The invention relates to the field of tensioning structural cables, and in particular to tensioning structural cables such that the overall tension on the cable is distributed equally across the cable's component strands.
Pre-stressing cables are used in many structural applications, and in particular for reinforcing concrete structures by holding the concrete in compression. In many applications, the amount of compression applied to the concrete is not critical, and it may be sufficient that the compression is well above a specified minimum, with the cable tension being well below its breaking tension.
However, there are applications where tendons must be tensioned to high specifications and to within narrow tolerances. Such applications include, for example, concrete pressure containment vessels in nuclear power installations, or in gas or oil storage facilities. The integrity of such containments depends to a large degree on the tension in the post-tensioning (PT) tendons, and it is therefore essential for the constructor of such installations to be able to demonstrate that the stressing tendons are tensioned to within the specified tolerances.
A typical PT cable, or tendon, might consist, for example, of 55 strands fed through a duct and tensioned from one or both ends of the duct using hydraulic jacks. Containment vessels may be cylindrical or spherical structures with ducts following a curved path in the concrete. Once the PT strands are stressed to the required tension, the strands are anchored, usually using conical wedges, to an anchor plate. After the installation and tensioning are complete, regular inspection is required throughout the life of the installation to ensure the ongoing integrity of the strands inside the duct, and to ensure that the tension in the strands is still within the specified tolerances. At such inspections, the tendon force can be measured using a so-called lift-off technique, where a jack is used to lift the end anchor. The force required to move the anchor will give an indication of the tension in the bundle of strands which make up the PT cable. For bonded tensioning systems, the lift-off can be performed at any point until the time of grouting; for unbonded tendons, the technique can be performed at any time.
One difficulty with the tensioning of tendons inside a duct is the effect of friction between the strands and the walls of the duct, and friction between the strands themselves. These friction effects can cause an uneven or variable distribution of forces among the strands and/or along the length of each strand during and after the tensioning operation. This problem is especially prevalent in applications which use very long strands, and in non-straight ducts in which the strands are not merely subjected to longitudinal forces, but also to lateral forces which urge the strands together and/or against the duct wall. In a duct of circular cross-section which follows a curved path through the concrete to be stressed, for example, the loosely-distributed strands will be pulled inwards as the slack is taken up, such that all the strands eventually experience a lateral force and a lateral movement along the radius of curvature of the duct path.
It is known in the prior art to perform the tensioning of PT tendons in two phases: a first pre-tensioning, equalisation phase, during which the strands are individually pulled taut, so that all the strands are stressed to the same, relatively low tension, followed by a main tensioning phase, during which the strands are jacked, as one group, to the desired tension.
European patent application EP0421862 describes one such method of tensioning multiple strands to achieve an equal tension on all strands. The method of EP0421862 involves tensioning a reference strand to the desired tension. This is performed using a hydraulic jack to stress the reference strand while measuring the tension on the strand using a load cell. The other strands are then stressed to the force given by the reference load cell. It is assumed that, although the individual stresses on the individual strands will diminish slightly as more strands are tensioned, the individual stresses will nevertheless be equal after stressing.
An alternative method is described in European patent application EP0544573, in which multiple strands are pre-tensioned to around 10% of their final tension using multiple small jacks, one for each strand. The individual pre-tensioning jacks are supplied by the same pressure source, so it is assumed that, once the preliminary tensioning phase is complete, all the slack has been taken up in all the strands, and the strands are all tensioned to the same tension.
This preliminary tensioning phase of EP0544573 and EP0421862 is thus designed to bring all the strands to the same, relatively low tension. Once this phase is complete, the strands are jacked to their full desired tension using a single, large hydraulic jack which tensions all the strands together. It is assumed that, since the strands are all at the same equalised tension at the beginning of the main jacking operation, and since the strands are assumed to be materially identical, the tensions will remain equalized during the main jacking operation. A further assumption is made that the tensions in the individual strands will still be equal once the strands have been fully tensioned and anchored.
As mentioned above, the methods described in the prior art make significant assumptions about the homogeneity of the behaviour of the strands during and after tensioning. In reality, however, the strands are not identical, and their varying orientation relative to each other and to their surroundings means that they are subjected to different forces during the tensioning operations. In particular, individual strands can become tangled or jammed between other strands, or between other strands and the duct wall. If such a jamming occurs, it is quite possible for the tension in a strand to be distributed unevenly along the length of the strand. This may have as a consequence that the tension in one or more strands is locally outside the specified safety or operating tolerances, even though the outward appearance is that the tension in the strand is within the specified or expected range.
If the distribution of tension in a strand is particularly uneven, this can lead to parts of the strand being stressed beyond its operating range during the main tensioning phase, and the strand may break or become overstrained. In some circumstances, such a mechanical failure may happen without being detected, in which case the main jacking operation will proceed with the group of strands including the impaired or broken strand(s). In order to achieve the desired tension on the bundle as a whole, containing one or more strands which are mechanically impaired, the tension in each individual strand will be greater than specified or expected. In this way, the tensioning may appear to be within tolerance, while the individual strands may unwittingly be tensioned beyond their specified limits.
A different situation can also arise during the tensioning phases when a strand becomes trapped at two or more points along its length. During the preliminary tensioning phase, the ends of the strand will be tensioned to the required tension, but there may be a section of the strand, between the two trapping points, where the tension is significantly lower than the tension at the ends of the strand. In such a case, the subsequent main jacking operation can have unpredictable effects on the distribution of tension in the strand concerned. If one or other of the trapped points becomes unstuck during the second tensioning phase, then the tension in that part of the strand, and consequently in the whole length of the strand, may suddenly change.
Strands can also suffer from mechanical weakness as a result of abrasion or material imperfections. Such mechanical weakness can lead to sudden failure (breakage), or gradual stretching (creep or yield), either of which can lead to a dangerous loss of tension in the group of strands as a whole. If the failure occurs during the main tensioning phase, then the remaining strands will be overloaded to compensate for the weakened on broken strand(s). This is notably a problem where the strands are to be stressed to a tension approaching their maximum operation stress (near their yield stress).
These effects are most likely to manifest themselves during the main tensioning phase, since this is when the most significant changes and movements occur within and between the strands. However, such strand failures or movements can also occur later in the life of the installation—either spontaneously or as a result of some stress event. For this reason, regular inspections are carried out to verify that the tension on the bundle of strands is still within tolerances. Such inspections are normally only performed on the tendon bundle as a whole, however. Inspecting the individual strands is not usually a viable option, although it might in some circumstances be possible to perform a lift-off measurement on each of the strands individually.
The present invention aims to provide a method and system which solves the above and other problems with the prior art.
To this end, the invention provides a method of tensioning a plurality of strands, the method comprising: a first step of arranging a plurality of individual first tension sensing means to determine the individual tension in each individual strand, a second step of individually tensioning each individual strand to a common first tension amount, a third step of, when each strand is tensioned to the same common first tension amount, using the plurality of individual first tension sensing means to determine a first individual tension measurement value for each strand, a fourth step of calibrating to the first tension amount the first individual tension measurement values determined by the plurality of first tension sensing means. The first tension amount may be an arbitrary tension amount at which it can be determined that all the individual jacks have completed the slack uptake in the individual strands, or it may be a predetermined tension value such as, for example, 10% or 15% of the specified final tension.
According to a variant of the method of the invention the method also comprises a fifth step of tensioning the plurality of strands to a second tension amount, and a sixth step of determining, using the individual first tension sensing means, a second individual tension measurement value for each individual strand when the strands are tensioned to the second tension amount. The second tension may be any chosen tension amount during the tensioning process, or it may be a predetermined tension amount such as, for example, 50% or 100% of the required final tension.
The provision of individual tension sensing means such as load cells, for example, on each strand allows an installer to monitor the evolution of the tension in each individual strand during and/or after the first and/or second tensioning steps. Any sticking or jamming or breakage or unequal strand loading can thus be detected at the time it occurs, instead of at the next inspection. The calibration step, because it is performed when all the strands are tensioned to the first tension, enables the normalization of the tension values detected by the load cells to be calibrated to the value of the first tension.
According to a further variant of the method of the invention, the method comprises a seventh step of arranging second tension sensing means to determine the combined tension on the plurality of strands, and an eighth step of comparing the combined tension with individual tension measurement values detected by the first tension sensing means. The individual tension sensing means may, for example, be magnetic load sensors.
According to a further variant of the method of the invention, the method comprises a ninth step of removing the individual tension sensing means after the strands have been tensioned. Alternatively, the plurality of individual load cells may be arranged such that they continue to provide individual tension values for the individual strands after the strands have been tensioned.
The invention also provides a system for tensioning a plurality of structural strands, the system comprising: individual tensioning means for individually tensioning each of the strands to a common first tension amount, a common tensioning means for tensioning the plurality of strands to a second tension, a plurality of individual tension sensing elements arranged to detect individual tension measurement values for each of the strands, and first calibration means for calibrating the individual tension measurement values against the first tension amount.
According to a variant of the system of the invention, the individual tensioning means comprises one or more individual hydraulic jacks, the or each individual hydraulic jack being arranged to tension one strand.
According to another variant of the system of the invention, the individual tensioning means comprises a plurality of individual hydraulic jacks supplied by a common pressure source or by separate sources at a common pressure.
According to another variant of the system of the invention, the individual tensioning means comprises an individual hydraulic jack which can be transferred to successively tension one strand after another. The individual tension sensing elements may be magnetic load sensors.
According to another variant of the system of the invention, the individual tension sensing elements are arranged in one or more common planes orthogonal to a longitudinal axis substantially parallel to the tensioning direction of the strands.
According to another variant of the system of the invention, the individual tension sensing elements are arranged such that they can remain in position to measure the individual tension in the individual strands once the tensioning of the strands has been completed.
According to another variant of the system of the invention, the individual tensioning means and the common tensioning means are the same.
According to another variant of the invention, the system comprises common tension sensing means for determining the common tension on the plurality of strands, and second calibration means for calibrating the individual tension measurement values determined by the individual tension sensing elements against the common tension determined by the common tension sensing means.
The invention is described with reference to tensioning strands within a duct. However, the same techniques can also be applied to strands which are not confined to ducts, such as stay cables. In fact the invention can be implemented for stressing any collection of strands.
The invention will now be described with reference to the attached figures, in which:
a to 10c show a calibration process used in various embodiments and variants of the invention.
The drawings are provided as an aid to understanding the invention, and should not be taken as limiting the scope of the invention, which is defined in the attached claims. The same reference numerals used in different figures are intended to refer to the same or corresponding features.
In order to minimize friction and snagging, the strands 1 are preferably fed through a path in the structure such that each of the strands 1 maintains approximately the same position in the bundle all the way through the structure, and such that the strands are aligned with corresponding openings in the equal tension jack 10 and the anchor block 30 at each end of the duct.
The strands 1 are fed through a load cell array 20, such that each strand 1 passes through a separate load cell 22. The load cells 22 can be, for example, magnetic load cells which measure changes in the electromagnetic properties of a steel strand 1 as the tension in the strand 1 changes. Other kinds of load cells 22 may be used, depending, as appropriate to the geometry of the apparatus and the material of the strands 1. The load cells 22 are normally pre-calibrated for the particular kind of strand 1 being used, or for a range of types of strand, but they may now be calibrated again on site once the strands are in position in the load cell array, ready for tensioning.
The arrangement of load cells 22 in array 20 may be better understood by referring to
The strands are also fed into the individual jacks 11 in the equal tension jack unit 10, which is positioned against the load cell array unit 22, ready for tensioning to begin. The number of individual jacks may be any suitable number. A tensioning bundle may comprise 55 strands, for example, arranged in a close-packed layout similar to the arrangement of load cells shown in
Equal tension jack 10 comprises multiple (eg fifty-five) individual hydraulic jacks 11 operating from the same pressure source 12, 13. One jack 11 is provided per strand 1. The individual jacks 11 may each be hydraulic stroking jacks, for example, which are capable of taking up an indefinite amount of slack in the strands 1 by repeatedly pulling the particular strand 1 back, then returning forward to perform another pulling stroke, until the tension on the strand 1 reaches the force generated by the hydraulic pressure on the corresponding hydraulic jack piston. All the hydraulic jacks 11 are substantially identical, which, since they are all fed from the same pressure sources 12 and 13 (which feed the tension stroke and the return stroke respectively, for example), means that all the jacks 11 effectively pull the separate strands 1 to the same tension.
The tensioning assembly depicted in
At this stage in the tensioning process, the strands 1 are all at the same tension, and the load cells 22 have been recalibrated to this tension. The strands are also held at substantially this tension by the anchoring elements 32 in anchor block 30, so that the equal tension jack can now be removed if necessary, leaving the strands in tension, anchored by the anchor block 30, and leaving the load cell array 20 in position adjacent to the anchor block 20. Note that anchor block 30 may include springs or other biasing elements for biasing the conical wedges into their locking configuration, blocking return movement of the strands 1, such that there is insignificant return movement and/or loss of tension in the strands 1 when the jacking stress is removed.
Unless the equal tensioning process described above achieved the desired tension in the strands, it will then be necessary to perform a second tensioning operation on the strands 1 to stress them to the desired tension. Depending on the tensioning capacity of the individual jacks, this may be carried out using the same equal tension jack 10 as was used to perform the equal tensioning phase. More usually, however, the individual jacks 11 have limited tensioning capacity, and a more powerful jack, such as a long-stroke jack, for example, will be required to tension the strands 1 to their desired tension. In this case, the equal tension jack 10 is removed from the strands 1, leaving the load cell array 20 in position, and the more powerful jack may then be fitted to the strands and to the load cell array 20. Since the load cell array is not moved or disturbed during this process, the accuracy of the calibration which was performed at the conclusion of the equal tensioning process is maintained. The second, main stressing phase can then proceed with the accurately-calibrated load cell array in place to measure and monitor the individual tensions in the strands as the main stressing is performed. In this way, any unexpected changes in tension can be detected as they occur, and isolated to the particular strand(s) affected. Such an unexpected change might indicate a material failure in the strand, for example, such as a breakage or premature yielding, or it might indicate a sudden change (a drop in tension, or an unexpectedly rapidly increasing tension) following the kind of trapping discussed above. The calibrated load cell array can also be used to show that the tension distribution across the various strands remains within acceptable tolerances during and after the main stressing process. If no significant discrepancies are detected between the individual load cell outputs while the main tensioning is being performed, and/or when the strands 1 have been fully tensioned, then this can be taken as evidence that the main tensioning has passed off without any of the trapping or friction problems mentioned before. If significant discrepancies are detected between output values of individual load cells 22, on the other hand, it can be assumed that these are an indication that the tensioning may not be satisfactory, and a decision can be taken as to whether the magnitude of the variation warrants de-tensioning and re-installing the strands 1. The use of a separate load cell for each individual strand means that the tension distribution across the strands can be known accurately and completely, instead of requiring a statistical interpretation or estimate from a set of sample measurements.
The individual load cells 22 should preferably be as similar to each other as possible, especially in their response characteristics over the range of tensions which need to be monitored in the strands 1. This is so that, once the load cells 22 have been calibrated at the first known tension (ie after all the slack has been taken up, and all the individual jacks 11 have tensioned the strands 1 to their first, relatively low level tension), the load cells 22 all produce similar load/output response characteristics over the main stressing phase, with the result that differences between load cell outputs can be taken as representing differences between strand tensions.
According to a refinement of the method of the invention, the tension measurements made for each strand can further be verified or corroborated by comparing the individual measurements, or a summary function (such as a sum, mean or other statistical function) of the individual measurements with a measurement of the combined force on all the strands 1. Such a combined, or global, force measurement can be made using a load cell arranged to measure the stressing force being exerted by the main (eg long-stroke) jack used in the main stressing phase. Alternatively, the global stress measurement on the strands may be deduced from a measurement of the hydraulic pressure in the main jack (in the case of a hydraulic jack), using a pre-calibrated conversion into tension values, or by a theoretical calculation based on the geometry and dimensions of the hydraulic jack.
The above verification/corroboration step can be performed at any point in the tensioning process where a second tension value can be accurately measured or calculated (for example, where a second jack or other tensioning means is used), separately from the tensioning measurement made during the equal tensioning phase. The fact that the load cell array remains in position throughout both stressing phases, and accurately calibrated to at least one accurately-known tension value, gives a continuously reliable tension measurement across both stressing phases. Note that the first stressing phase may be regarded as an equal tension stressing phase, with each strand being stressed to the same tension, while the second stressing phase is one of equal elongation, in that the stressing takes place by equally extending the lengths of the strands.
In both cases, one load cell 22 is provided for each strand 1 whose tension is to be measured. The load cells 22 are preferably magnetic load cells, such as those known as elastomagnetic or magnetoelastic sensors, which are commonly implemented as two induction windings surrounding the strand 1. The two windings are not separately identified in the figures. When in use, an electrical pulse is applied to one of the windings, and the resulting induced pulse is measured across the other winding. The magnetic permeability of the steel in the strand changes with the amount of tension in the steel, so that the amount of inductive signal transfer also varies with increasing tension. Note that the magnetic permeability of the steel is also dependent on the temperature of the material, and the load cell measurements are corrected or compensated to take temperature fluctuations into account. A temperature sensor may be built into each load cell, for example, and the temperature measurement information may be output along with the tension measurement information. Alternatively, each load cell may be provided with its own temperature correction means (calculating circuitry, for example), which can be pre-calibrated to allow the correction for temperature to be performed at the load cell, so that each load cell can output a temperature-corrected tension value.
Note that other forms of load cell could be used instead of the elastomagnetic load cell, for example ultrasonic, capacitative, strain gauge etc.
For larger load cells, or to reduce the overall diameter of the load cell array, an arrangement such as the example shown in
The load cell array 20 is shown in
a to 10c and 11 illustrate how the load cell calibration may be performed throughout the stressing phases. In each graph, the S axis represents the tension measurement value output from a load sensor, and the F axis represents the hydraulic pressure applied to the individual jack for the respective strand (or the tension applied to the strand, which can be deduced from the hydraulic pressure in the individual jack).
A conventional calibration is first carried out in the laboratory, for example, against a “known” reference force. This results in a calibration curve of load cell output, S, versus the actually applied force, F. Such a calibration curve for a single load cell is illustrated in
On site, the stressing process takes place under conditions (the mechanical and magnetic properties of the steel, temperature etc) which are inevitably different from the original laboratory calibration conditions, and the calibration curve will need to be adjusted to take these conditions into account. Prior art methods of calibrating the load cells were limited to zeroing the load cell output at zero load conditions, and adjusting for temperature variations. The present method and system of the present invention improves on these methods by fitting the laboratory calibration curve for a load cell to a set of real measured values for each individual strand. The more values are measured, the more accurately the curve can be fitted to the measured data. An illustration of this fitting process is shown in
c shows a further refinement of the calibration process. In this case, F1 is the tension when the first tension amount is reached (ie once all the slack has been taken up by the equal tensioning jack, and the strands are all at the same tension). By continuing the individual stressing beyond F1 using the equal tensioning jack 10, further individual load cell measurements can be taken at known forces F′1, F″1 etc. These further measurements can be used to more accurately fit the calibration curve to the actual conditions.
S′2 might be a simple average value, calculated by dividing the combined tension by the number of readings, or it might be a more sophisticated mathematical function. Note that this verification step can advantageously also be carried out during the equal tension phase, to give an initial cross-calibration of the individual load-cell outputs and the tension-measuring means which is used to measure the combined tension in all the strands.
In a real situation, the tensions in the individual strands will not remain exactly the same during the main stressing operation. Slight differences in shape, material or orientation will inevitably lead to a divergence in the individual tensions as stressing proceeds after the equal tensioning operation.
The method of the invention, by contrast, makes such statistical interpretations redundant, because it allows the installer to go beyond mere statements of probability, and instead to demonstrate that the strands are all individually within specified tension tolerances.
The above description has focused on tensioning one end of a group of strands. However, it may in some installations be advantageous to tension the group of strands from both ends. This can further reduce the effect of the trapping and friction problems described earlier. The strands can be tensioned using two jack assemblies—one at each end of the strand bundle. In this case, the two tensioning processes in the two jacks can proceed simultaneously, or one after the other, or incrementally, by taking turns. For the equal tension calibration to be effective, it is preferable that the calibration of the load cells in both jack assemblies is performed at the same time, after the slack has been taken up and after both jacks have tensioned the strands up to the first tension. It is also possible for the two sets of individual jacks to be driven from the same pressure source, or at least at the same pressure, as this will minimize the amount of movement of the strands within the duct. Having two sets of load cells, especially if they are all calibrated to the same tension, makes the tension monitoring system yet more sensitive to the effects of friction mentioned above. As well as comparing the output values of the load cells of one array with each other, and monitoring change in the values of the load cells over time, it is now also possible to compare the load cells of one array with the corresponding load cell (ie same strand) in the other array. A strand which becomes pinched at a point somewhere along its length, for example, will be under a higher tension at one end than the other, and this difference can be detected by comparing the two load cells at the ends of the strand. The comparison between the two load cells, or between the two arrays of load cells, can also be used to corroborate measurements made by the other kinds of comparisons mentioned.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/067920 | 12/24/2009 | WO | 00 | 10/29/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/076287 | 6/30/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
328720 | Schuster | Oct 1885 | A |
2328364 | Taylor | Aug 1943 | A |
2637895 | Blaton | May 1953 | A |
2751660 | Nakonz | Jun 1956 | A |
3023475 | Yerby et al. | Mar 1962 | A |
3072361 | Fuller | Jan 1963 | A |
3090598 | Paul | May 1963 | A |
3597830 | Yegge | Aug 1971 | A |
3658296 | Yegge | Apr 1972 | A |
3844023 | Surribas et al. | Oct 1974 | A |
3868850 | Davison et al. | Mar 1975 | A |
3964154 | Auer | Jun 1976 | A |
4068963 | Brandestini | Jan 1978 | A |
4302978 | Dykmans | Dec 1981 | A |
4347993 | Leonard | Sep 1982 | A |
4372535 | Gibson et al. | Feb 1983 | A |
4485677 | Amelot et al. | Dec 1984 | A |
4508251 | Harada et al. | Apr 1985 | A |
4546656 | Grundy et al. | Oct 1985 | A |
4649753 | Goodsmith | Mar 1987 | A |
4718168 | Kerr | Jan 1988 | A |
4805877 | Hoekstra | Feb 1989 | A |
4960001 | Vemmer | Oct 1990 | A |
5083469 | Percheron et al. | Jan 1992 | A |
5718090 | Wei-Hwang | Feb 1998 | A |
5809710 | Jungwirth et al. | Sep 1998 | A |
6248030 | Pierce | Jun 2001 | B1 |
6296232 | Roodenburg | Oct 2001 | B1 |
6457666 | Niederer | Oct 2002 | B1 |
6598859 | Kureck et al. | Jul 2003 | B1 |
6944550 | Marchetti | Sep 2005 | B2 |
8001852 | Laurent et al. | Aug 2011 | B2 |
8702066 | Steidinger et al. | Apr 2014 | B2 |
20040094651 | Marchetti | May 2004 | A1 |
20050055974 | Lecinq et al. | Mar 2005 | A1 |
20060201100 | Langwadt et al. | Sep 2006 | A1 |
20080093176 | Rosenthal | Apr 2008 | A1 |
20090083956 | Ulfik et al. | Apr 2009 | A1 |
20100315076 | Tsukada et al. | Dec 2010 | A1 |
20110168960 | Steidinger et al. | Jul 2011 | A1 |
20130152496 | Sinclair | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
0304376 | Feb 1989 | EP |
0421862 | Apr 1991 | EP |
0421862 | Apr 1991 | EP |
0544573 | Jun 1993 | EP |
0544573 | Jun 1993 | EP |
Entry |
---|
International Search Report for PCT/EP2009/067920 dated Aug. 10, 2010. |
Number | Date | Country | |
---|---|---|---|
20130140509 A1 | Jun 2013 | US |