The present invention relates to reduction or elimination of uncommanded torque in an electric device that includes, at least in part, a motor and a motor drive, in the event of failure.
Electric devices, that include, for example, a motor, are used for a wide variety of purposes. Many of these devices perform critical functions that affect human safety. For example, electric devices are often used in medical life support equipment or to drive a variety of transporters. Hence, it is often desirable that these devices have a high degree of reliability, and in many cases, a level of redundancy to prevent failure of the device.
Under normal circumstances, motor torque is commonly commanded by a motor drive 51, which regulates the flow of current from a power source 55 into the motor 52, as shown in
In some cases, failures lead to an open-circuited motor (i.e. zero current in the motor), which generally causes a loss of torque from the motor. One way to tolerate this failure mode is to use a motor with redundant windings and redundant drives, all sharing the required load torque, so that in the event of a loss of torque from a single winding and/or drive set, the remaining windings and drives can compensate and meet the necessary torque demands.
However, certain failure modes may cause undesired fault torque that remaining operating windings and drives are not able to overcome, regardless of the amount of redundancy provided. For example, motor terminals may be shorted together by the drive.
In accordance with a first embodiment of the invention there is provided an electric device that includes a motor. A motor drive commands torque to be generated by the motor. A fault control circuit adjusts the torque commanded by the motor drive based at least upon detection of a fault condition.
In related embodiments of the invention, the fault control circuit includes at least one relay, squib, and/or fuse for decoupling the motor drive from the motor. The at least one relay may be in a normally open position such that the motor drive is decoupled from the motor when the relay is not activated.
In yet another related embodiment of the invention, the fault control circuit controls, upon detection of the fault condition, the motor drive so as to reduce fault torque commanded by the motor drive. This may be accomplished, for example, by the fault control circuit adjusting a pulse duty-cycle of a signal applied to a winding of the motor.
In other related embodiments of the invention, the motor may have redundant winding sets. The fault control mechanism may include a fault detection circuit for detecting a failed component associated with the motor drive. The failed component may be a winding, a CPU, and/or RAM.
In still another related embodiment of the invention, the electric device may be a transporter and the motor is coupled to at least one ground contacting element of the transporter so as to propel the transporter. The transporter may be a dynamically stabilized transporter.
In accordance with another embodiment of the invention, an electric device includes a motor having a first winding set and a second winding set. A fault control circuit decouples one of the first winding set and the second winding set from all circuitry based at least on a fault condition.
In related embodiments of the invention, the fault control circuit includes at least one switch, squib, or fuse for decoupling the one of the first winding set and the second winding set from all circuitry. The at least one switch may be a relay. The at least one relay may be in a normally open position such that the one of the first winding set and the second winding set is decoupled from all circuitry when the relay is not activated. The fault condition may be a failure of a component associated with the first winding set, and the fault control circuit decouples the first winding set from all circuitry based at least on the failure. The component may be one of the first winding set, a power source, a motor drive, a sensor, a CPU, and a RAM. The fault control circuit may include a first processor associated with the first winding set; and a second processor associated with the second winding set.
In another related embodiment of the invention, the electric device may be a transporter in which case the motor is coupled to at least one ground contacting element of the transporter so as to propel the transporter. The transporter may be a dynamically stabilized transporter.
In accordance with another embodiment of the invention, a method for controlling an electric device is presented. The electric device includes a motor having a winding set. The method includes detecting a fault condition associated with the winding set, and decoupling the winding set from all circuitry based at least on the fault condition. In related embodiments of the invention, the decoupling includes controlling at least one relay, squib, and/or fuse for decoupling the winding set.
In accordance with another embodiment of the invention, a method for controlling an electric device is presented. The electric device includes a motor driven by a motor drive. The method includes detecting a fault condition in the motor drive and reducing fault torque commanded by the motor drive based at least on the fault condition.
The foregoing features of the invention will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
A system and method for reducing or eliminating torque in an electric device that includes, at least in part, a motor and a motor drive, in the event of a fault condition is presented. In accordance with various embodiments of the invention, torque commanded by the motor drive associated with a fault condition may be eliminated by disconnecting the motor drive from the motor through, for example, the use of a relay, squibs, and/or fuses. In other embodiments of the invention, fault torque commanded by a motor drive associated with a fault condition may be reduced by controlling a portion of the motor drive that is still working properly, or by utilizing a motor topology that is less susceptible to fault torque. The present invention may be applied to electric devices that have various levels of redundancy, including electric devices that have no redundancy. For example, disconnection of a motor in a non-redundant electric device may be advantageous when zero torque can be tolerated but not fault torque, or when reduction of fault torque is useful if the resulting reduced fault torque is tolerable.
In accordance with one embodiment of the invention,
Each winding set 16, 17 is driven by a separate power source, designated by numerals 5 and 6, respectively. Power source 5, 6 may be a battery, for example, and may be external to the electric device. While redundant power sources 5, 6 are shown in
Besides having redundant power supplies, each winding set 16, 17 may also be associated with other redundant components, such as redundant motor drives. Each redundant component in
Referring now to the line of redundant components associated with winding set A 16, motor drive A 11 ensures that the appropriate power is applied to motor 15. Motor 15, in turn, rotates a shaft. The shaft may, for example, supply a torque, τ, at an angular velocity, ω, to a wheel of a transporter that is attached to shaft. In some embodiments, a transmission may be used to scale the wheel speed in relation to the angular velocity of the shaft. Winding set A 16 is electrically connected to motor drive A 113 by leads 18 capable of conducting large currents or high voltages. It is understood that the large currents and high voltages are relative to the currents and voltages normally used in signal processing and may cover, without limitation, the range above 1 ampere or 12 volts, respectively.
Motor drive A 11 may include both a drive controller A 11 and a power stage A 13 (similarly, motor drive B 10 may include drive controller B 12 and power stage B 14). Drive controller A 11 may be configured to control either current or voltage applied to motor 15. Power stage A 13 switches power source A 5 into or out of connection with each lead 18, with the switching of power stage A 13 controlled by drive controller A 11.
A fault control circuit 26 is provided that isolates winding set A 16 from some, or all, drive circuitry upon detection of a fault condition that affects, or potentially affects, proper operation of winding set A 16. The fault control circuit 26 may include at least one switch 8 that is controlled so as to decouple winding set A 16 from all other circuitry upon detection of the failure. Switch 8 may be positioned so as interrupt lead lines 18, thus preventing the passing of currents between motor drive A 9 and motor 15, protecting motor 15 from potential damage or from causing uncommanded torque. In other embodiments of the invention, other lines may be interrupted based on a detected fault. For example, a switch may be positioned so as to interrupt the line connecting power source A 5 to power stage A 13.
Switch 8 may be, without limitation, a relay. The relay may be connected in a normally-open position, such that when the relay is energized motor drive A 9 is connected to winding set A 16/motor 15, and when the relay is de-activated, motor drive A 9 is decoupled from winding set A 16/motor 15.
In a similar manner, switch 7 may be controlled by fault controller 27 so as decouple winding set B 17 from some, or all, other circuitry based on detection of a fault that affects, or potentially affects proper operation of winding B 17. This may be accomplished by positioning switch 7 so as to interrupt lead lines 19 or other lines, such as the line connecting power source A 5 to power stage A 13.
The fault control circuit first determines whether a fault condition has been detected, step 22. A fault condition may indicate one of a variety of conditions adversely affecting proper operation of a winding/winding set. A fault may be related to the winding itself, or with the winding's associated line components. Other faults located elsewhere in the system that may affect proper operation of the winding or the winding's line components may also be detected, such as a fault pertaining to a system sensor. Examples of faults include, without limitation, a battery open condition, a CPU/RAM failure, a stopped clock, a motor winding open condition, a faulty sensor, stuck output, or a motor winding short condition.
A fault condition may indicate that a line or system component has failed. Alternatively, a fault condition may be an indication of an imminent failure of a line or system component, such as a battery over-temperature or a motor over-temperature. A wide variety of sensors known in the art may be utilized for monitoring component/system status, including, but not limited to, temperature, voltage, current, and motor shaft feedback sensors.
The fault control circuit may either continuously or periodically monitor for faults. Upon detection of a fault condition, the fault control circuit determines if the fault condition warrants decoupling of at least one winding or winding set from the drive circuitry, step 24. Such a determination may be based on, for example, the type and severity of the fault condition. For example, if the fault condition is indicative of a component failure that may occur in the distant future, the processor or control circuit may display an alert or perform further diagnostics instead of performing a decoupling operation. In various embodiments, only faults that warrant decoupling are detected, such that determination of whether a fault warrants decoupling is not required.
Upon detection of a fault condition that warrants decoupling, the fault control circuitry decouples at least one winding or winding set from some, or all, drive circuitry, step 25. As discussed above, this decoupling may be accomplished by, but not limited to, a switch which may be a relay.
In accordance with other embodiments of the invention, instead of a relay(s), squibs or fuses may be utilized to disconnect the motor from all, or portions, of the drive circuitry. Squibs and/or fuses may be advantageous, for example, when high-voltage circuits make arcing across a relay a concern, requiring intolerably large contact spacing. Furthermore, vibration prone applications may make it difficult to keep a relay in an open or closed position.
In accordance with another embodiment of the invention, at least one fuse 58, 59 may be utilized instead of a relay, as shown in
For example, in the electric device shown in
Instead of eliminating torque commanded by the faulted motor drive, the torque may be reduced by controlling a portion of the motor drive that is still working properly, or by utilizing a motor topology that is less susceptible to fault torque. In accordance with one embodiment of the invention,
For example, in the system of
Transporter 30 includes a support platform 32 for supporting a load, which may include a living subject 38, over the ground or other surface, such as a floor, which may be referred to herein generally as “ground”. A subject 38, for example, may stand or sit on support platform 32. Ground-contacting elements, which may be wheels 35 and 36, are shown as coaxial about the Y-axis. Attached to support platform 32 may be a handlebar 34 that can be gripped when riding transporter 10. Rider may control the fore-aft movement of the transporter by leaning. Steering or other control may be provided by thumbwheels 37 and 38, or by other user input mechanisms.
Transporter 30 includes a control system that actively maintains stability while the transporter 30 is operating. If the transporter 30 loses the ability to maintain stability, such as through the failure of a component, the safety of the rider may be at risk. Accordingly, the transporter 30 provides redundant architecture wherein critical components, such as the batteries, motor windings, and motor drives are replicated and run in parallel during operation of the transporter 30. If a failure in occurs in one line of components, the parallel line may still maintain the stability of the transporter 30, at least for a short period of time so as to allow the rider to bring the transporter to a safe stop. For example, if each winding and associated motor drive causes a desired torque of Tdesired/2, such that the total torque delivered is Tdesired before the fault, and one winding and/or drive fails and causes a torque Tfault, then the other winding/drive must have the ability to provide a torque Tdesired −Tfault+δ, where δ is small enough to maintain control of the motor. In various embodiments, due to the current or voltage associated with a failed component line, a failure, such as a short in the motor windings, may induce additional failures that cause the transporter 30 to malfunction. It may thus be advantageous to decouple the winding from all circuitry based on a failure associated with either the winding and/or the winding's line components.
Referring now to
Each motor winding 111, 112, 121, 122 is driven by a motor drive 132, 133, 142, 143. Motor drives 132, 133 are supplied by the A-group power supply 131 and motor drives 142, 143 are supplied by the B-group power supply 141. The electrical connections between the power supplies and the motor drives and between the motor drives and motor windings are expected to carry large currents up to 20 to 40 Amperes and are identified by thick lines 105 in
The A-group motor drives 132, 133 are commanded by the A processor 135 while the B-group motor drives 142, 143 are commanded by the B processor 145. Power is supplied to the A processor from the A power source 131 through the A-group DC-DC converter 136. Similarly, the B power source 141 supplies power to the B processor 146 through the B-group DC-DC converter 145. The A-group motor drives 132, 133, A-group converter 136, and A processor 135 are preferably grouped together into a compartment or tray 130 that is at least partially isolated by a barrier 150 from the B-tray 140 containing the B-group motor drives 142, 143, B-group converter 146, and B processor 145. Physically separating the A tray 130 and B tray 140 reduces the probability of a common point failure. The barrier 150 acts to delay the propagation of a failure, in one tray to the other tray such that the transporter has sufficient time to put the rider in a safe condition to exit the transporter. Similarly, the A power supply 131 is physically separated from the B power supply 141. The A power supply 131 and the components in the A tray 130 are capable of driving both motors 110, 120 for at least a short period of time, in the event of a failure in any one of the B-group components. Conversely, the B power supply 141 and the components in the B tray 140 are capable of driving both motors 110, 120 for at least a short period of time if an A-group component fails.
Although the processors 135, 145 are physically isolated from each other, signal communication is maintained between the processors via communication channels 137, 147. Communication channels 137, 147 are preferably electrical conductors but may also be electromagnetic such as optical, infrared, microwave, or radio. The A channel 137 transmits signals from the A processor 135 to the B processor 145 and the B channel 147 transmits signals from the B processor 145 to the A processor 135. Optical isolators 139, 149 are incorporated into channels 137, 147 to prevent over-voltages from propagating from a shorted processor to the other processor.
Each processor receives signals from a plurality of sensors that monitor the state of the transporter and the input commands of the rider. The processor uses the sensor signals to determine and transmit the appropriate command to the motor amplifiers. Additionally, the processor uses the sensor signals to identify failures, or potential failures. Depending on the importance of the sensor to the operation of the transporter, the sensors may or may not be duplicated for redundancy. For example, the spatial orientation of the transporter is central to the operation of the transporter, and therefore an A-group IMU 181 supplies transporter orientation information to the A processor 135 and a B-group IMU 182 supplies transporter orientation information to the B-processor 145. On the other hand, the transporter may still be operated in a safe manner without the PTD 148 so only one such device is typically provided. Similarly, an output device such as a display 138 does not require redundancy. A non-redundant device such as a display 138 or a PTD 148 may be connected to either processor or may be switched between processors.
In the embodiment depicted in
Additionally, each processor 135, 145 communicates with one of the user interface processors (UIPs) 173, 174. Each UIP 173, 174 receives steering commands from the user through one of the yaw input devices 171, 172. An A-group UIP 173 also communicates to the non-redundant UIDs such as the display 138, brake switch 175, and pitch trim control 148. Other user interface devices that are not provided redundantly in the embodiment shown in
Each processor 135, 145 executes code, as discussed in above embodiments of the present invention, to decouple its associated winding from all circuitry based upon indications of a relevant failure. In particular, A processor 135 controls relay 191 and 192, while B processor controls relays 193 and 194. Opening relays 191, 192, 193 or 194 isolates LA winding 111, RA winding 121, LB winding 112, and RB winding 122 from all circuitry, respectively. This prevents the transfer of erroneous current to or from the winding. Thus, additional faults may be prevented. Continued operation of the motor upon loss of power to one of the motor's windings is achieved via the motor's at least one other redundant winding, since each redundant winding is coupled to a motor drive via a different switch. In other embodiments, instead of a relay, squibs or fuses may be used to isolate the windings, or circuitry may be utilized to reduce fault torques, as described in above embodiments.
The described embodiments of the invention are intended to be merely exemplary and numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention as defined in the appended claims.
The present application is a divisional application of U.S. application Ser. No. 10/307,892, filed Dec. 2, 2002, now U.S. Pat. No. 6,965,206, which in turn is a continuation-in-part of U.S. application Ser. No. 09/687,789, filed Oct. 13, 2000, now issued as U.S. Pat. No. 6,581,714. Each of the above-described applications is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
584127 | Draullette et al. | Jun 1897 | A |
849270 | Schafer et al. | Apr 1907 | A |
2742973 | Johannesen | Apr 1956 | A |
3145797 | Taylor | Aug 1964 | A |
3260324 | Suarez | Jul 1966 | A |
3283398 | Andren | Nov 1966 | A |
3288234 | Feliz | Nov 1966 | A |
3348518 | Forsyth et al. | Oct 1967 | A |
3374845 | Selwyn | Mar 1968 | A |
3399742 | Malick | Sep 1968 | A |
3446304 | Alimanestiano | May 1969 | A |
3450219 | Fleming | Jun 1969 | A |
3515401 | Gross | Jun 1970 | A |
3568018 | Macdonald | Mar 1971 | A |
3580344 | Floyd | May 1971 | A |
3582712 | Blair | Jun 1971 | A |
3596298 | Durst, Jr. | Aug 1971 | A |
3803473 | Stich | Apr 1974 | A |
3860264 | Douglas et al. | Jan 1975 | A |
3872945 | Hickman et al. | Mar 1975 | A |
3952822 | Udden et al. | Apr 1976 | A |
4018440 | Deutsch | Apr 1977 | A |
4062558 | Wasserman | Dec 1977 | A |
4076270 | Winchell | Feb 1978 | A |
4088199 | Trautwein | May 1978 | A |
4094372 | Notter | Jun 1978 | A |
4109741 | Gabriel | Aug 1978 | A |
4111445 | Haibeck | Sep 1978 | A |
4151892 | Francken | May 1979 | A |
4222449 | Felix | Sep 1980 | A |
4264082 | Fouchey, Jr. | Apr 1981 | A |
4266627 | Lauber | May 1981 | A |
4270164 | Wyman et al. | May 1981 | A |
4293052 | Daswick et al. | Oct 1981 | A |
4325565 | Winchell | Apr 1982 | A |
4354569 | Eichholz | Oct 1982 | A |
4363493 | Veneklasen | Dec 1982 | A |
4373600 | Buschbom et al. | Feb 1983 | A |
4375840 | Campbell | Mar 1983 | A |
4426611 | Espelage et al. | Jan 1984 | A |
4434389 | Langley et al. | Feb 1984 | A |
4510956 | King | Apr 1985 | A |
4536686 | Gartner | Aug 1985 | A |
4550267 | Vaidya | Oct 1985 | A |
4560022 | Kassai | Dec 1985 | A |
4566707 | Nitzberg | Jan 1986 | A |
4571844 | Komasaku et al. | Feb 1986 | A |
4607205 | Kito et al. | Aug 1986 | A |
4624469 | Bourne, Jr. | Nov 1986 | A |
4657272 | Davenport | Apr 1987 | A |
4685693 | Vadjunec | Aug 1987 | A |
4709772 | Brunet | Dec 1987 | A |
4740001 | Torleumke | Apr 1988 | A |
4746132 | Eagan | May 1988 | A |
4746843 | Taenzer | May 1988 | A |
4770410 | Brown | Sep 1988 | A |
4786069 | Tang | Nov 1988 | A |
4790400 | Sheeter | Dec 1988 | A |
4790548 | Decelles et al. | Dec 1988 | A |
4794999 | Hester | Jan 1989 | A |
4798255 | Wu | Jan 1989 | A |
4802542 | Houston et al. | Feb 1989 | A |
4806839 | Nagato et al. | Feb 1989 | A |
4809804 | Houston et al. | Mar 1989 | A |
4834200 | Kajita | May 1989 | A |
4863182 | Chern | Sep 1989 | A |
4867188 | Reid | Sep 1989 | A |
4869279 | Hedges | Sep 1989 | A |
4874055 | Beer | Oct 1989 | A |
4890853 | Olson | Jan 1990 | A |
4919225 | Sturges | Apr 1990 | A |
4953851 | Sherlock et al. | Sep 1990 | A |
4984754 | Yarrington | Jan 1991 | A |
4985947 | Ethridge | Jan 1991 | A |
4998596 | Miksitz | Mar 1991 | A |
4999552 | Seipelt | Mar 1991 | A |
5002295 | Lin | Mar 1991 | A |
5011171 | Cook | Apr 1991 | A |
5052237 | Reimann | Oct 1991 | A |
5057962 | Alley et al. | Oct 1991 | A |
5111899 | Reimann | May 1992 | A |
5158493 | Morgrey | Oct 1992 | A |
5168947 | Rodenborn | Dec 1992 | A |
5171173 | Henderson et al. | Dec 1992 | A |
5186270 | West | Feb 1993 | A |
5221883 | Takenaka et al. | Jun 1993 | A |
5241875 | Kochanneck | Sep 1993 | A |
5248007 | Watkins et al. | Sep 1993 | A |
5303156 | Matsuoka et al. | Apr 1994 | A |
5314034 | Chittal | May 1994 | A |
5350033 | Kraft | Sep 1994 | A |
5366036 | Perry | Nov 1994 | A |
5499186 | Carosa | Mar 1996 | A |
5701965 | Kamen et al. | Dec 1997 | A |
5701968 | Wright-Ott et al. | Dec 1997 | A |
5775452 | Patmont | Jul 1998 | A |
5791425 | Kamen et al. | Aug 1998 | A |
5794730 | Kamen | Aug 1998 | A |
5928366 | Kawasaki | Jul 1999 | A |
5929549 | Trago et al. | Jul 1999 | A |
5971091 | Kamen et al. | Oct 1999 | A |
5975225 | Kamen et al. | Nov 1999 | A |
6003624 | Jorgensen et al. | Dec 1999 | A |
6059062 | Staelin et al. | May 2000 | A |
6118246 | Eyerly | Sep 2000 | A |
6125957 | Kauffmann | Oct 2000 | A |
6148939 | Brookhart et al. | Nov 2000 | A |
6170598 | Furukawa | Jan 2001 | B1 |
6246232 | Okumura | Jun 2001 | B1 |
6271638 | Erdman et al. | Aug 2001 | B1 |
6276230 | Crum et al. | Aug 2001 | B1 |
6288505 | Heinzmann et al. | Sep 2001 | B1 |
6297573 | Roth-Stielow et al. | Oct 2001 | B1 |
6334084 | Moteki et al. | Dec 2001 | B1 |
6759823 | Witzig | Jul 2004 | B1 |
Number | Date | Country |
---|---|---|
2 048 593 | May 1971 | DE |
31 28 112 | Feb 1983 | DE |
32 42 880 | Jun 1983 | DE |
34 11 489 | Oct 1984 | DE |
298 08 091 | Oct 1998 | DE |
298 08 096 | Oct 1998 | DE |
0 109 927 | Jul 1984 | EP |
0 193 473 | Sep 1986 | EP |
0 537 698 | Apr 1993 | EP |
980 237 | May 1951 | FR |
82 04314 | Sep 1982 | FR |
152664 | Feb 1922 | GB |
1213930 | Nov 1970 | GB |
2 139 576 | Nov 1984 | GB |
52 44933 | Oct 1975 | JP |
57 87766 | Jun 1982 | JP |
57 110569 | Jul 1982 | JP |
59 73372 | Apr 1984 | JP |
62 12810 | Jul 1985 | JP |
0255580 | Dec 1985 | JP |
61 31685 | Feb 1986 | JP |
2 190277 | Jul 1990 | JP |
6 171562 | Dec 1992 | JP |
5 213240 | Aug 1993 | JP |
6 105415 | Dec 1994 | JP |
7255780 | Mar 1995 | JP |
63 305082 | Dec 1998 | JP |
WO 8605752 | Oct 1986 | WO |
WO 8906117 | Jul 1989 | WO |
WO 9623478 | Aug 1996 | WO |
Number | Date | Country | |
---|---|---|---|
20060125433 A1 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10307892 | Dec 2002 | US |
Child | 11273581 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09687789 | Oct 2000 | US |
Child | 10307892 | US |