The field of the invention relates generally to computer systems and more particularly relates to a method and system for establishing trust in a peer-to-peer network.
There are a number of different network types, but one prevalent form of network is the peer-to-peer network. A peer-to-peer network is one in which peer machines are networked together and maintain the state of the network via records on the participant machines. In peer-to-peer networks, each end node has broadly the same capabilities, and any node can initiate communications. Typical peer-to-peer networks lack a central server for administration, although hybrid networks do exist. So, generally speaking, the term peer-to-peer refers to a set of technologies that allows a group of computers to directly exchange data and/or services. The distinction between peer-to-peer networks and other network technologies is really more about how the member computers communicate with one another than about the network structure itself. For example, many peer-to-peer networks utilize the Internet for communications, but the Internet can also be used for other types of networking.
A method and system for establishing trust in a peer-to-peer network is disclosed. According to one embodiment, a computer implemented method comprises receiving a certificate associated with content from a peer in a peer-to-peer network. A file certificate associated with the content is received wherein the file certificate includes a hash. The validity of the content is determined with the file certificate. The authenticity of the content is determined with the file certificate.
The above and other preferred features, including various novel details of implementation and combination of elements, will now be more particularly described with reference to the accompanying drawings and pointed out in the claims. It will be understood that the particular methods and circuits described herein are shown by way of illustration only and not as limitations. As will be understood by those skilled in the art, the principles and features described herein may be employed in various and numerous embodiments without departing from the scope of the invention.
The accompanying drawings, which are included as part of the present specification, illustrate the presently preferred embodiment of the present invention and together with the general description given above and the detailed description of the preferred embodiment given below serve to explain and teach the principles of the present invention.
A method and system for establishing trust in a peer-to-peer network is disclosed. According to one embodiment, a computer implemented method comprises receiving a certificate associated with content from a peer in a peer-to-peer network. A file certificate associated with the content is received wherein the file certificate includes a hash. The validity of the content is determined with the file certificate. The authenticity of the content is determined with the file certificate.
In the following description, for purposes of explanation, specific nomenclature is set forth to provide a thorough understanding of the various inventive concepts disclosed herein. However, it will be apparent to one skilled in the art that these specific details are not required in order to practice the various inventive concepts disclosed herein.
Some portions of the detailed descriptions that follow are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
The present invention also relates to apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus.
The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general-purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear from the description below. In addition, the present invention is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the invention as described herein.
Network 200 includes a user 201 (also known as a leecher), a peer that may also be a tracker 211, a peer that may also be a seed 212, a peer 213, a content source 210, and a certification authority 221. The peers 211-213, user 201, content source 210 and certification authority communicate via the Internet 299. Network 200 uses any one of a number of well-known protocols and/or applications including HyperText Transfer Protocol (HTTP), File Transfer Protocol (FTP), Internet Relay Chat (IRC), etc., via a TCP/IP connection or UDP/IP packets (not shown in this view) or some other connection well known in the art. Although the network 299 is described herein as being the Internet, alternatively, the network 299 may be a Wide Area Network (WAN), a Local Area Network (LAN), or any other system of interconnections enabling two or more computers to exchange information. Further, the network 299 may include a wireless network, such that one or more of client devices may be wireless devices.
In network 200, leecher 201 is a peer that does not have a complete copy of the desired content, yet. When downloading of the desired content from any source (including content source 210) is complete, leecher 201 may stay around and “seed” the file (desired content) as a seed so that others can complete their download. The term leecher is also used for peers that have very poor upload/download ratios or leave the network 200 immediately after their downloads are complete. According to one embodiment, leecher 201 desires content that originated at content source 210. Copies of the content may be available on multiple peers or “seeds,” as described in greater detail below.
To share a file using network 200 a user creates a small “pointer” file that contains, at a minimum: a file identifier (e.g., file name), and the hash of each block in the file (which allows users to make sure they are downloading the real thing); and the address of a “tracker” server. In alternate embodiments the pointer file also contains the filename and filesize. The pointer file can then be distributed to other users, such as peers 211-213, often via email or placed on a website. The peer is then started as a “seed node”, such as peer/seed 212, allowing other users/peers to connect and commence downloading. When other peers finish downloading the entire file, they can optionally “reseed” it—thus, becoming an additional source for the file. A tracker, such as peer/tracker 211, is a broker service that mediates contacts between peers. The tracker is not directly involved in the data transfer and does not have a copy of the file.
Each user 201 who wants to download the file first downloads the pointer file and opens it in client software. The pointer file tells user 201 the address of the tracker 211, which, in turn, maintains a log of which users are downloading the file and where the file and its fragments reside. For each available source, the client software considers which blocks of the file are available and then requests the rarest block it does not yet have. This makes it more likely that peers 211-213 will have blocks to exchange. As soon as the client software finishes importing a block, it hashes that block and compares this hash to the hash in the pointer file to make sure that the block matches what the pointer file said it should be. Then it begins looking for another user to upload the block to.
Content source 210 may represent a business or individual that has generated content that will be distributed. The content may be data files, music files (MP3s), video files, software or any similarly reproducible content. The certification authority 221 is a trusted source (such as Intertrust, Cybertrust, Certicom, Entrust, GeoTrust, QuoVadis, Verisign, etc.) that issues root certificates used to develop a chain of trust between an end user (such as user 201) and the certification authority 221. The certification authority 221 will also validate, by signing, authorized parties' certificates. Prior to content being prepared for initial distribution in network 200, content source 210 contacts the certification authority 221 to issue certificates of authenticity for that content source 210. More “links” in the chain of trust are established through multiple layers of certification authorities. Furthermore, there may be multiple root certification authorities 221. The chain of trust must be unbroken between a root certification authority 221 and the content source 210 making the content available. Independent of the transfer of the content to users (such as user 201) client software will obtain the root certificate from the certification authority 221 or from a third party. The root certificates are stored on the user's systems for future use, usually within Internet browsers, such as Microsoft Internet Explorer.
A data storage device 527 such as a magnetic disk or optical disc and its corresponding drive may also be coupled to computer system 500 for storing information and instructions. Architecture 500 can also be coupled to a second I/O bus 550 via an I/O interface 530. A plurality of I/O devices may be coupled to I/O bus 550, including a display device 543, an input device (e.g., an alphanumeric input device 542 and/or a cursor control device 541). For example, web pages and business related information may be presented to the user on the display device 543.
The communication device 540 allows for access to other computers (servers or clients) via a network. The communication device 540 may comprise a modem, a network interface card, a wireless network interface or other well known interface device, such as those used for coupling to Ethernet, token ring, or other types of networks.
Certificates authorized by the certification authority 221 are signed with the certification authority's 221 private key. The content itself is signed and contains a chain of certificates that allows the user to 1) authenticate the source has an unbroken chain to the certification authority 221, and 2) authenticate the content by verifying it was signed by the source.
The combination of distributing root certificates with authenticating other certificates allows for a chain of trust to exist within peer-to-peer networks, such as network 200 as explained herein. When a content source 210 wishes to distribute content it creates a new file certificate.
The content source 210 validates the file certificate 720, preferably by signing it with its private key. The content source 210 distributes the file and the file certificate 720. These may be distributed on a peer-to-peer network, through the Internet or to a device on a peer-to-peer network who will subsequently distribute the content. The file (content) and file certificate 720 do not have to be distributed through the same channels. In one embodiment, the file certificate 720 is placed in a location where a user 201 can easily find it and the file (content) is placed in a location where it can be efficiently transferred such as directly on a seed 212.
When a user (such as user 201) wishes to determine if a file came from a trusted source, the user 201 obtains the file certificate 720, determines if the file came from an acceptable content source 210 and if that content source 210 has an unbroken chain of trust back to the certification authority 221. Since the user 201 already has a root certificate 610 containing the public key 612 contained in the root certificate issued by the certification authority 221, the user 201 can verify if the file certificate 720 returned by the content source 210 is authentic and; therefore, determine that the content source 210 is authentic. In the example where user 201 obtains a file certificate generated by content source 210, the content source certificate must have been signed by the certification authority 221, thus creating a chain of trust from the certification authority 221 to peer 213.
Network 200 allows entities to sign other entities certificates to add its own authenticity certification. However, such additional certification is only allowed after the entity, such as secondary certification authority 222 has contacted the root certification authority 221. According to one embodiment, the root certification authority 221 grants secondary certification authority 222 the right to issue certificates or add signatures to existing certificates. This chain can be continued indefinitely, so long as all links in the chain have at some point been authenticated by the certification authority 221. In alternate embodiments, additional authenticity programs for peer-to-peer networks may be implemented by using secure socket layer (SSL) certificates, or a signed by trusted company certification. In yet another embodiment, the signed certificate accompanies the pointer file described above along with the hash values. In another embodiment, the certificate is transmitted with the desired content.
The description above uses terminology and architecture particular to the BitTorrent means of data exchange, and other means of data exchange that use that architecture. The invention is also applicable to other peer-to-peer networks. In the approach above, the tracker is used to locate peers. In other networks, peers may be located by lists or partial lists of nodes, lists or partial lists of supernodes (that is, nodes that know the locations of many individual nodes), and other mechanisms known to those familiar with the art. This invention applies whether peers are located through 3rd party servers (such as eDonkey), through a hierarchial model (such as FastTrack), a flat network (such as Gnutealla), BitTorrent, or any other network architectured. The essential element for this invention is that there exists a means of finding peers, some of which could have the desired content.
BitTorrent allows clients to begin transferring data before the entire file is transferred (that is, before a leecher becomes a seed.) As the validation occurs after the data (or a portion of the data) is transferred, this invention applies to networks regardless of how much content must be received before data is transferred.
In another embodiment, portions of the data are verified through the trust mechanism. In this variation a hash is created for a portion of the file and a pointer is created for the portion of the file containing the file identifier (file name), hash and the portion of the file for which the has applies. In another variations a single pointer file refers to multiple files. The client could validate all files hashes with a single validation operation. Another variation is a combination of the previous two variations. A pointer file may contain any combination of entire or partial files.
In another embodiment, the certificate is applied to a hash of the pointer file rather than the entire pointer file. Because the hash is unique to the pointer file, this is equivalent to applying the certificate to the entire file.
A method and system for establishing trust in a peer-to-peer network has been disclosed. Although the present methods and systems have been described with respect to specific examples and subsystems, it will be apparent to those of ordinary skill in the art that it is not limited to these specific examples or subsystems but extends to other embodiments as well.
Number | Name | Date | Kind |
---|---|---|---|
4790017 | Hinton | Dec 1988 | A |
5437050 | Lamb et al. | Jul 1995 | A |
5708759 | Kemeny | Jan 1998 | A |
5848396 | Gerace | Dec 1998 | A |
5914714 | Brown | Jun 1999 | A |
5918223 | Blum et al. | Jun 1999 | A |
5925843 | Miller et al. | Jul 1999 | A |
5956671 | Ittycheriah et al. | Sep 1999 | A |
5978791 | Farber et al. | Nov 1999 | A |
6188010 | Iwamura | Feb 2001 | B1 |
6415280 | Farber et al. | Jul 2002 | B1 |
6502125 | Kenner et al. | Dec 2002 | B1 |
6553403 | Jarriel et al. | Apr 2003 | B1 |
6625643 | Colby et al. | Sep 2003 | B1 |
6665726 | Leighton et al. | Dec 2003 | B1 |
6678680 | Woo | Jan 2004 | B1 |
6708212 | Porras et al. | Mar 2004 | B2 |
6732180 | Hale et al. | May 2004 | B1 |
6799221 | Kenner et al. | Sep 2004 | B1 |
6826546 | Shuster | Nov 2004 | B1 |
6892227 | Elwell et al. | May 2005 | B1 |
6947386 | Temudo de Castro et al. | Sep 2005 | B2 |
6981180 | Bailey et al. | Dec 2005 | B1 |
7020701 | Gelvin et al. | Mar 2006 | B1 |
7100199 | Ginter et al. | Aug 2006 | B2 |
7111061 | Leighton et al. | Sep 2006 | B2 |
7120800 | Ginter et al. | Oct 2006 | B2 |
7136922 | Sundaram et al. | Nov 2006 | B2 |
7143170 | Swildens et al. | Nov 2006 | B2 |
7155723 | Swildens et al. | Dec 2006 | B2 |
7185052 | Day | Feb 2007 | B2 |
7194522 | Swildens et al. | Mar 2007 | B1 |
7203753 | Yeager et al. | Apr 2007 | B2 |
7313619 | Torrant et al. | Dec 2007 | B2 |
7356487 | Kitze | Apr 2008 | B2 |
7363278 | Schmelzer et al. | Apr 2008 | B2 |
7376749 | Loach et al. | May 2008 | B2 |
7409644 | Moore et al. | Aug 2008 | B2 |
7490149 | Omote et al. | Feb 2009 | B2 |
20010037314 | Ishikawa | Nov 2001 | A1 |
20020065880 | Hasegawa et al. | May 2002 | A1 |
20020082999 | Lee et al. | Jun 2002 | A1 |
20020083060 | Wang et al. | Jun 2002 | A1 |
20020087885 | Peled et al. | Jul 2002 | A1 |
20020099955 | Peled et al. | Jul 2002 | A1 |
20020120859 | Lipkin et al. | Aug 2002 | A1 |
20020141387 | Orshan | Oct 2002 | A1 |
20020143894 | Takayama | Oct 2002 | A1 |
20020152173 | Rudd | Oct 2002 | A1 |
20020152261 | Arkin et al. | Oct 2002 | A1 |
20020152262 | Arkin et al. | Oct 2002 | A1 |
20020174216 | Shorey et al. | Nov 2002 | A1 |
20020194108 | Kitze | Dec 2002 | A1 |
20030023421 | Finn et al. | Jan 2003 | A1 |
20030028889 | McCoskey et al. | Feb 2003 | A1 |
20030056118 | Troyansky et al. | Mar 2003 | A1 |
20030061287 | Yu et al. | Mar 2003 | A1 |
20030061490 | Abajian | Mar 2003 | A1 |
20030070070 | Yeager et al. | Apr 2003 | A1 |
20030093794 | Thomas et al. | May 2003 | A1 |
20030095660 | Lee et al. | May 2003 | A1 |
20030097299 | O'Kane et al. | May 2003 | A1 |
20030135548 | Bushkin | Jul 2003 | A1 |
20030233541 | Fowler et al. | Dec 2003 | A1 |
20030236787 | Burges | Dec 2003 | A1 |
20040010417 | Peled | Jan 2004 | A1 |
20040030691 | Woo | Feb 2004 | A1 |
20040030743 | Hugly et al. | Feb 2004 | A1 |
20040031038 | Hugly et al. | Feb 2004 | A1 |
20040093354 | Xu et al. | May 2004 | A1 |
20040103280 | Balfanz et al. | May 2004 | A1 |
20040107215 | Moore et al. | Jun 2004 | A1 |
20040111604 | Fournier | Jun 2004 | A1 |
20040139329 | Abdallah et al. | Jul 2004 | A1 |
20040158546 | Sobel et al. | Aug 2004 | A1 |
20040181688 | Wittkotter | Sep 2004 | A1 |
20050075119 | Sheha et al. | Apr 2005 | A1 |
20050089014 | Levin et al. | Apr 2005 | A1 |
20050091167 | Moore et al. | Apr 2005 | A1 |
20050105476 | Gotesdyner et al. | May 2005 | A1 |
20050108378 | Patterson et al. | May 2005 | A1 |
20050114709 | Moore | May 2005 | A1 |
20050147044 | Teodosiu et al. | Jul 2005 | A1 |
20050154681 | Schmelzer | Jul 2005 | A1 |
20050198317 | Byers | Sep 2005 | A1 |
20050198535 | Basche et al. | Sep 2005 | A1 |
20050203851 | King et al. | Sep 2005 | A1 |
20050216433 | Bland et al. | Sep 2005 | A1 |
20050265367 | Teodosiu et al. | Dec 2005 | A1 |
20050267945 | Cohen et al. | Dec 2005 | A1 |
20060015936 | Illowsky et al. | Jan 2006 | A1 |
20060149806 | Scott et al. | Jul 2006 | A1 |
20070143405 | Bland et al. | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
2816417 | May 2002 | FR |
WO 0111496 | Feb 2001 | WO |
WO-0150354 | Jul 2001 | WO |
WO 0177775 | Oct 2001 | WO |
WO 02075595 | Sep 2002 | WO |
WO 02077847 | Oct 2002 | WO |
WO 02082271 | Oct 2002 | WO |
WO 2005006157 | Jan 2005 | WO |
WO 2005043359 | May 2005 | WO |
WO 2005043819 | May 2005 | WO |
WO 2005046174 | May 2005 | WO |
WO 2005084252 | Sep 2005 | WO |
WO 2005109179 | Nov 2005 | WO |
WO 2006041742 | Apr 2006 | WO |
WO 2006086158 | Aug 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20070074019 A1 | Mar 2007 | US |