1 |
20120159099 | Lindamood | Jun 2012 | A1 |
20120159289 | Piccirillo | Jun 2012 | A1 |
20120173792 | Lassa | Jul 2012 | A1 |
20120203958 | Jones | Aug 2012 | A1 |
20120210095 | Nellans | Aug 2012 | A1 |
20120233523 | Krishnamoorthy | Sep 2012 | A1 |
20120246392 | Cheon | Sep 2012 | A1 |
20120278579 | Goss | Nov 2012 | A1 |
20120284587 | Yu | Nov 2012 | A1 |
20120324312 | Moyer | Dec 2012 | A1 |
20120331207 | Lassa | Dec 2012 | A1 |
20130013880 | Tashiro | Jan 2013 | A1 |
20130016970 | Koka | Jan 2013 | A1 |
20130018852 | Barton | Jan 2013 | A1 |
20130024605 | Sharon | Jan 2013 | A1 |
20130054822 | Mordani | Feb 2013 | A1 |
20130061029 | Huff | Mar 2013 | A1 |
20130073798 | Kang | Mar 2013 | A1 |
20130080391 | Raichstein | Mar 2013 | A1 |
20130138871 | Chiu | May 2013 | A1 |
20130145085 | Yu | Jun 2013 | A1 |
20130145089 | Eleftheriou | Jun 2013 | A1 |
20130151759 | Shim | Jun 2013 | A1 |
20130159251 | Skrenta | Jun 2013 | A1 |
20130159723 | Brandt | Jun 2013 | A1 |
20130166820 | Batwara | Jun 2013 | A1 |
20130173845 | Aslam | Jul 2013 | A1 |
20130179898 | Fang | Jul 2013 | A1 |
20130191601 | Peterson | Jul 2013 | A1 |
20130205183 | Fillingim | Aug 2013 | A1 |
20130219131 | Alexandron | Aug 2013 | A1 |
20130227347 | Cho | Aug 2013 | A1 |
20130238955 | D Abreu | Sep 2013 | A1 |
20130254622 | Kanno | Sep 2013 | A1 |
20130318283 | Small | Nov 2013 | A1 |
20130318395 | Kalavade | Nov 2013 | A1 |
20130329492 | Yang | Dec 2013 | A1 |
20140006688 | Yu | Jan 2014 | A1 |
20140019650 | Li | Jan 2014 | A1 |
20140025638 | Hu | Jan 2014 | A1 |
20140082273 | Segev | Mar 2014 | A1 |
20140082412 | Matsumura | Mar 2014 | A1 |
20140095769 | Borkenhagen | Apr 2014 | A1 |
20140095827 | Wei | Apr 2014 | A1 |
20140108414 | Stillerman | Apr 2014 | A1 |
20140108891 | Strasser | Apr 2014 | A1 |
20140164447 | Tarafdar | Jun 2014 | A1 |
20140164879 | Tam | Jun 2014 | A1 |
20140181532 | Camp | Jun 2014 | A1 |
20140195564 | Talagala | Jul 2014 | A1 |
20140215129 | Kuzmin | Jul 2014 | A1 |
20140223079 | Zhang | Aug 2014 | A1 |
20140233950 | Luo | Aug 2014 | A1 |
20140250259 | Ke | Sep 2014 | A1 |
20140279927 | Constantinescu | Sep 2014 | A1 |
20140304452 | De La Iglesia | Oct 2014 | A1 |
20140310574 | Yu | Oct 2014 | A1 |
20140359229 | Cota-Robles | Dec 2014 | A1 |
20140365707 | Talagala | Dec 2014 | A1 |
20140379965 | Gole | Dec 2014 | A1 |
20150006792 | Lee | Jan 2015 | A1 |
20150019798 | Huang | Jan 2015 | A1 |
20150039849 | Lewis | Feb 2015 | A1 |
20150082317 | You | Mar 2015 | A1 |
20150106556 | Yu | Apr 2015 | A1 |
20150106559 | Cho | Apr 2015 | A1 |
20150121031 | Feng | Apr 2015 | A1 |
20150142752 | Chennamsetty | May 2015 | A1 |
20150143030 | Gorobets | May 2015 | A1 |
20150186657 | Nakhjiri | Jul 2015 | A1 |
20150199234 | Choi | Jul 2015 | A1 |
20150227316 | Warfield | Aug 2015 | A1 |
20150234845 | Moore | Aug 2015 | A1 |
20150269964 | Fallone | Sep 2015 | A1 |
20150277937 | Swanson | Oct 2015 | A1 |
20150286477 | Mathur | Oct 2015 | A1 |
20150294684 | Qjang | Oct 2015 | A1 |
20150301964 | Brinicombe | Oct 2015 | A1 |
20150304108 | Obukhov | Oct 2015 | A1 |
20150310916 | Leem | Oct 2015 | A1 |
20150317095 | Voigt | Nov 2015 | A1 |
20150341123 | Nagarajan | Nov 2015 | A1 |
20150347025 | Law | Dec 2015 | A1 |
20150363271 | Haustein | Dec 2015 | A1 |
20150363328 | Candelaria | Dec 2015 | A1 |
20150372597 | Luo | Dec 2015 | A1 |
20160014039 | Reddy | Jan 2016 | A1 |
20160026575 | Samanta | Jan 2016 | A1 |
20160041760 | Kuang | Feb 2016 | A1 |
20160048327 | Jayasena | Feb 2016 | A1 |
20160048341 | Constantinescu | Feb 2016 | A1 |
20160054922 | Awasthi | Feb 2016 | A1 |
20160062885 | Ryu | Mar 2016 | A1 |
20160077749 | Ravimohan | Mar 2016 | A1 |
20160077764 | Ori | Mar 2016 | A1 |
20160077968 | Sela | Mar 2016 | A1 |
20160098344 | Gorobets | Apr 2016 | A1 |
20160098350 | Tang | Apr 2016 | A1 |
20160103631 | Ke | Apr 2016 | A1 |
20160110254 | Cronie | Apr 2016 | A1 |
20160124742 | Rangasamy | May 2016 | A1 |
20160132237 | Jeong | May 2016 | A1 |
20160141047 | Sehgal | May 2016 | A1 |
20160154601 | Chen | Jun 2016 | A1 |
20160155750 | Yasuda | Jun 2016 | A1 |
20160162187 | Lee | Jun 2016 | A1 |
20160179399 | Melik-Martirosian | Jun 2016 | A1 |
20160188223 | Camp | Jun 2016 | A1 |
20160188890 | Naeimi | Jun 2016 | A1 |
20160203000 | Parmar | Jul 2016 | A1 |
20160224267 | Yang | Aug 2016 | A1 |
20160232103 | Schmisseur | Aug 2016 | A1 |
20160234297 | Ambach | Aug 2016 | A1 |
20160239074 | Lee | Aug 2016 | A1 |
20160239380 | Wideman | Aug 2016 | A1 |
20160274636 | Kim | Sep 2016 | A1 |
20160306699 | Resch | Oct 2016 | A1 |
20160306853 | Sabaa | Oct 2016 | A1 |
20160321002 | Jung | Nov 2016 | A1 |
20160335085 | Scalabrino | Nov 2016 | A1 |
20160342345 | Kankani | Nov 2016 | A1 |
20160343429 | Nieuwejaar | Nov 2016 | A1 |
20160350002 | Vergis | Dec 2016 | A1 |
20160350385 | Poder | Dec 2016 | A1 |
20160364146 | Kuttner | Dec 2016 | A1 |
20160381442 | Heanue | Dec 2016 | A1 |
20170004037 | Park | Jan 2017 | A1 |
20170010652 | Huang | Jan 2017 | A1 |
20170075583 | Alexander | Mar 2017 | A1 |
20170075594 | Badam | Mar 2017 | A1 |
20170091110 | Ash | Mar 2017 | A1 |
20170109199 | Chen | Apr 2017 | A1 |
20170109232 | Cha | Apr 2017 | A1 |
20170123655 | Sinclair | May 2017 | A1 |
20170147499 | Mohan | May 2017 | A1 |
20170161202 | Erez | Jun 2017 | A1 |
20170162235 | De | Jun 2017 | A1 |
20170168986 | Sajeepa | Jun 2017 | A1 |
20170177217 | Kanno | Jun 2017 | A1 |
20170177259 | Motwani | Jun 2017 | A1 |
20170185316 | Nieuwejaar | Jun 2017 | A1 |
20170185498 | Gao | Jun 2017 | A1 |
20170192848 | Pamies-Juarez | Jul 2017 | A1 |
20170199823 | Hayes | Jul 2017 | A1 |
20170212708 | Suhas | Jul 2017 | A1 |
20170220254 | Warfield | Aug 2017 | A1 |
20170221519 | Matsuo | Aug 2017 | A1 |
20170228157 | Yang | Aug 2017 | A1 |
20170242722 | Qiu | Aug 2017 | A1 |
20170249162 | Tsirkin | Aug 2017 | A1 |
20170262176 | Kanno | Sep 2017 | A1 |
20170262178 | Hashimoto | Sep 2017 | A1 |
20170262217 | Pradhan | Sep 2017 | A1 |
20170269998 | Jung | Sep 2017 | A1 |
20170279460 | Camp | Sep 2017 | A1 |
20170285976 | Durham | Oct 2017 | A1 |
20170286311 | Juenemann | Oct 2017 | A1 |
20170322888 | Booth | Nov 2017 | A1 |
20170344470 | Yang | Nov 2017 | A1 |
20170344491 | Pandurangan | Nov 2017 | A1 |
20170353576 | Guim Bernat | Dec 2017 | A1 |
20180024772 | Madraswala | Jan 2018 | A1 |
20180024779 | Kojima | Jan 2018 | A1 |
20180033491 | Marelli | Feb 2018 | A1 |
20180052797 | Barzik | Feb 2018 | A1 |
20180067847 | Oh | Mar 2018 | A1 |
20180069658 | Benisty | Mar 2018 | A1 |
20180074730 | Inoue | Mar 2018 | A1 |
20180076828 | Kanno | Mar 2018 | A1 |
20180088867 | Kaminaga | Mar 2018 | A1 |
20180107591 | Smith | Apr 2018 | A1 |
20180113631 | Zhang | Apr 2018 | A1 |
20180143780 | Cho | May 2018 | A1 |
20180150640 | Li | May 2018 | A1 |
20180165038 | Authement | Jun 2018 | A1 |
20180165169 | Camp | Jun 2018 | A1 |
20180165340 | Agarwal | Jun 2018 | A1 |
20180167268 | Liguori | Jun 2018 | A1 |
20180173620 | Cen | Jun 2018 | A1 |
20180188970 | Liu | Jul 2018 | A1 |
20180189175 | Ji | Jul 2018 | A1 |
20180189182 | Wang | Jul 2018 | A1 |
20180212951 | Goodrum | Jul 2018 | A1 |
20180219561 | Litsyn | Aug 2018 | A1 |
20180226124 | Perner | Aug 2018 | A1 |
20180232151 | Badam | Aug 2018 | A1 |
20180260148 | Klein | Sep 2018 | A1 |
20180270110 | Chugtu | Sep 2018 | A1 |
20180293014 | Ravimohan | Oct 2018 | A1 |
20180300203 | Kathpal | Oct 2018 | A1 |
20180321864 | Benisty | Nov 2018 | A1 |
20180322024 | Nagao | Nov 2018 | A1 |
20180329776 | Lai | Nov 2018 | A1 |
20180336921 | Ryun | Nov 2018 | A1 |
20180349396 | Blagojevic | Dec 2018 | A1 |
20180356992 | Lamberts | Dec 2018 | A1 |
20180357126 | Dhuse | Dec 2018 | A1 |
20180373428 | Kan | Dec 2018 | A1 |
20180373655 | Liu | Dec 2018 | A1 |
20180373664 | Vijayrao | Dec 2018 | A1 |
20190012111 | Li | Jan 2019 | A1 |
20190050327 | Li | Feb 2019 | A1 |
20190065085 | Jean | Feb 2019 | A1 |
20190073261 | Halbert | Mar 2019 | A1 |
20190073262 | Chen | Mar 2019 | A1 |
20190087089 | Yoshida | Mar 2019 | A1 |
20190087115 | Li | Mar 2019 | A1 |
20190087328 | Kanno | Mar 2019 | A1 |
20190116127 | Pismenny | Apr 2019 | A1 |
20190171532 | Abadi | Jun 2019 | A1 |
20190172820 | Meyers | Jun 2019 | A1 |
20190196748 | Badam | Jun 2019 | A1 |
20190196907 | Khan | Jun 2019 | A1 |
20190205206 | Hornung | Jul 2019 | A1 |
20190212949 | Pletka | Jul 2019 | A1 |
20190220392 | Lin | Jul 2019 | A1 |
20190227927 | Miao | Jul 2019 | A1 |
20190272242 | Kachare | Sep 2019 | A1 |
20190278654 | Kaynak | Sep 2019 | A1 |
20190317901 | Kachare | Oct 2019 | A1 |
20190320020 | Lee | Oct 2019 | A1 |
20190339998 | Momchilov | Nov 2019 | A1 |
20190377632 | Oh | Dec 2019 | A1 |
20190377821 | Pleshachkov | Dec 2019 | A1 |
20190391748 | Li | Dec 2019 | A1 |
20200004456 | Williams | Jan 2020 | A1 |
20200004674 | Williams | Jan 2020 | A1 |
20200013458 | Schreck | Jan 2020 | A1 |
20200042223 | Li | Feb 2020 | A1 |
20200042387 | Shani | Feb 2020 | A1 |
20200089430 | Kanno | Mar 2020 | A1 |
20200092209 | Chen | Mar 2020 | A1 |
20200097189 | Tao | Mar 2020 | A1 |
20200143885 | Kim | May 2020 | A1 |
20200159425 | Flynn | May 2020 | A1 |
20200167091 | Haridas | May 2020 | A1 |
20200210309 | Jung | Jul 2020 | A1 |
20200218449 | Leitao | Jul 2020 | A1 |
20200225875 | Oh | Jul 2020 | A1 |
20200242021 | Gholamipour | Jul 2020 | A1 |
20200250032 | Goyal | Aug 2020 | A1 |
20200257598 | Yazovitsky | Aug 2020 | A1 |
20200322287 | Connor | Oct 2020 | A1 |
20200326855 | Wu | Oct 2020 | A1 |
20200328192 | Zaman | Oct 2020 | A1 |
20200348888 | Kim | Nov 2020 | A1 |
20200387327 | Hsieh | Dec 2020 | A1 |
20200401334 | Saxena | Dec 2020 | A1 |
20200409791 | Devriendt | Dec 2020 | A1 |
20210010338 | Santos | Jan 2021 | A1 |
20210075633 | Sen | Mar 2021 | A1 |
20210089392 | Shirakawa | Mar 2021 | A1 |
20210103388 | Choi | Apr 2021 | A1 |
20210191635 | Hu | Jun 2021 | A1 |
20210286555 | Li | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
2003022209 | Jan 2003 | JP |
2011175422 | Sep 2011 | JP |
9418634 | Aug 1994 | WO |
1994018634 | Aug 1994 | WO |
Entry |
---|
https://web.archive.org/web/20071130235034/http://en.wikipedia.org:80/wiki/logical_block_addressing wikipedia screen shot retriefed on wayback Nov. 20, 2007 showing both physical and logical addressing used historically to access data on storage devices (Year: 2007). |
Ivan Picoli, Carla Pasco, Bjorn Jonsson, Luc Bouganim, Philippe Bonnet. “uFLIP-OC: Understanding Flash I/O Patterns on Open-Channel Solid-State Drives.” APSys'17, Sep. 2017, Mumbai, India, pp. 1-7, 2017, <10.1145/3124680.3124741>. <hal-01654985>. |
EMC Powerpath Load Balancing and Failover Comparison with native MPIO operating system solutions. Feb. 2011. |
Tsuchiya, Yoshihiro et al. “DBLK: Deduplication for Primary Block Storage”, MSST 2011, Denver, CO, May 23-27, 2011 pp. 1-5. |
Chen Feng, et al. “CAFTL: A Content-Aware Flash Translation Layer Enhancing the Lifespan of Flash Memory based Solid State Devices”< FAST'11, San Jose, CA Feb. 15-17, 2011, pp. 1-14. |
Wu, Huijun et al. “HPDedup: A Hybrid Prioritized Data Deduplication Mechanism for Primary Storage in the Cloud”, Cornell Univ. arXiv: 1702.08153v2[cs.DC], Apr. 16, 2017, pp. 1-14https://www.syncids.com/#. |
WOW: Wise Ordering for Writes—Combining Spatial and Temporal Locality in Non-Volatile Caches by Gill (Year: 2005). |
Helen H. W. Chan et al. “HashKV: Enabling Efficient Updated in KV Storage via Hashing”, https://www.usenix.org/conference/atc18/presentation/chan, (Year: 2018). |
S. Hong and D. Shin, “NAND Flash-Based Disk Cache Using SLC/MLC Combined Flash Memory,” 2010 International Workshop on Storage Network Architecture and Parallel I/Os, Incline Village, NV, 2010, pp. 21-30. |
Arpaci-Dusseau et al. “Operating Systems: Three Easy Pieces”, Originally published 2015; Pertinent: Chapter 44; flash-based SSDs, available at http://pages.cs.wisc.edu/˜remzi/OSTEP/. |
Jimenex, X., Novo, D. and P. Ienne, “Pheonix:Reviving MLC Blocks as SLC to Extend NAND Flash Devices Lifetime, ”Design, Automation & Text in Europe Conference & Exhibition (Date), 2013. |
Yang, T. Wu, H. and W. Sun, “GD-FTL: Improving the Performance and Lifetime of TLC SSD by Downgrading Worn-out Blocks,” IEEE 37th International Performance Computing and Communications Conference (IPCCC), 2018. |
C. Wu, D. Wu, H. Chou and C. Cheng, “Rethink the Design of Flash Translation Layers in a Component-Based View”, in IEEE Acess, vol. 5, pp. 12895-12912, 2017. |
Po-Liang Wu, Yuan-Hao Chang and T. Kuo, “A file-system-aware FTL design for flash-memory storage systems,” 2009, pp. 393-398. |
S. Choudhuri and T. Givargis, “Preformance improvement of block based NAND flash translation layer”, 2007 5th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and Systems Synthesis (CODES+ISSS). Saizburg, 2007, pp. 257-262. |
A. Zuck, O. Kishon and S. Toledo. “LSDM: Improving the Preformance of Mobile Storage with a Log-Structured Address Remapping Device Driver”, 2014 Eighth International Conference on Next Generation Mobile Apps, Services and Technologies, Oxford, 2014, pp. 221-228. |
J. Jung and Y. Won, “nvramdisk: A Transactional Block Device Driver for Non-Volatile RAM”, in IEEE Transactions on Computers, vol. 65, No. 2, pp. 589-600, Feb. 1, 2016. |
Te I et al. (Pensieve: a Machine Assisted SSD Layer for Extending the Lifetime: (Year: 2018). |
Arm (“Cortex-R5 and Cortex-R5F”, Technical reference Manual, Revision r1p1) (Year:2011). |
Number | Date | Country | |
---|---|---|---|
20210072907 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16515889 | Jul 2019 | US |
Child | 17087101 | US |