1. Field
The present invention relates generally to medical imaging systems, and more particularly to a method and apparatus for enhancing the presentation of Doppler signals.
2. Background
Ultrasound devices have been developed and refined for the diagnosis and treatment of various medical conditions. Such devices have been developed, for example, to track the magnitude and direction of motion of moving objects, and/or the position of moving objects over time. By way of example, Doppler echocardiography is one ultrasound technique used to determine motion information from the recording and measurement of Doppler data for the diagnosis and treatment of cardiac conditions, and is described in greater detail below.
The Doppler principle, as used in Doppler echocardiography, generally involves exploiting an observed phenomenon that the frequency of reflected ultrasound pulses is altered by a moving object, such as moving tissue or blood cells. This alteration, or change, in frequency is generally referred to as a Doppler shift. The magnitude of the frequency change, or Doppler shift, is related to the velocity of the moving object from which the ultrasound pulses are reflected. The polarity of the frequency change, or Doppler shift, is related to the direction of motion relative to the ultrasound source: a positive frequency shift (increase) indicates the motion is towards the ultrasound sensor and a negative frequency shift (decrease) indicates that the motion is away from the ultrasound sensor. That is, if the object is moving towards the source of the Doppler signal, the reflected ultrasound pulses are compressed, resulting in an increase in frequency of the pulses. Likewise, if the object is moving away, the reflected ultrasound pulses are expanded, resulting in a decrease in frequency of the pulses. As such, the magnitude and polarity of the Doppler shift can be used to track the magnitude and direction of motion of moving objects.
Treatment and diagnosis techniques operating on the Doppler principle generally involve one of two types of Doppler signals, either continuous wave (CW) Doppler, or pulsed wave (PW) Doppler.
In general, CW Doppler techniques involve continuously transmitting an ultrasound signal and continuously receiving the reflections, or echoes, of the transmitted signals that are reflected, or backscattered, from objects that are in a region where the transmitted beam overlaps with a region where signals can be received by a receiver. Because the Doppler signals are continuously transmitted and received, it is not possible to differentiate, or separate, Doppler signals from objects that are at different locations within the overlap region that is common to both the transmitter and receiver. In contrast, PW Doppler techniques involve transmitting sets of ultrasound pulses and turning on a receiver to detect the reflections of the transmitted pulse for only a portion of the time between sets of pulses. This technique, also referred to as “gating”, turns the receiver “on” following a delay after the pulse is transmitted, where the length of the delay between the transmission and gating the receiver on corresponds to a first round trip distance along the ultrasound beam to the area of interest. Thus, by “gating” the receiver, turning the receiver on and off at desired times relative to a transmission, only signals from a “range” within the overlap region that is common to both the transmitter and receiver are received. The gate times correspond to the time it takes for the ultrasound signal to travel to and the reflected signal to travel back to the receiver from the desired range within the common region. This technique is also referred to as “range gating” or “time gating.”
The selection of CW Doppler or PW Doppler for a particular application depends on the requirements of the application at hand, as each technique has features and limitations readily apparent to those of skill in the art.
A technique that has been used to improve PW Doppler is the use of color in presenting the Doppler information. For example, in a PW Doppler based scan regions of interest can be superimposed with a color scale based on velocity, or direction of motion. As such, color Doppler can be thought of as an enhanced PW Doppler scan. The aforementioned Doppler techniques have been applied to the diagnosis and treatment of cardiac conditions, and can be grouped together and referred to generally as echocardiography.
Ultrasound imaging techniques include a class generally referred to as brightness mode (“B-Mode”) displays. In general, to generate a B-Mode display, the time interval between the transmission of a PW ultrasound pulse and the return of its echo is measured and used to determine the distance of a given object from the ultrasound transducer. The signal intensity is also measured. A display is then rendered from a collection of the ultrasound data, where the position of each “dot” corresponds to the distance from the ultrasound transducer of a given object, and the brightness of each “dot” corresponds to the signal strength at that position.
Another class of ultrasound imaging techniques is generally referred to as motion mode (“M-Mode”) displays. To generate an M-Mode display, the time interval between a first ultrasound pulse and the return of its echo, corresponding to depth, is plotted along one axis. Subsequent time intervals for subsequent ultrasound pulses (and their corresponding echoes) are then plotted along another axis, corresponding to time. This type of plot graphically depicts movement of a given object over time. Such a technique is described in U.S. Pat. No. RE37,088, which is incorporated by reference herein in its entirety.
The aforementioned ultrasound imaging techniques have given clinicians a wide variety of tools with which to diagnose and treat various medical conditions, such as the noted cardiac conditions. These tools are limited, however, in their ability to discern between various structures, and their ability to accurately track (and display) a moving structure amongst a plurality of moving structures.
Thus, a need exists for enhanced methods and apparatus for processing ultrasound signals and images. Other problems with the prior art not described above can also be overcome using the teachings of the present invention, as would be readily apparent to one of ordinary skill in the art after reading this disclosure.
Embodiments disclosed herein address the above stated needs by providing methods and apparatus for enhancing the processing of ultrasound signals and images. The techniques include a method and apparatus for processing Doppler signals which includes determining the signal strength of received Doppler signals. Then assigning a color to the received Doppler signals in accordance with the strength of the received Doppler signal. In one aspect, signals from stronger reflectors are represented in different colors than those from weaker reflectors.
In one embodiment, techniques for generating Doppler spectral displays are described, wherein Doppler signals from any strong reflectors, such as tissue, within a sample volume are presented, or displayed, in different colors than signals from weaker reflectors, such as blood. An aspect is that differentiation between different types of reflector material may be obtained by displaying frequency components with different amplitudes, or power levels, in different colors.
Another embodiment includes an ultrasound scanner, with Doppler capabilities, which has the capability to represent Doppler signals in a color scale through a functionality similar to a “look up table.” The ultrasound scanner can include various techniques of transmitting and receiving ultrasonic signals from the structure in question. For example, the ultrasound scanner may include a plurality of transducer configurations, such as single crystal transducers, single-dimensional array transducers, and multi-dimensional array transducers. The ultrasound transducer may also be included in a catheter. In addition, different power levels in the processed signal may be represented in two or more colors, and a color scale can be dynamically generated or the color scale may have been previously set up in the system through any combination of hardware or software.
Yet another embodiment provides an ultrasound scanner wherein a user can choose, or map, colors to be used to represent the power scale. A further embodiment can allow the user to choose a discrete or continuous range of linear or non-linear mapping techniques, wherein the various power levels of the received and processed signals are mapped in multiple linear or nonlinear ways to a user selected or static color scale for representation.
Other embodiments can include additional workstation(s), or computer(s), employed in conjunction with a ultrasonic scanning mechanism. The processing of the Doppler signals can occur either in the ultrasonic scanner, or the additional workstation(s) or computer(s), or both. In addition, the processed Doppler signal. or spectrum, can be displayed on the ultrasonic scanner display or the additional workstation(s) or computer(s) display, or both.
Yet other embodiments can include an offline workstation, or computer, that may receive data from an ultrasonic interrogation device and process Doppler data and carry out the described mapping on the data in a non-real-time situation.
Other features and advantages of the present invention should be apparent from the following description of exemplary embodiments, which illustrate, by way of example, aspects of the invention.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
Techniques for enhancing the representation of Doppler signals are described. The techniques include improving the representation of Doppler signals received from different types of material, for example, tissue and blood.
Conventionally, in a PW Doppler system, an ultrasound pulse is transmitted in a particular direction. A receiver is then turned “on” and “off” so that only a portion of the volume that the ultrasound pulse is transmitted through is sampled. This technique of only receiving signals from a so-called sample volume, is also referred to as range gating. Range gating techniques are also used in ultrasound systems that use scanning probes and transducer. The sample volume represents a continuous range of distances from the surface of the ultrasound transducer along the ultrasound beam. Shifts in frequency of a reflection of the ultrasonic beam from the frequency of the transmitted beam are referred to as the Doppler shift. These frequency shifts occur due to the motion of any reflector, also termed as scatterers or backscatterers, and in a PW Doppler system are determined within the sample volume. Various ways of determining the Doppler shift are known to those of skill in the art.
These Doppler shifts in the reflected, or backscattered, ultrasound beam are directly correlated to the velocity of the backscatterers, with respect to the ultrasound transducer. Typically, the Doppler shift information is displayed such that the magnitude of the Doppler shift is plotted along a vertical (y) axis of a display, with respect to time indicated along a horizontal (x) axis. Thus, such a display, in effect, displays the range of frequency shifts from the fundamental transmitted frequency, and in turn the various velocities of motion of one or more reflectors through the sample volume are displayed. Further, the strength of the received signal at a particular (shifted) frequency may be used to control the brightness of a corresponding point of the display. For example, the strength at a particular (shifted) frequency may be mapped to either a linear or a non-linear gray scale level, thus defining the brightness or gray level of each point in the spectrum corresponding to the received signal strength at any given time.
For example, when blood passes through a vessel, the walls of the vessel expand and contract with every beat of the heart, known as the pulse. If a vessel wall is part of the sample volume, it results in a strong low frequency component in the signal, given that the blood in the vessel being interrogated flows at a higher velocity than the velocity of movement of the vessel wall. High pass filters, termed “wall-filters”, whose cut-off and pass bands can be actively adjusted either automatically, or by the user, have been extensively used to remove such unwanted signals. It should be noted that in such applications, the velocity of movement of the vessel wall is much less than the velocity of the flow within.
In conventional use of such a system, the system images a large field of tissue with relatively smaller fields of flow, such as flow through the arteries. Hence the sample volumes are relatively small compared to the total field of view. Given the anatomical stability of the relative position of the center of a blood vessel with respect to the transducer, the sample volume could be usually well positioned within the flow of interest while any incursions into the area of interest by the vessel wall could be filtered out by the wall filters.
A drawback with the above described technique occurs when considering intracardiac imaging. In intracardiac ultrasonic imaging, a significantly larger area of the image is taken over by flowing blood, thus necessitating larger sample volumes in many instances. In addition to the blood in the heart, the whole tissue/area under investigation is constantly in motion. In many cases, such as with the various valves of the heart, the tissue moves at considerable velocities. There can be instances, such as at the beginning of a ventricular contraction, when the velocity of the leaflets of the heart valve are comparable to the velocity of blood through the valve.
Procedures and techniques are described to provide better discrimination and presentation of Doppler signal information received from various types of materials. For example, techniques are described for improved discrimination and presentation of Doppler signal information when the Doppler signal includes information from relatively slow velocity tissue movement as well as information from higher velocity blood flow surrounding the tissue. In addition, techniques are described for improved discrimination and presentation of Doppler signal information when the Doppler signal includes information from tissue movement as well as information from blood that is moving at relatively the same velocity as the tissue. The techniques described can be used with various types of ultrasound systems. For examples, the techniques can be used with ultrasonic transducers that are used external to a person as well as catheter systems wherein the ultrasonic transducer enters a persons body.
It is well known to those of skill in the art that different biological materials interact differently with ultrasound. See P. N. T. Wells, Biomedical Ultrasonics pages 110-144 (Academic Press 1977). For example, soft tissues generally reflect ultrasound more strongly than blood. Thus, a signal received from moving tissue structures would typically be of a larger amplitude than a signal received from blood moving within, or around, the moving tissue structures. Using conventional processing, such situations result in strong Doppler signals from the moving tissue that may be indistinguishable from Doppler signals from blood, or in some cases, even be superimposed and thereby obscure the signals from the blood.
As shown in
In this example the ultrasound is range gated so that the region of interest 120 around the heart value leaflets 106, and the surrounding blood 108, are examined. Thus, the region of the sector 102 that the ultrasound beam 112 passes through before and after the area of interest, 122 and 124 respectively, are not examined and not displayed in the Doppler presentation.
To assist in explaining the velocities of the various materials of interest
As noted, the discrete signal display in
During the region where the valve leaflets close 220, if there is any regurgitation, or “backflow” through the valve, it may be masked and difficult to be detected. For example, as shown in
To enhance the presentation of a Doppler signal, processing in accordance with the invention can distinguish received power, or amplitude of the associated spectrum of the received Doppler signal. A technique that can be used to distinguish portions of the received Doppler signal based on the received power includes assigning different colors and relative brightness to different power levels. The assignment of colors or color brightness can be accomplished either automatically or manually. In addition, the assignment of color or brightness can be accomplished either directly or indirectly by a user.
In one embodiment, assignment of color or color brightness, in relation to received power level, can be accomplished through the use of a look up table. Such assignment, or separation, in terms of color with change in power may allow easier differentiation of signals received, for example differentiating signals from tissue from those from blood. Look up tables, or other techniques for assigning color or brightness based on received signal strength, can include various strategies for representation of the received signals. For example, different power levels can be mapped to different colors or color brightness levels of one or more colors.
As illustrated in
In other embodiments, non-linear mapping may also be used to improve the ability to discriminate signals from different types of materials.
It is noted that the use of linear or non-linear mapping, or compression, may be desired depending on the overall system configuration. For example, a linear compression algorithm, as illustrated in
The techniques described can be implemented as part of any system that allows processing of Doppler data to distinguish the power, or amplitude of the spectrum, of a Doppler signal and then assign color, or relative color brightness, for presentation of the Doppler data. The presentation may be either directly or indirectly presented to a user. For example, a system can utilize Doppler processing capabilities of an host ultrasound scanner to obtain a time-varying signal representative of the velocity of flow, for example blood flow, through an area of interest. Such areas of interest can include, especially in the case of imaging the heart, valves and other moving tissue structures and blood. Mapping the received signal strength to different colors and color brightness, for example by using a look-up table, makes it easier differentiation of signals from tissue to those from blood.
The techniques described can be implemented in many different systems.
The ultrasound scanner 1204 generates signals that are communicated to the ultrasonic transducer 1206. The ultrasonic transducer transmits and receives signals from a desired sample 1222, for example from a human heart tissue and blood. Signals received by the ultrasonic transducer 1206 are communicated to the ultrasound scanner 1204. In one embodiment, the ultrasound scanner 1204 processes the received signals, including color mapping, and the processed signal is communicated to the display 1208 for presentation to a user. In another embodiment, the ultrasound scanner 1204 does some processing of the received signal and the display 1208 includes a processor that does some processing of the signal, for example color mapping, before presentation to a user. In general, the ultrasound scanner 1204 includes a combination of digital or analog electronics capable of generating necessary signals and processing such received signals so as to generate Doppler representations in accordance with the invention. In addition, processing of the Doppler signals may be performed real-time, that is at the time the signals are captured, or off-line following the capture of the data.
The ultrasonic transducer 1206 can include, for example, one or more transducers that utilizes piezoelectric properties to generate acoustic signals from electrical signals. The transducer may be a mechanical, sector, linear, or curved array designs. In general, the type of transducer used is selected to be appropriate for the particular application such as external application, trans-oesophageal, intra-vascular, intra-cardiac, or endocavitary applications.
The previous embodiments describe a general Doppler scanner system. A system could also be implemented using a simple ultrasound Doppler processing set up.
Other combinations of hardware and software may be used to perform the techniques described so as to achieve the operationality described. For example, there are multiple ways of interlinking the components that form this invention.
The Doppler processor 1808 processes the signals received from the ultrasound scanner 1804. For example, the Doppler processor 1808 may discriminate the signals based upon the amplitude of the received signal strength. The Doppler processor may use a look-up table 1810 to map the Doppler signals to different colors based upon the received signal strength. The look-up table may be either linear or non-linear. The color mapped Doppler data is then sent to the display 1806 for presentation.
Those of skill in the art will understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Those of skill in the art will further appreciate that the various illustrative modules, circuits, and algorithms described may be implemented as electronic hardware, computer software, or combinations of both. Also, the various modules and circuits described may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, any conventional processor, controller, or micro-controller. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Software modules may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.