The present invention relates generally to methods and systems for forming containers, including cartons.
Containers are used to package many different kinds of items. One form of container used in the packaging industry is a carton. Cartons come in many different configurations and are made from a wide variety of materials. However, many cartons are foldable and are formed from a flattened state (commonly called a carton blank). Cartons may be made from an assortment of foldable materials, including cardboard, paperboard, corrugated fibreboard, plastic materials, composite materials, and the like and possibly even combinations thereof.
In many known systems, carton blanks may be serially retrieved from a carton magazine, opened up from a flattened state into an erected state, and placed in a slot on a carton conveyor. The erected carton may then be moved by the carton conveyor to a loading station where the carton may be filled with one or more items.
To permit the cartons to be readily opened up into an erected state from a flattened state, the blanks may be held in the magazine in a partially folded configuration and be partially glued along one side seam. Accordingly, each carton may only require opposite panels to be pulled apart to provide a tubular shape that is suitable for delivery to a carton conveyor. The carton can then be filled from the side while on the carton conveyor and any required additional panel folding and gluing can be carried out to enclose and fully seal the carton with one or more items contained therein.
However, such pre-folded and pre-glued blanks are not well adapted to shipping in bulk due to their asymmetric shape—being three layers thick on the glued seam area and only two layers thick elsewhere. Unstable stacking characteristic of such blanks requires the use of secondary containers and also reduces the number of blanks that can be shipped per unit volume. Both of these factors result in increased shipping costs which may be in the order of $8 to $10 per 1000 blanks compared to blanks that can be shipped in a completely flat arrangement. Additionally, some types of items do not lend themselves particularly well to being side-loaded into a carton; rather such products are more readily loaded into the top of an open-top carton. It can also be advantageous to be able to load some products through a relatively large opening, compared to smaller opening in a side-loaded carton.
Some other carton forming systems are adapted to forming a carton that can be top-loaded with a product. In such known systems, a carton magazine may hold a number of blanks that are completely unfolded and unglued and which lie completely flat in a stack in the magazine. However, currently quite complicated systems are required in order to fold and configure the blank so that it is suitable to receive one or more items. One known type of such system involves the use of a specially configured shoe device and associated plunger. A flattened blank can be retrieved from a magazine and then be placed above an opening in the shoe and the plunger can push the blank into a cavity formed in the shoe. The configuration of the shoe is such that various panels that make up the blank will be folded in relation to each other as the blank is pushed into the cavity by the plunger. The result is that a general carton shape is produced that may be further folded and glued to place the carton into a form suitable for delivery to a carton conveyor. Alternatively, the carton blank may be pre-formed with interlocking panels that once the blank is folded within the shoe device, side panels will interlock with each other to form a carton that maintains its form without the use of glue (e.g. “click-lock” carton blanks). Such cartons are formed with open tops. Once delivered to a carton conveyor the carton may be moved to a station where an item can be placed in the carton. Thereafter any required additional panel folding and gluing can be carried out to enclose and fully seal the carton.
However there are also significant drawbacks to these carton-forming systems. For example, a different shoe (and possibly plunger as well) may be required for each different sized/shaped carton blank. Additionally extraction of the formed carton from the shoe may require additional relatively complex machinery. This method of carton forming is also relatively slow and can only form cartons of limited depth.
In the formation of cartons from corrugated fibreboard material, it is also typically necessary as part of the forming process to fold over various parts of a blank made from a corrugated fibreboard material. However, current folding processes and machines are relatively complex.
Accordingly, an improved forming method and system is desirable which can readily form a container such as a carton from a generally flat blank. Furthermore, an improved forming method and system is desirable which can form cartons capable of being top loaded, with deeper trays than conventional “click-lock” formers and at higher rates of speed. Finally, an improved method and system is desirable which can be rapidly modified to accommodate cartons of different sizes and which produces cartons with increased structural stability and leak resistance due to the lack of a seam on the bottom portion of the carton.
According to one aspect of the invention there is provided a system for forming a carton from a carton blank oriented in a first generally flat orientation. The system comprises a mandrel having a first surface and a second surface oriented generally orthogonal to the first surface, wherein said carton blank has a first portion that can be positioned proximate the first surface of the mandrel apparatus. The system also comprises a first rotating apparatus operable to engage the second portion of the carton blank and rotate the second portion from the first orientation such that the second portion is oriented in a second orientation that is generally orthogonal to the first portion of the carton blank and the second portion of the carton blank being positioned proximate the second surface of the mandrel.
According to another aspect of the invention there is provided a system for forming a carton comprising:
According to another aspect of the invention there is provided a system for forming a carton from a generally flat carton blank, said system comprising:
According to another aspect of the invention there is provided a system for forming a carton comprising:
According to another aspect of the invention there is provided a method for forming a carton from a carton blank comprising:
According to another aspect of the invention there is provided a method of forming a carton from a carton blank comprising:
According to another aspect of the invention there is provided a method for forming a carton from a carton blank comprising:
According to another aspect of the invention there is provided a method for forming a carton comprising:
According to another aspect of the invention there is provided a method for forming a carton from a carton blank comprising:
Other aspects and features of the present invention will become apparent to those of ordinary skill in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures.
In the figures which illustrate by way of example only, embodiments of the present invention,
With reference to
With reference to
As will be described hereinafter, the side panels may be folded to form the desired carton configuration for a top loading carton that can be delivered to a carton loading conveyor. The sealing flaps provide material that can, in conjunction with a connection mechanism (such as for example with application of an adhesive or a mechanical connection such as is provided in so-called “click-lock” carton blanks) interconnect panel/flap surfaces, to join or otherwise interconnect, panels to adjacent panels, to hold the carton in its desired configuration.
Carton blanks 111 may be made of any suitable material(s) configured and adapted to permit the required folding/bending/displacement of the material to reach the desired configuration. Examples of suitable materials are cardboard or creased corrugated fiberboard. It should be noted that the blank may be formed of a material which itself is rigid or semi-rigid, and not per se easily foldable but which is divided into separate panels/flaps separated by creases or hinge type mechanisms so that the carton can be formed.
Magazine 110 may be configured to hold a plurality of carton blanks 111 in a vertically stacked, flat configuration, and be operable to move the stack of carton blanks 111 sequentially upwards under the control of PLC 132, so that single carton blanks 111 may be retrieved from the stack for processing by a panel retrieval and rotating apparatus generally designated as 124 that forms part of mandrel apparatus 120. Various specific constructions of a suitable magazine that might be employed in system 100 would be evident to a person skilled in the art. The magazine may comprise basically a large number of carton blanks held in a vertical stack by aluminium rails (the rails are not shown in the drawings). In this configuration where blanks are retrieved from the top of a stack, the stack of blanks in the magazine is moved upwards from the bottom by a PLC controlled motor (not shown in drawings). The purpose of moving the stack of blanks upwards as cartons are formed is so that the top carton is always close against the bottom of the mandrel. The front panels of the top blank are then rotated around the mandrel by the panel rotation apparatus 124. As cartons are taken and formed, the PLC may move the entire stack up sequentially so that the top carton is always pressed close to the mandrel 121.
The mandrel apparatus 120 may have several additional components including a mandrel 121, a mandrel support frame 123 and a mandrel movement and support apparatus generally designated 125. With particular reference to
With particular reference to
Mandrel support frame 123 may be interconnected and supported by a vertical frame support member 152 (see for example
Mandrel support base 153 may also be interconnected and supported by vertical frame support member 152, with support base 153 being mounted to a lower, forward facing surface area of support member 152 by for example bolts/screws.
Vertical member 152 also has an upper end portion that is interconnected to a horizontal connector member 154 for interconnecting the vertical member 152 (and the mandrel apparatus attached thereto) to the mandrel moving apparatus 125. Connector member 154 may be configured as a plate that interconnects to a corresponding slider plate 160 on mandrel moving apparatus 125. Connector member 154 may be bolted to plate 160 and may be interconnected to vertical member 152 with bracket support member.
With particular reference to
Attachment of the mandrel 121 to vertical support 152 via mandrel support base 153 generally restrains mandrel 121 from movement in the longitudinal direction relative to support frame 123 and rotating apparatus 124.
Mandrel support and moving apparatus 125 may be used to support and move in reciprocating forward and rearward longitudinal movement, mandrel 121, rotating apparatus 124, vertical support member 152 and mandrel support frame 123. The mandrel moving apparatus 125 may be mounted to a support frame (not shown) with a plurality of mounting blocks 166 that are connected to a longitudinally extending guide rail support member 172 of moving apparatus 125. Also comprising part of moving apparatus 125, guide slide rails 164a, 164b may be mounted to opposite side edge faces 172a, 172b respectively of support member 172. Slider plate 160 may have mounted thereto, opposed sets of slide blocks 162a, 163a, and 162b, 163b (see
Moving apparatus 125 also includes a mandrel drive device 174 which may include a continuous horizontally oriented drive belt 178 that extends between and rotates around a pulley 176 and a drive wheel 180. Drive wheel 180 may be driven in both rotational directions and at varying speeds by the drive shaft of a servo drive motor 170. The operation of drive motor 170 may be controlled by PLC 132 in combination with a position sensing apparatus (not shown) so that PLC 132 can determine when and how to operate drive motor 170 to appropriately position the drive belt 178 and thus moving apparatus 125. Drive motor 170 may be mounted at an end portion of support member 172 with a vertically oriented connector plate 171.
To interconnect the drive belt 178 to slider plate 160 and/or sliding blocks 162a-b, 163a-b known attachment apparatus or mechanisms can be provided. For example, a clamp can be mounted to plate 160 and the belt 178 can be secured between clamp arms of the clamp. Thus, when the drive belt moves longitudinally, in parallel longitudinal, vertical and horizontal alignment with the guide rails 164a, 164b, the slide plate 160 and sliding blocks 162a-b, 163a-b can also move in the same direction. The result is that the mandrel support frame 152 and thus mandrel 121 can also be moved longitudinally, in parallel longitudinal, vertical and horizontal alignment with rails 164a, 164b.
Also associated with moving apparatus 125 is a caterpillar device 199. Caterpillar 199 has a hollow cavity extending along its length. Within the cavity of caterpillar 199 hoses carrying pressurized air/vacuum and electrical/communication wires can be housed. Caterpillar 199 allows such hoses and wires to move longitudinally as the mandrel support member 152 and thus mandrel 121 and mandrel support frame 123 are moved longitudinally by moving apparatus 125. The hoses and wires may extend from external sources to enter at an inlet 199a of caterpillar 199 and emerging at an outlet 199b. Once leaving outlet 199b, the hoses and wires may pass into the internal cavity of vertical member 152 (see
The next component of system 100 to be described in detail is the panel rotating apparatus 124. Panel rotating apparatus 124 may engage one blank 111 and may be employed to rotate one or more panels of blank 111 relative to one or more other panels. For example, as illustrated in
Unit 129 will be described in detail, and with particular reference to
Piston 202 may be a conventional pneumatic reciprocating cylinder 204 and is operable to move in a reciprocal movement between a fully extended position (not shown) and a retracted position as shown in
To channel the compressed air appropriately, valves (not shown) can be driven between open and closed positions by solenoids responsive to signals from PLC 132 (
A piston rod 206 of piston 202 is provided with an extended arm portion 208 that provides for a hinge connection 207 for pivoting the panel rotating apparatus 124 between a generally horizontal position and a generally vertical position.
Panel rotation apparatus 124 also comprises panel rotating plate 219 with outer and inner face 219a and 219b respectively. Panel rotating plate 219 may be attached by way of piano hinge 209 to forward lower extensions of side plates 150a, 150b of mandrel support frame 123. As a result of the movement of piston 202 the cylinder rod 206, will extend or retract allowing the arm 208 to pivot relative to rotating apparatus 124. The movement of piston rod 206 thus causes the panel rotating plate 219 to rotate through a certain angular distance relative to mandrel 121 around piano hinge 209.
Air suction cups 220a and 220b may be fixedly mounted to outer or forward facing face 219a of panel rotating apparatus plate 219 with mounting block units 218a, 218b respectively. Air suction cups 220a and 220b may be interconnected through block units 218a, 218b to a source of vacuum by providing for an air channel linked to a manifold unit 225. The manifold unit 225 may in turn may be interconnected by air vacuum supply hose (not shown) to a pressurized air distribution unit generally designated 227. Unit 227 may include a plurality of valves that may be operated by PLC 132 and may also include a vacuum generator apparatus 221. If a vacuum generator is utilized, pressurized air may be delivered from an external source through vertical support member 152 to unit 227. The vacuum generator will then convert the pressurized air to a vacuum that can then be delivered to suction cups 220a, 220b.
The air suction force that may be developed at the outer surfaces of suction cups 220a and 220b of unit 124 may be sufficient so that when activated they can engage, hold and rotate panel C of a blank 111 from a generally horizontal position to the position shown in
The suction cups 220a and 220b of unit 124 may engage the surface of panel C. In other embodiments suction cups of rotation units may alternatively, or in combination also, engage panel D. The particular arrangement of suction cups on rotating plate 219 can be designed based upon the configuration of the carton blank and the particular panels that need to be rotated. It will also be appreciated that in the panel rotation apparatus 124, suction cups are used to apply a force to hold and/or move a panel of a carton blank. However alternative engagement mechanisms to suction cups could be employed. It should also be noted that a second set of suction cup/suction plates mounted for movement, including pivoting movement, could be deployed to perform additional panel folding or movement and/or holding of the panel and blank.
More generally, other types of apparatus may be employed to transfer a blank 111 to the mandrel apparatus 120, such that one portion of the blank may be rotated, preferably about ninety degrees, relative to another portion of the panel, to set-up the folding process using a folding apparatus.
With particular reference to
Apparatus 300 may include a pair of spaced, longitudinally extending overhead rails 302a, 302b configured and positioned so that as blank 111 is moved longitudinally forward by mandrel apparatus 120, rails 302a, 302b may fold panel D and attached flaps d1, d2 and d3, from a generally vertical orientation to a generally horizontal orientation. Apparatus 300 may also include a pair of opposed wedge plough devices 310a, 310b that may be configured and positioned so that as blank 111 is moved longitudinally forward by mandrel apparatus 120, plough devices 310a, 310b can commence the generally inward folding of outer panels E and F respectively from a generally horizontal orientation towards a generally vertical orientation.
A pair of opposed inner side rails 304a, 304b are configured and positioned to engage flaps c1 and c2 respectively and may fold and maintain the flaps c1 and c2 in a rearward longitudinal direction, until outer panels E and F have been brought into an upward vertical and overlapping relationship.
Also part of apparatus 300 are a pair of opposed, upwardly and inwardly oriented guide rails 308a, 308b, that are configured and positioned to take over from plough devices 310a, 310b, to engage the lower surfaces of panels E and F and to complete the inward folding of outer panels E and F respectively to a vertical position.
A pair of opposed, generally downwardly and inwardly oriented guide rails 306a, 306b are configured and positioned to provide inward and downward folding of flaps d2 and d3 respectively to a vertical position as blank 111 continues the movement longitudinally. Also, a pair of lower support rails 312a and 312b are positioned to assist in supporting blank 111 once it has been removed from the support of the stack of blanks 111 in the magazine 110.
It should also be noted that during the forward longitudinal movement of blank 111 as it is pushed by mandrel apparatus 120 through the positions illustrated in
Adhesive applicators such as applicators 400 can be appropriately positioned and their operation may be controlled by PLC 132. Applicators 400 can apply a suitable adhesive to various panels and/or flaps so that when the panels and flaps are folded as described herein, the panels and flaps can be held in the desired carton configuration. An example of a suitable applicator that can be employed is the model ProBlue 4 applicator made by Nordson Inc. An example of a suitable adhesive that could be employed with on a carton blank 111 made of cardboard is Cool-Lok adhesive made by Nacan Products Limited.
Also with particular reference to
Various components of system 100 such as mandrel 121, mandrel moving apparatus 125, panel rotating apparatus 124 and mandrel support frame 123 may be made of suitable materials such as for example mandrel 121 may be made from aluminium. Also a least some of the various components of system 100 such as mandrel 121 and support frame 123 may be integrally formed or interconnected to each other by known techniques. For example if the components are made of a suitable metal or plastic, welding techniques can be employed. Also, the use of screws and/or bolts may be employed.
The operation of system 100 will now be described in detail. First, magazine 110 may be raised so that the upper generally horizontally oriented surface of the upper-most blank 111 is just in contact with, or is a very short distance spaced from (e.g. within ¼ inch) the bottom surfaces of mandrel support frame 123 and mandrel 121. Next, magazine 110 and panel rotating apparatus 124 may co-operate so that the single blank 111 from the top of the stack of carton blanks may be retrieved from the magazine 110 and be transferred to the mandrel apparatus 120. Thus, in this way the panel rotating apparatus 124 may also serve as a transfer mechanism for transferring carton blanks in series from the magazine 110 to the mandrel 121. In other embodiments, a separate transfer mechanism may be provided to retrieve blanks serially from the magazine and transfer them to the mandrel so that a rotating apparatus may rotate a portion of the blank as hereinafter described.
As shown in
With particular reference now to
Vacuum may also be applied to suction cups 220a, 220b through operation of PLC 132 during the rotation of the panels C and D. The air suction force that may be developed at the outer surfaces of suction cups 220a, 220b of panel rotation apparatus 124 may be sufficient so that panels C and D of a blank 111 can be rotated from the position shown in
Once panel C reaches the position shown in
The rotation of panels C and D will also tend to pull that blank upwards and perhaps a very small distance forward, the effect of which may be to free the top blank from the blank beneath it that is still on the stack. The result is that the top blank is now capable of being moved forward by the mandrel apparatus 120 towards the rail and plough apparatus 300.
It will be appreciated that in some embodiments, the system could be configured so that magazine 110 may discharge blanks 111 to a mandrel apparatus like apparatus 120 from the top rather than the bottom. However, discharging blanks from the top may require inverting some or all of the aforementioned components.
Next, mandrel support and moving apparatus 125 may be used to move mandrel apparatus 120 and mandrel support frame 123 longitudinally forward towards rail and plough apparatus 300, thus also moving blank 111 that is held to mandrel 121. To create this forward longitudinal movement of the mandrel apparatus 120, PLC 132 can operate servo drive motor 170, to move drive belt 178 longitudinally in a direction that causes slider plate 160 to slide forward on guide rails 172a, 172b. With the movement of slide plate 160, the vertical support 152, mandrel support frame 123, and mandrel apparatus 120 that is attached to frame 123, also move longitudinally towards rail and plough apparatus 300.
With particular reference now to
With continued longitudinal movement of blank 111, opposed inner side rails 304a, 304b may engage flaps c2 and c1 respectively and may fold and maintain the flaps c1 and c2 in a generally rearward longitudinal orientation. At about the same time, a pair of wedge plough devices 310a, 310b may commence the generally inward folding of outer panels E and F respectively from a generally horizontal orientation towards a generally vertical orientation.
As shown in
Lower support rails 312a, 312b may assist in supporting blank 111 once it has been removed from the support of the stack of blanks 111 in the magazine 110.
Also as shown in
Under the control of PLC 132, or pursuant to another control or trigger, adhesive applicators 400 can apply a suitable adhesive at appropriate positions on the panels and/or flaps so that when the panels and flaps are folded as just described, the panels and flaps can be held in the desired carton configuration.
As is shown in
Once activated, the latch devices may restrict the carton from moving longitudinally backwards, when the mandrel apparatus 120 is withdrawn.
Additionally, upon receiving the signal from the position sensor that the blank has reached the release position as shown in
Once the mandrel 121 has been withdrawn from the blank (which has now been formed into a container—carton—111a), the container 111a may no longer be supported, except possibly at least to some extent by compression rails 314a, 314b. Thus, container 111a may be transferred to a carton conveyor (not shown) that is configured to receive the container and the container is then carried away by the carton conveyor to be loaded and/or processed further. Carton conveyors are well known in the art and any suitable known carton conveyor may be utilized.
A device may be employed to push the container 111a (eg. Carton) out from between rails 314a, 314b. For example, a simple push down cylinder device that may also be controlled by PLC 132 may be used. Other examples of transfer devices that might be employed to transfer the carton from the end of guide apparatus 130 to a carton conveyor include a “blow-off” system that may use one or more jets of compressed air, a suction cup system, the use of pushing arm or simply allowing for freefall of the formed carton.
While the container 111a is being transferred to the carton conveyor, the mandrel apparatus 120 can be returned to its start position (not shown), ready to recommence the process that has just been described above to form another carton.
It is anticipated that cartons may be formed at a rate of in the range of about 1 to about 60 cartons per minute.
Many variations of the embodiments described above are possible. By way of example only, one portion of the blank may not have to be rotated from a generally flat configuration with the rest of the carton blank, ninety degrees relative to remaining portions of the panel, to set-up the folding process. In some other embodiments, the initial rotation of one portion of the blank from a generally flat configuration of the entire blank, may for example be only in the range of from forty-five degrees to ninety degrees. Once the first portion has been rotated from the flat configuration to the angled position, the blank is then more readily capable of being engaged by other mechanisms such that a further rotation of the first portion and other portions of the blank can be carried out to bring the first portion to a vertical position against the front face of the mandrel. Alternatively, in some applications a mandrel might be employed which has outer surfaces that are not completely at rights angles to each other. A carton blank could then be utilized in the system such that when folded, the blank may not form a cuboid shape.
The system could, with some other modifications, be provided in other spatial orientations such as in a vertically inverted configuration. In such a vertically inverted configuration, a magazine may hold blanks in a stack but be configured to dispense the blanks from the bottom of the stack. A blank could then be retrieved from the bottom of the stack and the front panels could be rotated ninety degrees downwards (instead of upwards) to engage a mandrel, so that like in the embodiment described above, an L-shaped configuration is formed around the mandrel. In some such embodiments, a separate rotation device may not be required to rotate the front panels ninety degrees to engage the mandrel. Once released from the magazine, the front panels may rotate and pivot downwards. Suction cups or another holding mechanism could then be employed to hold the front panels vertically against the front surface of the mandrel. An additional holding mechanism could also be employed at a top plate of the mandrel so that the L-shaped blank is held to the mandrel before and during its passage through a holding apparatus. Such a holding apparatus may be simply the inverted configuration to the holding apparatus described above. An example of such an embodiment is illustrated in
With reference to
System 1100 therefore may have a magazine 1110 holding blanks 1111 vertically above mandrel apparatus 1120, panel rotating apparatus 1124 and mandrel movement and support apparatus 1125. Mandrel apparatus 1120 may be constructed like mandrel apparatus 120 with a mandrel 1121, but may be oriented in a vertically inverted configuration compared to apparatus 120. Likewise panel rotating apparatus 1124 and mandrel movement and support apparatus 1125 may be constructed like panel rotating apparatus 124 and mandrel movement and support apparatus 125 respectively, but each is also oriented, vertically inverted. System 1100 may also include a panel folding and guide apparatus 1300 that may be a rail and plough constructed like apparatus 300, but again it may be vertically inverted.
In operation of system 1100, magazine 1110 may provide blanks 1111 in a stack such that there is a downwardly facing, but generally horizontally oriented surface of panel C in the bottom-most blank in the stack that is just in contact with, or is a very short distance spaced from the bottom surfaces of mandrel 1121. Next, magazine 1110 and panel rotating apparatus 1124 may co-operate so that the single blank 1111 from the “bottom” of the stack of blanks may be retrieved from the magazine 1110 and be transferred to the mandrel apparatus 1120. It should be noted that in this embodiment, gravity may assist in releasing a blank 1111 from magazine 1110 and securing it to mandrel 1121.
As with the embodiment of
Thereafter panel rotating apparatus 1124 may be operated to rotate plate 1219 so that panels C and D may be rotated—preferably approximately ninety (90) degrees—downwards, but otherwise generally as described above, to form a generally L-shaped configuration. Vacuum may also be applied to suction cups through operation of the PLC during the rotation of the panels C and D. The air suction force that may be developed at the outer surfaces of suction cups of panel rotation apparatus 1124 may be sufficient so that panels C and D of a blank 1111 can be rotated from the position shown in
Once panel C reaches the vertical downward position, the suction cups associated with panel rotating apparatus plate 1124 hold panel C against the forward facing surfaces of mandrel 1121 with panel D also generally remaining in a vertically downward orientation.
The rotation of panels C and D will also tend to pull that blank downwards and perhaps a very small distance forward direction, the effect of which may be to free the blank from magazine 1110. The result is that the “bottom” blank is now capable of being moved forward by the mandrel apparatus 1120 towards the panel folding and guide apparatus 1300. The magazine may again comprise a stack of blanks held in position by vertical rails (not shown). Here, where the carton former takes blanks from the bottom of the stack, gravity may bring the cartons to the bottom of the magazine. At the bottom of the stack, there may be small metal tabs attached to the rails (not shown) that protrude out into the plane of the stack such that the stack will rest on the tabs. In essence, the stack is held up by the tabs against or closely proximate to the top of the mandrel. When the panel rotation device 1124 engages the bottom carton blank and rotates the front panel downwards, the bottom carton blank may be pulled through the tabs and out of the magazine. The tabs themselves may remain stationary, but because the carton blank may be flexible, so that the carton blank will bend from the force of the rotation device and pull out of the magazine. In this way, the system may prevent more than one blank at a time from being taken. Of course various other embodiments of how a magazine can be set up and how a carton can be taken from a magazine.
Thereafter, the panel folding and guide apparatus 1300 will cause the blank to be folded in the same manner as described above in relation to rail and plough apparatus 300, but in an orientation that is vertically inverted.
It will be appreciated that in some embodiments, the system could be also configured so that a magazine may discharge blanks to a mandrel apparatus from the side rather than the top or bottom whereby the general orientation of the movement of the blank and the mandrel apparatus through a rail and plough apparatus is generally vertically upwards or downwards. One example of such a configuration is illustrated in
System 2100 therefore may have a magazine 2110 holding blanks 2111 that is positioned to hold blanks 2111 in a generally vertical orientation and horizontally spaced from mandrel apparatus 2120, panel rotating apparatus 2124 and mandrel movement and support apparatus 2125. Mandrel apparatus 2120 may thus be constructed like mandrel apparatus 120 with a mandrel 121, but may be oriented in a generally 90 degree rotated configuration compared to mandrel apparatus 120. Likewise panel rotating apparatus 2124 and mandrel movement and support apparatus 2125 may be constructed like panel rotating apparatus 124 and mandrel movement and support apparatus 125 respectively, but each is also oriented in a generally 90 degree rotated configuration. System 2100 may also include a panel folding and guide apparatus 2300 that may be a rail and plough constructed like apparatus 300, but again can be oriented in a generally 90 degree rotated position compared to apparatus 300.
In operation of system 2100, magazine 2110 may provide blanks in a stack such that there is a vertically oriented outward facing, surface of the “bottom” blank in the stack that is just in contact with, or is a very short distance spaced from, the outward facing surfaces of mandrel 2121. Next, magazine 2110 and panel rotating apparatus 2124 may co-operate so that the single blank 2111 from the “bottom” of the stack of blanks may be retrieved from the magazine 2110 and be transferred to the mandrel apparatus 2120.
As with the embodiment of
Thereafter panel rotating apparatus 2124 may be operated by rotating plate 2219 so that panels C and D may be rotated—preferably approximately ninety (90) degrees to a generally horizontal position, but otherwise generally as describe above, to form a generally L-shaped configuration. Vacuum may also be applied to suction cups through operation of the PLC during the rotation of the panels C and D. The air suction force that may be developed at the outer surfaces of suction cups of panel rotation apparatus 2124 may be sufficient so that panels C and D of a blank can be rotated approximately 90 degrees.
Once panel C reaches the horizontal position, the suction cups associated with panel rotating apparatus plate 2124 hold panel C against the forward facing surfaces of mandrel 2121 with panel D also generally remaining in a horizontal orientation.
The rotation of panels C and D will also tend to pull that blank horizontally and perhaps a very small distance downward direction, the effect of which may be to free the top blank from magazine 2110. The result is that the bottom blank is now capable of being moved forward by the mandrel apparatus 2120 towards the panel folding and guide apparatus 2300. As in the other two systems 100 and 1100 described above, the magazine employed in system 2100 may be just a stack of carton blanks held in position by horizontal rails (not shown). The magazine may operate using a combination of the other two types of magazines described above (e.g. the orientations in
Thereafter, the panel folding and guide apparatus 2300 will cause the blank to be folded in the same manner as described above in relation to rail and plough apparatus 300, but in an orientation that is vertically inverted.
In yet another embodiment as depicted in
System 3100 may for the most part be constructed substantially the same way as system 100 with generally most of the same components. System 3100 therefore may have a magazine 3110 holding blanks 3111 below a mandrel apparatus 3120, a panel rotating apparatus 3124 and a mandrel movement and support apparatus (not shown). Mandrel apparatus 3120 may be constructed in a similar manner to mandrel apparatus 120 with a mandrel 3121. Likewise panel rotating apparatus 3124 and mandrel movement and support apparatus may be constructed like panel rotating apparatus 124 and mandrel movement and support apparatus 125 respectively. However, panel rotating apparatus 3124 is decoupled from mandrel movement and support apparatus. System 3100 may also include a panel folding and guide apparatus 3300 that may be a rail and plough constructed like apparatus 300.
Mandrel 3121 may include a pair of spaced opposed elongated and longitudinally extending side plate members 3140a and 3140b. Side plates 3140a, 3140b may be interconnected by and joined to an upper horizontally oriented plate 3140c. Side plates 3140a, 3140b and upper plate 3140c may be integrally formed together. Mandrel side plates 3140a and 3140b may contain a groove or channel (not shown) on their inner surfaces for receiving mandrel support rails 3141a, 3141b respectively so that the during extraction of a blank 3111 from magazine 3110, mandrel 3121 can be supported by the support frame 3123 and may be generally restrained from vertical and transverse motion. However, it should be noted that during longitudinal movement of mandrel 3121 caused by movement and support apparatus (not shown), mandrel side plates 3140a and 3140b will slide longitudinally relative to rails 3141a, 3141b respectively. The result may be that after extraction of a blank 3111 from magazine 3110, and the initial folding of the blank 3111 on mandrel 3121, mandrel 3121 can move away with the extracted blank 3111 longitudinally from rotating apparatus 3124 and support frame 3123.
Mandrel 3121 may be interconnected to and supported by a vertical frame support member 3152 having a connection plate 3153 extending horizontally at the lower surface of vertical member 3152. Plate 3153 may have screw holes 3155 which may enable screws (not shown) to pass down into threaded holes (not shown) in an upper horizontal surface of mandrel plate 3140c. Vertical support member 3152 may be conveniently formed from a light but relatively strong material that can be readily formed into a tube, such as for example aluminium. Vertical support member 3152 may be formed as a hollow channel member that has a longitudinally extending cavity that allows for electrical and communication cables and pressurized/vacuum air hoses to pass through from an upper end to a lower end. In this way, electrical power/communication cable and air hoses can deliver power, electrical signals and air to the suction cups 3199a, 3199b that are positioned to face outwards in a generally horizontal orientation. Suction cups can be mounted in the end faces of side plates 3140a, 3140b respectively. The supply of vacuum to suction cups 3199a, 3199b may be controlled by a PLC like PLC 32.
Vertical member 3152 also has an upper end portion that is interconnected to the mandrel moving apparatus (not shown). Mandrel support and moving apparatus may be used to support and move in reciprocating forward and rearward longitudinal movement mandrel 3121.
Panel rotating apparatus 3124 may engage one blank 3111 and may be employed to rotate a blank 3111 panels C and D relative to one or more other panels. The movement of unit 3124 can be controlled by the PLC in such a manner that it can rotate so as to move a panel C (and panel D which is attached to an end of panel C) of a carton blank 3111 through a rotation of approximately 90 degrees, in an aligned manner, at an appropriate time.
Unit 3124 will be described in overview and with particular reference to
A piston rod of piston 3202 is provided with an extended arm portion that provides for a hinge connection for pivoting the panel rotating apparatus 3124 between a generally horizontal position and a generally vertical position.
Panel rotation apparatus 3124 also comprises panel rotating plate 3219 Panel rotating plate 3219 may be attached by way of piano hinge to forward lower extensions of side plates 3150a, 3150b of support frame 3123. As a result of the movement of piston the cylinder rod will extend or retract allowing the arm to pivot relative to rotating apparatus 3124. The movement of piston rod thus causes the panel rotating plate 3219 to rotate through a certain angular distance relative to mandrel 3121.
Air suction cups 3220a and 3220b may be interconnected through block units to a source of vacuum. A plurality of valves that may be operated by the PLC and may also include a vacuum generator apparatus such as apparatus 221 in the previous system 100. If a vacuum generator is utilized, pressurized air may be delivered from an external source through vertical support member 3152. The vacuum generator will then convert the pressurized air to a vacuum that can then be delivered to suction cups 3220a, 3220b.
In operation of system 3100, magazine 3110 may be raised so that the upper generally horizontally oriented surface of the upper-most blank 3111 is just in contact with, or is a very short distance spaced from (e.g. within ¼ inch) the bottom surfaces of frame 3123 and mandrel 3121. Next, magazine 3110 and panel rotating apparatus 3124 may co-operate so that the single blank 3111 from the top of the stack of carton blanks may be retrieved from the magazine 3110 and be transferred to the mandrel apparatus 3120. Thus, in this way the panel rotating apparatus 3124 may also serve as a transfer mechanism for transferring carton blanks in series from the magazine 3110 to the mandrel 3121.
Under the control of the PLC, panel rotation apparatus 3124 may extend reciprocating piston rod so that the rotating plate 3219 and the suction cups 3220a, 3220b thereon are rotated to be in an orientation that is downward facing. Upon coming into close proximity or contact with panel C, suction cups 3220a, 3220b, may engage the upward facing surface of panel C of the top blank 3111 in the stack. Panels A and B of the blank 3111 are at the same time are maintained generally in position up against or proximate the lower surface of support frame 3123 and mandrel side plates 3140a, 3140b. Panels A, B, C and D continue to be supported underneath by physical contact with the upper surface of another underlying blank 111 in the stack.
Panel rotating apparatus 3124 may be operated by the PLC to rotate rotating plate 3219 about hinge so that panels C and D may be rotated—preferably approximately ninety (90) degrees—about a pre-determined fold line between panel B and C. Thus panels C and D are rotated relative to panels A and B from a generally flat and horizontal orientation to a generally vertical and angled orientation, thus forming a generally L-shaped configuration.
Vacuum may also be applied to suction cups 3220a, 3220b through operation of PLC 132 during the rotation of the panels C and D. The air suction force that may be developed at the outer surfaces of suction cups 3220a, 3220b of panel rotation apparatus 3124 may be sufficient so that panels C and D of a blank 3111 can be rotated from the flat position shown in
Once panel C reaches the vertical position, the suction cups 3220a, 3220b associated with panel rotating apparatus plate 3129 may hold panel C against the forward facing surfaces of mandrel side plates 3140a, 3140b and the outer surface of 3219a of panel rotating plate 3219 with panel D also generally remaining in a vertical orientation until suction cups 3199a, 3199b of mandrel 3121 are activated by PLC and can then engage panel C of blank 3111. Once suction cups 3199a, 3199b of mandrel 3121 are activated and engage panel C of blank 3111, cups 3220a and 3220b of rotation apparatus 3124 can be de-activated. The rotation of panels C and D will also tend to pull that blank upwards and perhaps a very small distance forward, the effect of which may be to free the top blank from the blank beneath it that is still on the stack. The result is that the blank 3111 now held by suction cups 3199a and 3199b, is now capable of being moved forward by the mandrel apparatus 3120 towards the panel folding and guide apparatus 3300.
Next, mandrel support and moving apparatus (not shown) may be used to move mandrel apparatus 3120 longitudinally forward towards panel folding and guide apparatus 3300, thus also moving blank 3111 that is held to mandrel 3121.
System 3100 may have the advantage of allowing for faster operation of the carton former relative to system 100 shown in
Of course, the above described embodiments are intended to be illustrative only and in no way limiting. The described embodiments of carrying out the invention are susceptible to many modifications of form, arrangement of parts, details and order of operation. The invention, rather, is intended to encompass all such modification within its scope, as defined by the claims.
When introducing elements of the present invention or the embodiments thereof, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
This application is a National Stage application under 35 U.S.C. 371 of International Application No. PCT/CA2009/001249, filed on Sep. 11, 2009, which claims priority from U.S. patent application Ser. No. 61/136,542 filed Sep. 12, 2008, the contents of which are hereby incorporated by reference herein in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA2009/001249 | 9/11/2009 | WO | 00 | 3/11/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/028485 | 3/18/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1643564 | Seiler | Sep 1927 | A |
2997830 | Nelson | Aug 1961 | A |
3196761 | Ullman | Jul 1965 | A |
3280531 | Meyer-Jagenberg | Oct 1966 | A |
3461642 | Langan at al. | Aug 1969 | A |
3543469 | Ullman | Dec 1970 | A |
3590700 | Paxton et al. | Jul 1971 | A |
3611885 | Paxton | Oct 1971 | A |
3854651 | Osborne | Dec 1974 | A |
3866391 | Puskarz et al. | Feb 1975 | A |
3941037 | Reichert | Mar 1976 | A |
3986319 | Puskarz et al. | Oct 1976 | A |
3990210 | McDonough et al. | Nov 1976 | A |
4164171 | Meyers et al. | Aug 1979 | A |
4932930 | Coalier et al. | Jun 1990 | A |
5154041 | Schneider | Oct 1992 | A |
5593375 | Franci | Jan 1997 | A |
5876319 | Holton | Mar 1999 | A |
7678036 | Malitas et al. | Mar 2010 | B1 |
7935041 | Graham et al. | May 2011 | B2 |
8323165 | Atoui | Dec 2012 | B2 |
20020033351 | Usui et al. | Mar 2002 | A1 |
20070037682 | Scholtes et al. | Feb 2007 | A1 |
20080110967 | Walling | May 2008 | A1 |
20100263333 | Langen | Oct 2010 | A1 |
20110065559 | Atoui | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
1242422 | Sep 1988 | CA |
2775658 | Sep 1999 | FR |
S54143385 | Nov 1979 | JP |
Entry |
---|
International Search Report for PCT International Application No. PCT/CA2009/001249, filed Sep. 11, 2009. |
International Search Report for PCT International Application No. PCT/CA2010/001948, filed Dec. 8, 2010. |
Written Opinion for PCT International Application No. PCT/CA2010/001948, filed Dec. 8, 2010. |
Extended European Search Report for EP 09812568.5 dated Jan. 17, 2014. |
Number | Date | Country | |
---|---|---|---|
20110166007 A1 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
61136542 | Sep 2008 | US |