The present invention relates generally to wireless communication, and more specifically to high efficiency Wi-Fi.
Prior to setting forth the background of the invention, it may be helpful to set forth definitions of certain terms that will be used hereinafter.
The term “Wi-Fi” as used herein is defined as any wireless local area network (WLAN) products that are based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standards.
The term “Access Point” or “AP” as used herein is defined as a device that allows wireless devices (also known as User Equipment or “UE”) to connect to a wired network using Wi-Fi, or related standards. The AP usually connects to a router (via a wired network) as a standalone device, but it can also be an integral component of the router itself.
The term “client” as used herein is defined as any device that has wireless communication capabilities, specifically, the IEEE 802.11 standards. A client may be for example a smart telephone, a laptop, a tablet or a personal computer (PC).
The notation “STA” as used herein is defined in as an IEEE 802.11 client.
The term “BSS” is an acronym for Basic Service Set, which is typically a cluster of stations supported by an AP.
The term “node” as used herein is defined as general name for both IEEE 802.11 AP and IEEE 802.11 STA.
The term “serving AP” as used herein is defined in relation to one AP and one STA, wherein the STA is registered to the AP, and the AP and STA are sending and receiving data to and from each other.
The term “neighboring APs” or “neighboring nodes” relate to two co-frequency (or co-channel) APs or nodes that are within each other's sensitivity range, e.g. at least one of them can receive the other in such an signal-to-noise ratio to allows decoding of signals.
The term “CCA range” as used herein is a range between two IEEE 802.11 nodes, wherein at least one node can receive the other's transmission at a power level equal or larger than “CCA Level” e.g. −82 dBm.
The term “CSMA/CA” stands for Carrier-Sense-Multiple-Access/Collision-Avoidance, representing a requirement to listen before transmitting in a multi-node wireless system that shares a common channel on the basis of first-come-first-served.
The term “preamble” as used herein describes a certain 802.11 transmitted signal modulation appearing at the beginning of each packet, that when received by other 802.11 nodes, will force them to yield channel access.
The notation “SINR” stands for Signal to Interference and Noise.
The term “ACK” as used herein, stands for acknowledgement, and is defined as the signal transmitted from an IEEE 802.11 receiving node to the IEEE 802.11 node that has transmitted a packet to it, provided the packet was successfully received.
The term “time division duplex” (TDD) as used herein refers to systems using the same frequency spectrum for methods of communications in a time division manner such as Wi-Fi systems.
The term “channel sounding” as used herein refers to the process defined in 802.11 specifications that enables the full dimensionality of the radio channel to be determined. One sounding technique described in the 802.11 specifications is for an AP to transmit a Null Data Packet (NDP), a packet without a MAC frame.
The term “implicit feedback” or “implicit sounding” as used herein refers to a process used for TDD protocols such as Wi-Fi, where both down and up links share the same spectrum. In the aforementioned process, the uplink channel estimated by the AP, is assumed to be identical to the downlink one—based on reciprocity principle—and is therefore is considered by the AP to represent the channel towards the client/STA.
The term “explicit AP-STA feedback” or “explicit sounding” as used herein refers to a procedure where AP transmissions are channel estimated by the STA, and then fed back to the AP, providing it with the magnitude of phase and amplitude differences between the signals as transmitted by the AP vis-à-vis as received by the client/STA, allowing it to gauge possible distortions and correct them.
The term “associated STA” as used herein refers to a STA that is served by a certain AP with a certain Service Set Identifier (SSID).
The term “non-associated STA” as used herein refers to a STA within the range of the non-serving AP.
The acronym “NAV” stands for Network-Allocation-Vector and represents virtual carrier sense mechanism, used by a Wi-Fi transmitting message to broadcast the predicted duration of its transmission, signaling to other nodes how long the channel will be occupied.
The acronym “RTS” stands for Request-To-Send, and represents a message transmitted by one Wi-Fi node to another, probing it for information about its availability to receive data, per the Wi-Fi Alliance protocol.
The acronym “CTS” stands for Clear-To-Send, and represents a positive response from the other node to the node originating the RTS, indicating to the requesting node that the channel is clear from its point of view as well.
The notation “DURATION” is a message embedded in both RTS and CTS, representing a prediction of the future traffic about to be transmitted between two nodes that have captured the channel; other nodes that receive it, must clear the channel as long as the DURATION has not expired; other nodes that have received the RTS but received the CTS (hidden nodes) will avoid accessing the channel, allowing the receiving node to successfully complete the reception.
The acronym “FLA” stands for Fast Link Adaptation, and represents processes that reduce transmitting side learning time of the receiver's SINR.
The acronym “MCS” stands for Modulation Coding Scheme, mapping SINR to modulation order and code rate.
The term “beamformer” as used herein relates to a node that generates a spatial pattern, created by two or more antennas, formed in such a way that significantly in the power level received by a given receiver being a “beamformee”.
The term “null” as used herein, is a spatial pattern, created by two or more antennas, formed in such a way that significantly reduces the power level received by a given receiver (e.g., a local minimum). An “Rx Null” is a null formed by a receiver's antennas weight in order to decrease undesired signal level. A “Tx Null” is formed by transmitter's antennas weights in order to decrease its undesired transmitted signal at remote receiver's input.
The term “actual null depth” as used herein, is the estimated value of the null after a certain time period has elapse since the last explicit sounding in which the amplitude and the phase have drifted so as to yield null degradation. The actual null depth is the original null taking account the estimated null degradation.
APSS is an acronym for AP Sounding Set. This is a cluster of APs that work together with mutual sounding process to reduce interference according to this invention.
The term “AP Beacon” is a management signal that is transmitted at regular intervals (typically about 10 times per second) that indicates capability of the AP. The Beacon frame contains both mandatory information (such as SSID) and optional data that may include vendor specific information. This vendor specific data field is used to indicate the AP as an APSS capable.
AP* indicates an AP which is compatible with APSS, meaning it is equipped with special software so that it can participate in APSS, either as a sounder or as a responder.
AP*—1 indicated an AP that initiates the APSS process. If multiple AP* are present, then multiple APSS's exist.
APSS_ID indicated an N bit random code selected by AP*—1 to identify the APSS that it has created (e.g. N=12).
AP*_i indicates an AP member in a group of APs that is a recipient of an AP*—1's initiation of an APSS process, where I {2 . . . n} is the designator for the different AP* that are members of the APSS_ID. Also labeled as “Compatible Access Point”.
According to current IEEE 802.11 air protocols, two neighboring APs can download traffic (e.g. radio signals including data) over the same frequency channel to their respective STAs at the same time as long as these APs are not within CCA range of each other. When an RTS/CTS procedure is used, an additional condition is introduced. Namely, a legacy STA receiving the download traffic from its serving AP, must not be within CCA range of other neighboring APs or the STA they are supporting, if the AP is occupying the channel.
In many deployments APs on the same radio channel are within CCA range of each other; thus, an AP may be blocked from transmitting to its client STA due to activity of a neighboring nearby AP.
Embodiments of the present invention disclose a protocol modification that allows a group of 802.11 nodes that are MIMO capable, to access an occupied channel, using novel procedure that enables acquiring knowledge of the channel between APs, based on setting up an explicit beamformer-beamformee handshake.
According to some embodiments, an AP equipped with Tx/RX MIMO capability may serve several STAs while simultaneously null its transmitted signal toward the interfering AP, based on acquiring channel knowledge via a sounding process targeted at neighboring APs, similar to explicit sounding process defined for 802.11ac beamforming and MU-MIMO targeted at served STAs.
Embodiments of a MU-MIMO procedure are described herein, enabling a neighboring AP to access a channel already occupied by another downloading AP; the procedure may be initiated by establishing a subgroup of neighboring APs which agree to adhere to a mutual sounding protocol, e.g. subscribe to an AP Sounding Set (APSS), exchanging invites and accepts to the set, and performing mutual sounding handshakes that enable acquisition of each other's channel information, consequently used for null setting towards each other—also labeled as beamformer-beamformee nulling process.
Each of the aforementioned member AP may perform an APSS initialization by surveying the neighboring co-channel APs periodically, listing those who are within its CCA range, and eliminating from the list ones that are not APSS capable, and ones that are too strong to be nulled, e.g., ones that cannot be pushed below CCA Level via nulling, either due to limited nulling capability, or due to a very close proximity, or both.
The aforementioned beamformer's nulling capability is defined as the power level difference between its trained null towards the Beamformee, and its Omni directional antenna pattern, as received by the Beamformee's receiver.
Such nulling capability is estimated by a beamformer AP via periodical sounding of the APs that are within its CAA range, and by then interpolating the acquired phase and amplitude accuracy deterioration over time, which has elapsed from last sounding.
Successful nulling capability verification may allow a beamformer AP to access (for downloading purposes) a channel occupied by the downloading beamformee AP, provided certain additional conditions are met.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be more fully understood by reference to the following detailed description when read with the accompanying drawings in which:
In the following description, various aspects of the present invention will be described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the present invention. However, it will also be apparent to one skilled in the art that the present invention may be practiced without the specific details presented herein. Furthermore, well-known features may be omitted or simplified in order not to obscure the present invention.
Unless specifically stated otherwise, as apparent from the following discussions, it is appreciated that throughout the specification discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, that manipulates and/or transforms data represented as physical, such as electronic, quantities within the computing system's registers and/or memories into other data similarly represented as physical quantities within the computing system's memories, registers or other such information storage, transmission or display devices.
The reason for the protocol's requirement that prohibits AP—1 from transmitting is to avoid harmful interference to the AP—2's session, as well as in consideration of a possible harmful interference of AP—2 transmission to AP—1's contemplated package delivery.
It is noted that in cases depicted in
Baseband processor 30 may be configured to monitor signals received by the radio circuitries 20-1 to 20-N and generate a set or list of neighboring co-channel access points that each has plurality of antennas and are further located within a clear channel assessment (CCA) range of the access point. Baseband processor 30 may be further configured to instruct radio circuitries 20-1 to 20-N to transmit a sounding sequence to the list of neighboring access points, and receive Channel State Information (CSI) therefrom. The sounding sequence being a sequence of control frames sent to beamformees and data frames indicative of the channel from the beamformee.
According to some embodiments, an explicit sounding process invoked between the access point and each of the listed neighboring access points.
In a case that AP*—1 receives any ACK-to-APSS response 304, AP*—1 updates its APSS table 305. In a case AP*—1 does not receive any ACK-to-APSS response, the next AP*_i from the list is being picked and the method goes on to the AP*—1 sending Request-to-Join-APSS to the picked AP*_i 303 and so forth. When a Request-to-Join is not being responded with ACK-to-APSS, AP*_i may re-send the Request-to-Join several times, (e.g. resending the Request-to-Join three times, each request being sent a few milliseconds after the previous request) before proceeding to next neighboring AP*_i 306, and revisit the non-responding AP*_i after an extended time period, e.g. 1 minute.
One embodiment of the invention has APSS compatible AP indicate their capability by a flag set in a vendor specific information element (for example Element Identifier (ID) 122) in the beacon management frame (See e.g.
Once the list of APSS is established, each AP*_i can try to access an occupied channel following the APSS procedure which is based on expanding the 802.1 lac multi-user-MIMO (MU_MIMO) explicit sounding.
In essence, the APSS process in one embodiment differs from the existing MU-MIMO by replacing one of the simultaneously served STAs with a neighboring AP; specifically, an AP that is capable of serving L simultaneous STAs, is configured to serve only L-1 STAs while nulling a neighboring AP which is currently occupying the channel.
According to some embodiments of the present invention, beamformer AP*—1 may send an NDP announcement to the listed neighboring beamformees APs, followed by an NDP, and a compressed matrix V representing the channel response (herein: compressed V response) from a first neighboring AP*_i and a series of poll requests to a next beamformee neighboring AP*_i and a corresponding V compressed response, until all listed neighboring beamformees neighboring APs are polled and all V compressed responses are consummated.
More specifically, the two byte STA field 506 of the MU-MIMO protocol is retrofitted into a APSS ID field 501, rather than a STA field, containing similar structure, i.e. a subfield APSS ID (e.g. 12 bits), a subfield indicating the FB feedback type being used (e.g. 1 bit), and a subfield NC the Number of Columns in the feedback matrix (e.g. 3 bits).
According to some embodiments of the present invention, the APSS NDP announcement and NDP may include an APSS ID field replacing in the MU MIMO protocol the STA ID field.
There is a set of topologic conditions and qualifications that are verified before an AP*—1 may perform an APSS process and access the busy channel: the beamformer AP is outside the CCA range of the STA currently served by the beamformee AP; the beamformee AP is outside the CCA range of the STA to be served by the Beamformer AP; both served STAs are verified to be located closer than the edge of their serving cells, since their corresponding AP*'s' sensitivity is slightly reduced by minor residual interference caused by the APSS process conditions are outlined as follows:
STA, and uses it in order to calculate the proximity of said STA to the Beamformee's cell edge, e.g. low MCS may indicate large range, and if so, will refrain from accessing the channel;
Additionally, in order to guarantee the AP*_i session is not harmed by the AP*—1 access, a null depth verification and validation is required.
As a non-zero time has elapsed between such last APSS channel estimation and the usage of the acquired weights for nulling, a null deterioration estimation is performed as described below, and then a nulling capability is calculated as described further, yielding actual null depth figure of merit Null—
Therefore, proceeding to AP*—1 access of the occupied channel, is conditioned by measuring RSSIAp*
According to some embodiments of the present invention, a decision to access a channel occupied by a listed compatible neighboring AP within CCA range, may be subject to verification and validation of the access point null's capability to reduce the interference caused by the access point to the neighboring AP below CCA Level, for at least one of the neighboring AP antennas.
According to some embodiments of the present invention, the access point may be configured to keep or store records (e.g. on a memory) of fading rates of each listed compatible neighboring APs within CCA range, in terms of amplitude and phase variation over time, and further calculates for each of the listed neighboring APs the standard deviation 1σ, 2σ, 3σ of the amplitude and phase variations, and further estimates a corresponding amplitude and phase drift rate.
According to some embodiments of the present invention, the access point may be further configured to keep or store records of fading rates of each listed compatible neighboring APs within CCA range, in terms of amplitude and phase variation over time, and further calculates for each of the listed compatible neighboring AP within CCA range the standard deviation 1σ, 2σ, 3σ of the amplitude and phase variations, and further estimates a corresponding amplitude and phase drift rate.
According to some embodiments of the present invention, the access point may be further configured to estimate the nulling capability by calculating the time elapsed between the last sounding of the compatible neighboring AP within CCA range and the time the condition is being examined, apply the amplitude and phase drift rate, and further estimates the null depth degradation, caused by the accumulated drift, yielding actual null depth.
According to some embodiments of the present invention, the access point may be further configured to null compatible neighboring AP within CCA range while downloading a packet to served STA, in a case where the neighboring AP RSSI−Actual Null Depth<CCA Level, provided several predefined topologic conditions are met.
According to some embodiments of the present invention, the topologic conditions may be defined as, for example: (i) the access point is not within CCA range of the STA served by compatible neighboring AP within CCA range (ii); the neighboring AP is not within CCA range of the STA or STAs about to be served by the access point (iii); and/or the served STAs are not on their servicing cell's edges.
AP*—1 may perform periodical APSS sounding process with a given AP*_i, when the AP*_i is not transmitting; such period are preferably done at intervals larger than the maximum packet duration (e.g. 7 ms or more).
According to some embodiments of the present invention, the access point may perform the sounding of the listed neighbors that have agreed to join the APSS, on a periodic basis, whenever a given compatible neighboring AP within CCA range is not transmitting. Such periods are preferably carried out at intervals longer than the maximum packet duration (e.g. 7 ms or more).
According to some embodiments of the present invention, the access point may be configured to limit a number of responses produced by it so as to allocate up to approximately 10% of a transmitting time to respond to sounding requests from the listed neighboring access points.
According to some embodiments of the present invention, the sounding of the listed neighboring access points may be performed based on IEEE 802.11ac MU MIMO sounding procedure, wherein the access point may respond to a limited number of compatible neighboring APs, including up to eight strongest RSSIs.
According to some embodiments of the present invention, the access point may carry out an actual download of a packet to a STA, or a group of STAs, while the channel may be occupied by a compatible neighboring AP within CCA range, may be carried out with such antenna pattern that may minimize the power received by at least one of the neighboring AP antennas.
Following fading fluctuation over time, and average time interval between consecutive APSS sounding, a phase and amplitude gradients are calculated (e.g. standard deviation 1σ, 2σ, 3σ), and applied to a null deterioration chart (See
According to some embodiments of the present invention, the access point may include: a plurality of antennas; a plurality of radio circuitries configured to transmit and receive signals via the plurality of antennas; and a baseband processor configured to monitor signals received by the radio circuitries and generate a list of neighboring co-channel access points that each has plurality of antennas and are further located within a clear channel assessment (CCA) range of the access point.
The baseband processor may further be configured to instruct the radio circuitries to transmit a sounding sequence to the list of compatible neighboring access points, and receive Channel State Information (CSI) from the compatible neighboring access points, wherein the compatible neighboring access points indicate having a capability of responding to sounding sequences by transmitting identification of the capability in a beacon management frame. The baseband configuration capabilities may be broadcasted to the compatible neighboring access points via unused bits within the beacon management frame.
As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or an apparatus. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” For example, a baseband processor or other processor may be configured to carry out methods of the present invention by for example executing code or software.
The aforementioned flowcharts and block diagrams illustrate the architecture, functionality, and operation of possible implementations of systems and methods according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
In the above description, an embodiment is an example or implementation of the inventions. The various appearances of “one embodiment,” “an embodiment” or “some embodiments” do not necessarily all refer to the same embodiments.
Although various features of the invention may be described in the context of a single embodiment, the features may also be provided separately or in any suitable combination. Conversely, although the invention may be described herein in the context of separate embodiments for clarity, the invention may also be implemented in a single embodiment.
Reference in the specification to “some embodiments”, “an embodiment”, “one embodiment” or “other embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments, of the inventions. It will further be recognized that the aspects of the invention described hereinabove may be combined or otherwise coexist in embodiments of the invention.
The principles and uses of the teachings of the present invention may be better understood with reference to the accompanying description, figures and examples.
It is to be understood that the details set forth herein do not construe a limitation to an application of the invention.
Furthermore, it is to be understood that the invention can be carried out or practiced in various ways and that the invention can be implemented in embodiments other than the ones outlined in the description above.
It is to be understood that the terms “including”, “comprising”, “consisting” and grammatical variants thereof do not preclude the addition of one or more components, features, steps, or integers or groups thereof and that the terms are to be construed as specifying components, features, steps or integers.
If the specification or claims refer to “an additional” element, that does not preclude there being more than one of the additional element. It is to be understood that where the specification states that a component, feature, structure, or characteristic “may”, “might”, “can” or “could” be included, that particular component, feature, structure, or characteristic is not required to be included.
Where applicable, although state diagrams, flow diagrams or both may be used to describe embodiments, the invention is not limited to those diagrams or to the corresponding descriptions. For example, flow need not move through each illustrated box or state, or in exactly the same order as illustrated and described. The descriptions, examples, methods and materials presented in the claims and the specification are not to be construed as limiting but rather as illustrative only.
Meanings of technical and scientific terms used herein are to be commonly understood as by one of ordinary skill in the art to which the invention belongs, unless otherwise defined.
The present invention may be implemented in the testing or practice with methods and materials equivalent or similar to those described herein. While the invention has been described with respect to a limited number of embodiments, these should not be construed as limitations on the scope of the invention, but rather as exemplifications of some of the preferred embodiments. Other possible variations, modifications, and applications are also within the scope of the invention. Accordingly, the scope of the invention should not be limited by what has thus far been described, but by the appended claims and their legal equivalents.
This application claims benefit from U.S. provisional patent application Ser. No. 61/955,433 filed on Mar. 19, 2014, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4044359 | Applebaum et al. | Aug 1977 | A |
4079318 | Kinoshita | Mar 1978 | A |
4359738 | Lewis | Nov 1982 | A |
4540985 | Clancy et al. | Sep 1985 | A |
4628320 | Downie | Dec 1986 | A |
5162805 | Cantrell | Nov 1992 | A |
5363104 | Richmond | Nov 1994 | A |
5444762 | Frey et al. | Aug 1995 | A |
5732075 | Tangemann et al. | Mar 1998 | A |
5915215 | Williams et al. | Jun 1999 | A |
5936577 | Shoki et al. | Aug 1999 | A |
5940033 | Locher et al. | Aug 1999 | A |
6018317 | Dogan et al. | Jan 2000 | A |
6026081 | Hamabe | Feb 2000 | A |
6046655 | Cipolla | Apr 2000 | A |
6094165 | Smith | Jul 2000 | A |
6101399 | Raleigh et al. | Aug 2000 | A |
6163695 | Takemura | Dec 2000 | A |
6167286 | Ward et al. | Dec 2000 | A |
6215812 | Young et al. | Apr 2001 | B1 |
6226507 | Ramesh et al. | May 2001 | B1 |
6230123 | Mekuria et al. | May 2001 | B1 |
6259683 | Sekine et al. | Jul 2001 | B1 |
6297772 | Lewis | Oct 2001 | B1 |
6321077 | Saitoh et al. | Nov 2001 | B1 |
6335953 | Sanderford et al. | Jan 2002 | B1 |
6370378 | Yahagi | Apr 2002 | B1 |
6377783 | Lo et al. | Apr 2002 | B1 |
6393282 | Iimori | May 2002 | B1 |
6584115 | Suzuki | Jun 2003 | B1 |
6647276 | Kuwahara et al. | Nov 2003 | B1 |
6697622 | Ishikawa et al. | Feb 2004 | B1 |
6697633 | Dogan et al. | Feb 2004 | B1 |
6834073 | Miller et al. | Dec 2004 | B1 |
6842460 | Olkkonen et al. | Jan 2005 | B1 |
6914890 | Tobita et al. | Jul 2005 | B1 |
6927646 | Niemi | Aug 2005 | B2 |
6934541 | Miyatani | Aug 2005 | B2 |
6975582 | Karabinis et al. | Dec 2005 | B1 |
6987958 | Lo et al. | Jan 2006 | B1 |
7068628 | Li et al. | Jun 2006 | B2 |
7154960 | Liu et al. | Dec 2006 | B2 |
7177663 | Axness et al. | Feb 2007 | B2 |
7190964 | Damnjanovic et al. | Mar 2007 | B2 |
7257425 | Wang et al. | Aug 2007 | B2 |
7299072 | Ninomiya | Nov 2007 | B2 |
7391757 | Haddad et al. | Jun 2008 | B2 |
7392015 | Farlow et al. | Jun 2008 | B1 |
7474676 | Tao et al. | Jan 2009 | B2 |
7499109 | Kim et al. | Mar 2009 | B2 |
7512083 | Li | Mar 2009 | B2 |
7606528 | Mesecher | Oct 2009 | B2 |
7634015 | Waxman | Dec 2009 | B2 |
7646744 | Li | Jan 2010 | B2 |
7719993 | Li et al. | May 2010 | B2 |
7742000 | Mohamadi | Jun 2010 | B2 |
7769107 | Sandhu et al. | Aug 2010 | B2 |
7876848 | Han et al. | Jan 2011 | B2 |
7881401 | Kraut et al. | Feb 2011 | B2 |
7898478 | Niu et al. | Mar 2011 | B2 |
7904086 | Kundu et al. | Mar 2011 | B2 |
7904106 | Han et al. | Mar 2011 | B2 |
7933255 | Li | Apr 2011 | B2 |
7970366 | Arita et al. | Jun 2011 | B2 |
8078109 | Mulcay | Dec 2011 | B1 |
8103284 | Mueckenheim et al. | Jan 2012 | B2 |
8111782 | Kim et al. | Feb 2012 | B2 |
8115679 | Falk | Feb 2012 | B2 |
8155613 | Kent et al. | Apr 2012 | B2 |
8194602 | van Rensburg et al. | Jun 2012 | B2 |
8275377 | Nanda et al. | Sep 2012 | B2 |
8280443 | Tao et al. | Oct 2012 | B2 |
8294625 | Kittinger et al. | Oct 2012 | B2 |
8306012 | Lindoff et al. | Nov 2012 | B2 |
8315671 | Kuwahara et al. | Nov 2012 | B2 |
8369436 | Stirling-Gallacher | Feb 2013 | B2 |
8504098 | Khojastepour | Aug 2013 | B2 |
8509190 | Rofougaran | Aug 2013 | B2 |
8520657 | Rofougaran | Aug 2013 | B2 |
8526886 | Wu et al. | Sep 2013 | B2 |
8571127 | Jiang et al. | Oct 2013 | B2 |
8588844 | Shpak | Nov 2013 | B2 |
8599955 | Kludt et al. | Dec 2013 | B1 |
8599979 | Farag et al. | Dec 2013 | B2 |
8605658 | Fujimoto | Dec 2013 | B2 |
8644413 | Harel et al. | Feb 2014 | B2 |
8649458 | Kludt et al. | Feb 2014 | B2 |
8666319 | Kloper et al. | Mar 2014 | B2 |
8670504 | Naguib | Mar 2014 | B2 |
8744511 | Jones et al. | Jun 2014 | B2 |
8754810 | Guo et al. | Jun 2014 | B2 |
8767862 | Abreu et al. | Jul 2014 | B2 |
8780743 | Sombrutzki et al. | Jul 2014 | B2 |
8797969 | Harel et al. | Aug 2014 | B1 |
8891598 | Wang et al. | Nov 2014 | B1 |
8942134 | Kludt et al. | Jan 2015 | B1 |
8976845 | O'Keeffe et al. | Mar 2015 | B2 |
9035828 | O'Keeffe et al. | May 2015 | B2 |
20010029326 | Diab et al. | Oct 2001 | A1 |
20010038665 | Baltersee et al. | Nov 2001 | A1 |
20020024975 | Hendler | Feb 2002 | A1 |
20020051430 | Kasami et al. | May 2002 | A1 |
20020065107 | Harel et al. | May 2002 | A1 |
20020085643 | Kitchener et al. | Jul 2002 | A1 |
20020107013 | Fitzgerald | Aug 2002 | A1 |
20020115474 | Yoshino et al. | Aug 2002 | A1 |
20020181426 | Sherman | Dec 2002 | A1 |
20020181437 | Ohkubo et al. | Dec 2002 | A1 |
20030087645 | Kim et al. | May 2003 | A1 |
20030114162 | Chheda et al. | Jun 2003 | A1 |
20030153322 | Burke et al. | Aug 2003 | A1 |
20030153360 | Burke et al. | Aug 2003 | A1 |
20030186653 | Mohebbi et al. | Oct 2003 | A1 |
20030203717 | Chuprun et al. | Oct 2003 | A1 |
20030203743 | Sugar et al. | Oct 2003 | A1 |
20040023693 | Okawa et al. | Feb 2004 | A1 |
20040056795 | Ericson et al. | Mar 2004 | A1 |
20040063455 | Eran et al. | Apr 2004 | A1 |
20040081144 | Martin et al. | Apr 2004 | A1 |
20040121810 | Goransson et al. | Jun 2004 | A1 |
20040125899 | Li et al. | Jul 2004 | A1 |
20040125900 | Liu et al. | Jul 2004 | A1 |
20040142696 | Saunders et al. | Jul 2004 | A1 |
20040147266 | Hwang et al. | Jul 2004 | A1 |
20040156399 | Eran | Aug 2004 | A1 |
20040166902 | Castellano et al. | Aug 2004 | A1 |
20040198292 | Smith et al. | Oct 2004 | A1 |
20040228388 | Salmenkaita | Nov 2004 | A1 |
20040235527 | Reudink et al. | Nov 2004 | A1 |
20040264504 | Jin | Dec 2004 | A1 |
20050068230 | Munoz et al. | Mar 2005 | A1 |
20050068918 | Mantravadi et al. | Mar 2005 | A1 |
20050075140 | Famolari | Apr 2005 | A1 |
20050129155 | Hoshino | Jun 2005 | A1 |
20050147023 | Stephens et al. | Jul 2005 | A1 |
20050163097 | Do et al. | Jul 2005 | A1 |
20050245224 | Kurioka | Nov 2005 | A1 |
20050250544 | Grant et al. | Nov 2005 | A1 |
20050254513 | Cave et al. | Nov 2005 | A1 |
20050265436 | Suh et al. | Dec 2005 | A1 |
20050286440 | Strutt et al. | Dec 2005 | A1 |
20050287962 | Mehta et al. | Dec 2005 | A1 |
20060041676 | Sherman | Feb 2006 | A1 |
20060092889 | Lyons et al. | May 2006 | A1 |
20060094372 | Ahn et al. | May 2006 | A1 |
20060098605 | Li | May 2006 | A1 |
20060111149 | Chitrapu et al. | May 2006 | A1 |
20060135097 | Wang et al. | Jun 2006 | A1 |
20060183503 | Goldberg | Aug 2006 | A1 |
20060203850 | Johnson et al. | Sep 2006 | A1 |
20060227854 | McCloud et al. | Oct 2006 | A1 |
20060264184 | Li et al. | Nov 2006 | A1 |
20060270343 | Cha et al. | Nov 2006 | A1 |
20060271969 | Takizawa et al. | Nov 2006 | A1 |
20060285507 | Kinder et al. | Dec 2006 | A1 |
20070041398 | Benveniste | Feb 2007 | A1 |
20070058581 | Benveniste | Mar 2007 | A1 |
20070076675 | Chen | Apr 2007 | A1 |
20070093261 | Hou et al. | Apr 2007 | A1 |
20070097918 | Cai et al. | May 2007 | A1 |
20070115882 | Wentink | May 2007 | A1 |
20070115914 | Ohkubo et al. | May 2007 | A1 |
20070152903 | Lin et al. | Jul 2007 | A1 |
20070217352 | Kwon | Sep 2007 | A1 |
20070223380 | Gilbert et al. | Sep 2007 | A1 |
20070249386 | Bennett | Oct 2007 | A1 |
20070298742 | Ketchum et al. | Dec 2007 | A1 |
20080043867 | Blanz et al. | Feb 2008 | A1 |
20080051037 | Molnar et al. | Feb 2008 | A1 |
20080081671 | Wang et al. | Apr 2008 | A1 |
20080095163 | Chen et al. | Apr 2008 | A1 |
20080108352 | Montemurro et al. | May 2008 | A1 |
20080125120 | Gallagher et al. | May 2008 | A1 |
20080144737 | Naguib | Jun 2008 | A1 |
20080165732 | Kim et al. | Jul 2008 | A1 |
20080238808 | Arita et al. | Oct 2008 | A1 |
20080240314 | Gaal et al. | Oct 2008 | A1 |
20080247370 | Gu et al. | Oct 2008 | A1 |
20080267142 | Mushkin et al. | Oct 2008 | A1 |
20080280571 | Rofougaran et al. | Nov 2008 | A1 |
20080285637 | Liu et al. | Nov 2008 | A1 |
20090003299 | Cave et al. | Jan 2009 | A1 |
20090028225 | Runyon et al. | Jan 2009 | A1 |
20090046638 | Rappaport et al. | Feb 2009 | A1 |
20090058724 | Xia et al. | Mar 2009 | A1 |
20090121935 | Xia et al. | May 2009 | A1 |
20090137206 | Sherman et al. | May 2009 | A1 |
20090154419 | Yoshida et al. | Jun 2009 | A1 |
20090187661 | Sherman | Jul 2009 | A1 |
20090190541 | Abedi | Jul 2009 | A1 |
20090227255 | Thakare | Sep 2009 | A1 |
20090239486 | Sugar et al. | Sep 2009 | A1 |
20090268616 | Hosomi | Oct 2009 | A1 |
20090285331 | Sugar et al. | Nov 2009 | A1 |
20090322610 | Hants et al. | Dec 2009 | A1 |
20090322613 | Bala et al. | Dec 2009 | A1 |
20090323608 | Adachi et al. | Dec 2009 | A1 |
20100002656 | Ji et al. | Jan 2010 | A1 |
20100037111 | Ziaja et al. | Feb 2010 | A1 |
20100040369 | Zhao et al. | Feb 2010 | A1 |
20100067473 | Cave et al. | Mar 2010 | A1 |
20100087227 | Francos et al. | Apr 2010 | A1 |
20100111039 | Kim et al. | May 2010 | A1 |
20100117890 | Vook et al. | May 2010 | A1 |
20100135420 | Xu et al. | Jun 2010 | A1 |
20100150013 | Hara et al. | Jun 2010 | A1 |
20100172429 | Nagahama et al. | Jul 2010 | A1 |
20100195560 | Nozaki et al. | Aug 2010 | A1 |
20100195601 | Zhang | Aug 2010 | A1 |
20100208712 | Wax et al. | Aug 2010 | A1 |
20100222011 | Behzad | Sep 2010 | A1 |
20100232355 | Richeson et al. | Sep 2010 | A1 |
20100234071 | Shabtay et al. | Sep 2010 | A1 |
20100278063 | Kim et al. | Nov 2010 | A1 |
20100283692 | Achour et al. | Nov 2010 | A1 |
20100285752 | Lakshmanan et al. | Nov 2010 | A1 |
20100291931 | Suemitsu et al. | Nov 2010 | A1 |
20100303170 | Zhu et al. | Dec 2010 | A1 |
20100316043 | Doi et al. | Dec 2010 | A1 |
20110019639 | Karaoguz et al. | Jan 2011 | A1 |
20110032849 | Yeung et al. | Feb 2011 | A1 |
20110032972 | Wang et al. | Feb 2011 | A1 |
20110085465 | Lindoff et al. | Apr 2011 | A1 |
20110085532 | Scherzer et al. | Apr 2011 | A1 |
20110105036 | Rao et al. | May 2011 | A1 |
20110116489 | Grandhi | May 2011 | A1 |
20110134816 | Liu et al. | Jun 2011 | A1 |
20110150050 | Trigui et al. | Jun 2011 | A1 |
20110150066 | Fujimoto | Jun 2011 | A1 |
20110151826 | Miller et al. | Jun 2011 | A1 |
20110163913 | Cohen et al. | Jul 2011 | A1 |
20110205883 | Mihota | Aug 2011 | A1 |
20110205998 | Hart et al. | Aug 2011 | A1 |
20110228742 | Honkasalo et al. | Sep 2011 | A1 |
20110249576 | Chrisikos et al. | Oct 2011 | A1 |
20110250884 | Brunel et al. | Oct 2011 | A1 |
20110273977 | Shapira et al. | Nov 2011 | A1 |
20110281541 | Borremans | Nov 2011 | A1 |
20110299437 | Mikhemar et al. | Dec 2011 | A1 |
20110310827 | Srinivasa et al. | Dec 2011 | A1 |
20110310853 | Yin et al. | Dec 2011 | A1 |
20120014377 | Joergensen et al. | Jan 2012 | A1 |
20120015603 | Proctor et al. | Jan 2012 | A1 |
20120020396 | Hohne et al. | Jan 2012 | A1 |
20120027000 | Wentink | Feb 2012 | A1 |
20120028638 | Mueck et al. | Feb 2012 | A1 |
20120028655 | Mueck et al. | Feb 2012 | A1 |
20120028671 | Niu et al. | Feb 2012 | A1 |
20120033761 | Guo et al. | Feb 2012 | A1 |
20120034952 | Lo et al. | Feb 2012 | A1 |
20120045003 | Li et al. | Feb 2012 | A1 |
20120051287 | Merlin et al. | Mar 2012 | A1 |
20120064838 | Miao et al. | Mar 2012 | A1 |
20120069828 | Taki et al. | Mar 2012 | A1 |
20120076028 | Ko et al. | Mar 2012 | A1 |
20120076229 | Brobston et al. | Mar 2012 | A1 |
20120088512 | Yamada et al. | Apr 2012 | A1 |
20120092217 | Hosoya et al. | Apr 2012 | A1 |
20120100802 | Mohebbi | Apr 2012 | A1 |
20120115523 | Shpak | May 2012 | A1 |
20120155349 | Bajic et al. | Jun 2012 | A1 |
20120155397 | Shaffer et al. | Jun 2012 | A1 |
20120163257 | Kim et al. | Jun 2012 | A1 |
20120163302 | Takano | Jun 2012 | A1 |
20120170453 | Tiwari | Jul 2012 | A1 |
20120170672 | Sondur | Jul 2012 | A1 |
20120201153 | Bharadia et al. | Aug 2012 | A1 |
20120201173 | Jain et al. | Aug 2012 | A1 |
20120207256 | Farag et al. | Aug 2012 | A1 |
20120212372 | Petersson et al. | Aug 2012 | A1 |
20120213065 | Koo et al. | Aug 2012 | A1 |
20120218962 | Kishiyama et al. | Aug 2012 | A1 |
20120220331 | Luo et al. | Aug 2012 | A1 |
20120230380 | Keusgen et al. | Sep 2012 | A1 |
20120251031 | Suarez et al. | Oct 2012 | A1 |
20120270531 | Wright et al. | Oct 2012 | A1 |
20120270544 | Shah | Oct 2012 | A1 |
20120281598 | Struhsaker et al. | Nov 2012 | A1 |
20120314570 | Forenza et al. | Dec 2012 | A1 |
20120321015 | Hansen et al. | Dec 2012 | A1 |
20120327870 | Grandhi et al. | Dec 2012 | A1 |
20130010623 | Golitschek | Jan 2013 | A1 |
20130017794 | Kloper et al. | Jan 2013 | A1 |
20130023225 | Weber | Jan 2013 | A1 |
20130044877 | Liu et al. | Feb 2013 | A1 |
20130051283 | Lee et al. | Feb 2013 | A1 |
20130058239 | Wang et al. | Mar 2013 | A1 |
20130070741 | Li et al. | Mar 2013 | A1 |
20130079048 | Cai et al. | Mar 2013 | A1 |
20130094437 | Bhattacharya | Apr 2013 | A1 |
20130094621 | Luo et al. | Apr 2013 | A1 |
20130095780 | Prazan et al. | Apr 2013 | A1 |
20130101073 | Zai et al. | Apr 2013 | A1 |
20130150012 | Chhabra et al. | Jun 2013 | A1 |
20130156016 | Debnath et al. | Jun 2013 | A1 |
20130156120 | Josiam et al. | Jun 2013 | A1 |
20130170388 | Ito et al. | Jul 2013 | A1 |
20130172029 | Chang et al. | Jul 2013 | A1 |
20130190006 | Kazmi et al. | Jul 2013 | A1 |
20130208587 | Bala et al. | Aug 2013 | A1 |
20130208619 | Kudo et al. | Aug 2013 | A1 |
20130223400 | Seo et al. | Aug 2013 | A1 |
20130229996 | Wang et al. | Sep 2013 | A1 |
20130229999 | Da Silva et al. | Sep 2013 | A1 |
20130235720 | Wang et al. | Sep 2013 | A1 |
20130242853 | Seo et al. | Sep 2013 | A1 |
20130242899 | Lysejko et al. | Sep 2013 | A1 |
20130242965 | Horn et al. | Sep 2013 | A1 |
20130242976 | Katayama et al. | Sep 2013 | A1 |
20130252621 | Dimou et al. | Sep 2013 | A1 |
20130272437 | Eidson et al. | Oct 2013 | A1 |
20130301551 | Ghosh et al. | Nov 2013 | A1 |
20130331136 | Yang et al. | Dec 2013 | A1 |
20130343369 | Yamaura | Dec 2013 | A1 |
20140010089 | Cai et al. | Jan 2014 | A1 |
20140010211 | Asterjadhi et al. | Jan 2014 | A1 |
20140029433 | Wentink | Jan 2014 | A1 |
20140071873 | Wang et al. | Mar 2014 | A1 |
20140086077 | Safavi | Mar 2014 | A1 |
20140086081 | Mack et al. | Mar 2014 | A1 |
20140098681 | Stager et al. | Apr 2014 | A1 |
20140119288 | Zhu et al. | May 2014 | A1 |
20140154992 | Silverman et al. | Jun 2014 | A1 |
20140185501 | Park et al. | Jul 2014 | A1 |
20140185535 | Park et al. | Jul 2014 | A1 |
20140192820 | Azizi et al. | Jul 2014 | A1 |
20140204821 | Seok et al. | Jul 2014 | A1 |
20140241182 | Smadi | Aug 2014 | A1 |
20140242914 | Monroe | Aug 2014 | A1 |
20140307653 | Liu et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
1 189 303 | Mar 2002 | EP |
1 867 177 | May 2010 | EP |
2 234 355 | Sep 2010 | EP |
2 498 462 | Sep 2012 | EP |
2009-182441 | Aug 2009 | JP |
2009-278444 | Nov 2009 | JP |
WO 03047033 | Jun 2003 | WO |
WO 03073645 | Sep 2003 | WO |
WO 2010085854 | Aug 2010 | WO |
WO 2011060058 | May 2011 | WO |
WO 2013192112 | Dec 2013 | WO |
Entry |
---|
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Jan. 22, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Mar. 27, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,159 dated Apr. 16, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,191 dated May 2, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,188 dated May 15, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated May 21, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/770,255 dated Jun. 6, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated Jun. 11, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,159 dated Jun. 20, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Jul. 17, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,191 dated Jul. 19, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Jul. 31, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,188 dated Aug. 19, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/770,255 dated Sep. 17, 2013. |
Ahmadi-Shokouh et al., “Pre-LNA Smart Soft Antenna Selection for MIMO Spatial Multiplexing/Diversity System when Amplifier/Sky Noise Dominates”, European Transactions on Telecommunications, Wiley & Sons, Chichester, GB, vol. 21, No. 7, Nov. 1, 2010, pp. 663-677. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Sep. 25, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,320 dated Oct. 15, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated Oct. 23, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Oct. 28, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,194 dated Oct. 30, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated Nov. 5, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated Nov. 5, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Dec. 17, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/065,182 dated Dec. 17, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/068,863 dated Dec. 17, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Dec. 23, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Jan. 7, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/018,965 dated Jan. 13, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/858,302 dated Jan. 16, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jan. 16, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/102,539 dated Jan. 27, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/087,376 dated Jan. 29, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated Jan. 31, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/094,644 dated Feb. 6, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,320 dated Feb. 21, 2014. |
Huang et al., “Antenna Mismatch and Calibration Problem in Coordinated Multi-point Transmission System,” IET Communications, 2012, vol. 6, Issue 3, pp. 289-299. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/109,904 dated Feb. 27, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Mar. 7, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/172,500 dated Mar. 26, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/065,182 dated Mar. 25, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/068,863 dated Mar. 25, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Apr. 4, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,352 dated Apr. 7, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Apr. 9, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,194 dated Apr. 9, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Apr. 22, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/087,376 dated May 9, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/143,580 dated May 9, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated May 13, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated May 20, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,252 dated Jun. 18, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/094,644 dated Jun. 24, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/102,539 dated Jun. 24, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Jul. 1, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/109,904 dated Jul. 2, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Jul. 8, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Jul. 10, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,352 dated Jul. 23, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated Jul. 25, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,280 dated Jul. 29, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jul. 31, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Aug. 6, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/306,458 dated Aug. 13, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/297,898 dated Aug. 15, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,252 dated Aug. 27, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated Aug. 29, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/296,209 dated Sep. 4, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Sep. 8, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/143,580 dated Sep. 8, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,155 dated Sep. 12, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/173,640 dated Oct. 6, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/171,736 dated Oct. 16, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Oct. 20, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/320,920 dated Oct. 23, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Nov. 10, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Nov. 17, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,280 dated Nov. 18, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/480,920 dated Nov. 18, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/481,319 dated Nov. 19, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/273,866 dated Nov. 28, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Dec. 1, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/888,057 dated Dec. 3, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/297,898 dated Dec. 5, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/281,358 dated Dec. 16, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Dec. 26, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Dec. 31, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated Jan. 5, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US14/65958 dated Jan. 13, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,155 dated Jan. 26, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/296,209 dated Jan. 27, 2015. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/064346 dated Jan. 29, 2015. |
Mitsubishi Electric, “Discussion on Antenna Calibration in TDD”, 3GPP Draft; R1-090043, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, no. Ljubljana; Jan. 7, 2009, pp. 1-4. |
Alcatel-Lucent Shanghai Bell et al., “Antenna Array Calibration for TDD CoMP”, 3GPP Draft; R1100427, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F06921 Sophia-Antipolis Cedex; France, Vol. RAN WG1, no. Valencia, Spain; Jan. 12, 2010, pp. 1-5. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Feb. 3, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/173,640 dated Feb. 3, 2015. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/064185 dated Feb. 5, 2015. |
Kai Yang et al., “Coordinated Dual-Layer Beamforming for Public Safety Network: Architecture and Algorithms”, Communications (ICC), 2012 IEEE International Conference On, IEEE, Jun. 10, 2012, pp. 4095-4099. |
Songtao et al., “A Distributed Adaptive GSC Beamformer over Coordinated Antenna Arrays Network for Interference Mitigation”, Asilomar Conference on Signals, Systems and Computers, Conference Record, IEEE Computer Society, US, Nov. 4, 2012, pp. 237-242. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/065635 dated Feb. 13, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/171,736 mailed Feb. 20, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/320,920 dated Feb. 23, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Mar. 23, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/273,866 dated Mar. 25, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/517,114 dated Apr. 6, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Apr. 14, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/543,357 dated Apr. 23, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/450,625 dated Apr. 28, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Apr. 29, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated May 13, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated May 26, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/320,920 dated May 29, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/481,319 dated Jun. 12, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/505,655 dated Jun. 17, 2015. |
Number | Date | Country | |
---|---|---|---|
61955433 | Mar 2014 | US |