In the oil refining and fine chemical industries, catalysts are required to transform one chemical or one material into another. For example, to make cyclohexane from benzene, benzene is passed through porous ceramic supports that have been impregnated with catalysts designed and configured to hydrogenate it into cyclohexane. In one particular process, platinum is nitrated and impregnated onto supports in the wet chemical process 100 shown in
A method of making a metal compound catalyst comprises providing a quantity of nanoparticles, wherein at least some of the nanoparticles comprise a first portion comprising catalyst material bonded to a second portion comprising a carrier, providing a quantity of supports; and impregnating the supports with the nanoparticles. In some embodiments, the supports comprise pores and voids. The catalyst material comprises any among a list of at least one metal, at least one metal alloy, and any combination thereof. Also, the catalyst material comprises any among a list of nitrogen, carbon, phosphorous, hydrogen, oxygen, sulfur, and any combination thereof. Preferably, providing a quantity of nanoparticles comprises loading a quantity of catalyst material and a quantity of carrier into a plasma gun in a desired ratio, vaporizing a quantity of catalyst and quantity of carrier, thereby forming a vapor cloud quenching the vapor cloud, thereby forming precipitate nanoparticles, and injecting a co-reactant such that the co-reactant will react with one of the vapor cloud, the first portion of the precipitate nanoparticles and any combination thereof. The co-reactant is injected into a substantially low oxygen environment. The co-reactant comprises any among a list of a carbon compound, a nitrogen compound, a phosphorous compound, and oxygen compound, a hydrogen compound, a sulfur compound, and any combination thereof. Preferably, the carrier comprises an oxide such as silica, alumina, yttria, zirconia, titania, ceria, baria, and any combination thereof. Preferably, impregnating the supports comprises suspending the nanoparticles in a solution, thereby forming a suspension, and mixing the suspension with a quantity of the supports. Alternatively, impregnating the supports comprises suspending the nanoparticles in a solution, thereby forming a suspension, and mixing the suspension with a slurry having supports suspended therein. The slurry comprises any among an organic solvent, an aqueous solvent, and a combination thereof. Preferably, the method further comprises drying the supports. The method further comprises exposing the supports to any one of heat, pressure or a combination thereof, thereby calcining the nanoparticles onto the supports.
A system for forming a metal compound catalyst comprises means for providing a quantity of nanoparticles, wherein at least some of the nanoparticles comprise a first portion of catalyst material bonded to a second portion of carrier, means for collecting the nanoparticles, means for forming a suspension by mixing the nanoparticles into a liquid, and means for combining the suspension with a quantity of supports, thereby supports with the dispersion. Preferably, the catalyst material comprises any among a list of at least one metal, at least one metal alloy, and any combination thereof. Also, the catalyst material comprises any among a list of nitrogen, carbon, phosphorous, hydrogen, oxygen, sulfur, and any combination thereof. Preferably, the means for providing a quantity of nanoparticles comprises means for loading a quantity of catalyst material and a quantity of carrier into a plasma gun in a desired ratio means for vaporizing the quantity of catalyst material and carrier material in a reaction chamber, thereby forming a reactant vapor cloud means for quenching the reactant vapor cloud thereby forming solid nanoparticles, and means for injecting a co-reactant such that the co-reactant will react with any among the vapor cloud, the first portion of the nanoparticles, and any combination thereof. Preferably, the means for injecting a co-reactant comprises means for injecting the co-reactant into a substantially low oxygen environment. The co-reactant comprises any among a list of a carbon compound, a nitrogen compound, a phosphorous compound, an oxygen compound, a hydrogen compound, and any combination thereof. The system further comprises means for drying the supports. Preferably, the system further comprises means for exposing the supports to any among heat, pressure, and a combination thereof thereby calcining the nanoparticles onto the supports. Preferably, means for combining the suspension with supports comprises means for impregnating supports with the suspension. Alternatively, the means for combining the suspension with supports comprises means for mixing the suspension with a slurry having supports. The slurry comprises any among an organic solvent, an aqueous solvent, and any combination thereof.
The invention is better understood by reading the following detailed description of an exemplary embodiment in conjunction with the accompanying drawings.
Reference will now be made in detail to implementations of the present invention as illustrated in the accompanying drawings. The drawings may not be to scale. The same reference indicators will be used throughout the drawings and the following detailed description to refer to identical or like elements. In the interest of clarity, not all of the routine features of the implementations described herein are shown and described. It will, of course, be appreciated that in the development of any such actual implementation, numerous implementation-specific decisions must be made in order to achieve the developer's specific goals, such as compliance with application, safety regulations and business related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that such a development effort will be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.
The following description of the invention is provided as an enabling teaching which includes its best currently known embodiment. One skilled in the relevant arts, including but not limited to chemistry and physics, will recognize that many changes can be made to the embodiment described, while still obtaining the beneficial results of the present invention. It will also be apparent that some of the desired benefits of the present invention can be obtained by selecting some of the features of the present invention without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present inventions are possible and may even be desirable in certain circumstances, and are a part of the present invention. Thus, the following description is provided as illustrative of the principles of the present invention and not in limitation thereof, since the scope of the present invention is defined by the claims. The terms “nanoparticle,” “nanoparticle powder,” and “nano powder” are generally understood by those of ordinary skill to encompass a quantity of material comprising particles on the order of nanometers in diameter, as described herein. The term “metal compound” is generally understood by those of ordinary skill to encompass a compound comprising at least one metal and at least one non metal.
Still referring to
U.S. Pat. No. 5,989,648 to Phillips discloses a method for forming nanoparticle metal catalysts on carriers. However, referring back to
To bring the nanoparticles 400 closer to a usable catalyst, the nanoparticles 400 are impregnated onto supports 355. The supports 355 are also known to those skilled in the relevant art as porous oxides. Alternatively, the supports 355 are also referred to as extrudates because they are generally made using an extrusion process. The supports 355 are similar to the supports 104b in
Next, in the steps 360A and 360B, the impregnated porous supports 365A or macro supports 365B are allowed to dry. A close up view the impregnated porous support 365A is shown in
This patent application claims priority under 35 U.S.C. §119(e) of the co-pending U.S. Provisional Patent Application Ser. No. 60/999,057, filed Oct. 15, 2007, and entitled “Nano Particle Catalysts” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2284554 | Beyerstedt | May 1942 | A |
2419042 | Todd | Apr 1947 | A |
2519531 | Worn | Aug 1950 | A |
2562753 | Trost | Jul 1951 | A |
2689780 | Rice | Sep 1954 | A |
3001402 | Koblin | Sep 1961 | A |
3067025 | Chisholm | Dec 1962 | A |
3145287 | Siebein et al. | Aug 1964 | A |
3178121 | Wallace, Jr. | Apr 1965 | A |
3179782 | Matvay | Apr 1965 | A |
3313908 | Unger et al. | Apr 1967 | A |
3401465 | Larwill | Sep 1968 | A |
3450926 | Kiernan | Jun 1969 | A |
3457788 | Miyajima | Jul 1969 | A |
3537513 | Austin | Nov 1970 | A |
3741001 | Fletcher et al. | Jun 1973 | A |
3752172 | Cohen et al. | Aug 1973 | A |
3774442 | Gustavsson | Nov 1973 | A |
3830756 | Sanchez et al. | Aug 1974 | A |
3871448 | Vann et al. | Mar 1975 | A |
3892882 | Guest et al. | Jul 1975 | A |
3914573 | Muehlberger | Oct 1975 | A |
3959420 | Geddes et al. | May 1976 | A |
3969482 | Teller | Jul 1976 | A |
4008620 | Narato et al. | Feb 1977 | A |
4018388 | Andrews | Apr 1977 | A |
4139497 | Castor et al. | Feb 1979 | A |
4157316 | Thompson et al. | Jun 1979 | A |
4171288 | Keith et al. | Oct 1979 | A |
4174298 | Antos | Nov 1979 | A |
4227928 | Wang | Oct 1980 | A |
4248387 | Andrews | Feb 1981 | A |
4253917 | Wang | Mar 1981 | A |
4284609 | deVries | Aug 1981 | A |
4369167 | Weir | Jan 1983 | A |
4388274 | Rourke et al. | Jun 1983 | A |
4431750 | McGinnis et al. | Feb 1984 | A |
4436075 | Campbell et al. | Mar 1984 | A |
4458138 | Adrian et al. | Jul 1984 | A |
4459327 | Wang | Jul 1984 | A |
4505945 | Dubust et al. | Mar 1985 | A |
4513149 | Gray et al. | Apr 1985 | A |
4731517 | Cheney | Mar 1988 | A |
4764283 | Ashbrook et al. | Aug 1988 | A |
4765805 | Wahl et al. | Aug 1988 | A |
4824624 | Palicka et al. | Apr 1989 | A |
4855505 | Koll | Aug 1989 | A |
4866240 | Webber | Sep 1989 | A |
4885038 | Anderson et al. | Dec 1989 | A |
4983555 | Roy et al. | Jan 1991 | A |
4987033 | Abkowitz et al. | Jan 1991 | A |
5015863 | Takeshima et al. | May 1991 | A |
5041713 | Weidman | Aug 1991 | A |
5043548 | Whitney et al. | Aug 1991 | A |
5070064 | Hsu et al. | Dec 1991 | A |
5073193 | Chaklader et al. | Dec 1991 | A |
5157007 | Domesle et al. | Oct 1992 | A |
5230844 | Macaire et al. | Jul 1993 | A |
5338716 | Triplett et al. | Aug 1994 | A |
5369241 | Taylor et al. | Nov 1994 | A |
5371049 | Moffett et al. | Dec 1994 | A |
5372629 | Anderson et al. | Dec 1994 | A |
5392797 | Welch | Feb 1995 | A |
5439865 | Abe et al. | Aug 1995 | A |
5442153 | Marantz et al. | Aug 1995 | A |
5460701 | Parker et al. | Oct 1995 | A |
5464458 | Yamamoto | Nov 1995 | A |
5485941 | Guyomard et al. | Jan 1996 | A |
5534149 | Birkenbeil et al. | Jul 1996 | A |
5553507 | Basch et al. | Sep 1996 | A |
5562966 | Clarke et al. | Oct 1996 | A |
5582807 | Liao et al. | Dec 1996 | A |
5611896 | Swanepoel et al. | Mar 1997 | A |
5630322 | Heilmann et al. | May 1997 | A |
5652304 | Mizrahi | Jul 1997 | A |
5726414 | Kitahashi et al. | Mar 1998 | A |
5749938 | Coombs | May 1998 | A |
5776359 | Schultz et al. | Jul 1998 | A |
5788738 | Pirzada et al. | Aug 1998 | A |
5811187 | Anderson et al. | Sep 1998 | A |
5837959 | Muehlberger et al. | Nov 1998 | A |
5851507 | Pirzada et al. | Dec 1998 | A |
5853815 | Muehlberger | Dec 1998 | A |
5905000 | Yadav et al. | May 1999 | A |
5935293 | Detering et al. | Aug 1999 | A |
5989648 | Phillips | Nov 1999 | A |
5993967 | Brotzman, Jr. et al. | Nov 1999 | A |
5993988 | Ohara et al. | Nov 1999 | A |
6012647 | Ruta et al. | Jan 2000 | A |
6033781 | Brotzman, Jr. et al. | Mar 2000 | A |
6045765 | Nakatsuji et al. | Apr 2000 | A |
6059853 | Coombs | May 2000 | A |
6102106 | Manning et al. | Aug 2000 | A |
6117376 | Merkel | Sep 2000 | A |
6213049 | Yang | Apr 2001 | B1 |
6214195 | Yadav et al. | Apr 2001 | B1 |
6228904 | Yadav et al. | May 2001 | B1 |
6254940 | Pratsinis et al. | Jul 2001 | B1 |
6261484 | Phillips et al. | Jul 2001 | B1 |
6267864 | Yadav et al. | Jul 2001 | B1 |
6322756 | Arno et al. | Nov 2001 | B1 |
6342465 | Klein et al. | Jan 2002 | B1 |
6344271 | Yadav et al. | Feb 2002 | B1 |
6379419 | Celik et al. | Apr 2002 | B1 |
6387560 | Yadav et al. | May 2002 | B1 |
6395214 | Kear et al. | May 2002 | B1 |
6398843 | Tarrant | Jun 2002 | B1 |
6409851 | Sethuram et al. | Jun 2002 | B1 |
6413781 | Geis et al. | Jul 2002 | B1 |
6416818 | Aikens et al. | Jul 2002 | B1 |
RE37853 | Detering et al. | Sep 2002 | E |
6444009 | Liu et al. | Sep 2002 | B1 |
6475951 | Domesle et al. | Nov 2002 | B1 |
6517800 | Cheng et al. | Feb 2003 | B1 |
6524662 | Jang et al. | Feb 2003 | B2 |
6531704 | Yadav et al. | Mar 2003 | B2 |
6548445 | Buysch et al. | Apr 2003 | B1 |
6554609 | Yadav et al. | Apr 2003 | B2 |
6562304 | Mizrahi | May 2003 | B1 |
6562495 | Yadav et al. | May 2003 | B2 |
6569397 | Yadav et al. | May 2003 | B1 |
6569518 | Yadav et al. | May 2003 | B2 |
6572672 | Yadav et al. | Jun 2003 | B2 |
6579446 | Teran et al. | Jun 2003 | B1 |
6596187 | Coll et al. | Jul 2003 | B2 |
6603038 | Hagemeyer et al. | Aug 2003 | B1 |
6607821 | Yadav et al. | Aug 2003 | B2 |
6610355 | Yadav et al. | Aug 2003 | B2 |
6623559 | Huang | Sep 2003 | B2 |
6635357 | Moxson et al. | Oct 2003 | B2 |
6641775 | Vigliotti et al. | Nov 2003 | B2 |
6652822 | Phillips et al. | Nov 2003 | B2 |
6652967 | Yadav et al. | Nov 2003 | B2 |
6669823 | Sarkas et al. | Dec 2003 | B1 |
6682002 | Kyotani | Jan 2004 | B2 |
6689192 | Phillips et al. | Feb 2004 | B1 |
6699398 | Kim | Mar 2004 | B1 |
6706097 | Zornes | Mar 2004 | B2 |
6706660 | Park | Mar 2004 | B2 |
6710207 | Bogan, Jr. et al. | Mar 2004 | B2 |
6713176 | Yadav et al. | Mar 2004 | B2 |
6716525 | Yadav et al. | Apr 2004 | B1 |
6746791 | Yadav et al. | Jun 2004 | B2 |
6772584 | Chun et al. | Aug 2004 | B2 |
6786950 | Yadav et al. | Sep 2004 | B2 |
6813931 | Yadav et al. | Nov 2004 | B2 |
6817388 | Tsangaris et al. | Nov 2004 | B2 |
6832735 | Yadav et al. | Dec 2004 | B2 |
6838072 | Kong et al. | Jan 2005 | B1 |
6855410 | Buckley | Feb 2005 | B2 |
6855426 | Yadav | Feb 2005 | B2 |
6855749 | Yadav et al. | Feb 2005 | B1 |
6886545 | Holm | May 2005 | B1 |
6896958 | Cayton et al. | May 2005 | B1 |
6902699 | Fritzemeier et al. | Jun 2005 | B2 |
6916872 | Yadav et al. | Jul 2005 | B2 |
6919527 | Boulos et al. | Jul 2005 | B2 |
6933331 | Yadav et al. | Aug 2005 | B2 |
6972115 | Ballard | Dec 2005 | B1 |
6986877 | Takikawa et al. | Jan 2006 | B2 |
6994837 | Boulos et al. | Feb 2006 | B2 |
7007872 | Yadav et al. | Mar 2006 | B2 |
7022305 | Drumm et al. | Apr 2006 | B2 |
7052777 | Brotzman, Jr. et al. | May 2006 | B2 |
7073559 | O'Larey et al. | Jul 2006 | B2 |
7081267 | Yadav | Jul 2006 | B2 |
7101819 | Rosenflanz et al. | Sep 2006 | B2 |
7147544 | Rosenflanz | Dec 2006 | B2 |
7147894 | Zhou et al. | Dec 2006 | B2 |
7166198 | Van Der Walt et al. | Jan 2007 | B2 |
7166663 | Cayton et al. | Jan 2007 | B2 |
7172649 | Conrad et al. | Feb 2007 | B2 |
7172790 | Koulik et al. | Feb 2007 | B2 |
7178747 | Yadav et al. | Feb 2007 | B2 |
7208126 | Musick et al. | Apr 2007 | B2 |
7211236 | Stark et al. | May 2007 | B2 |
7217407 | Zhang | May 2007 | B2 |
7220398 | Sutorik et al. | May 2007 | B2 |
7307195 | Polverejan et al. | Dec 2007 | B2 |
7323655 | Kim | Jan 2008 | B2 |
7384447 | Kodas et al. | Jun 2008 | B2 |
7417008 | Richards et al. | Aug 2008 | B2 |
7494527 | Jurewicz et al. | Feb 2009 | B2 |
7541012 | Yeung et al. | Jun 2009 | B2 |
7541310 | Espinoza et al. | Jun 2009 | B2 |
7572315 | Boulos et al. | Aug 2009 | B2 |
7611686 | Alekseeva et al. | Nov 2009 | B2 |
7615097 | McKechnie et al. | Nov 2009 | B2 |
7618919 | Shimazu et al. | Nov 2009 | B2 |
7622693 | Foret | Nov 2009 | B2 |
7678419 | Kevwitch et al. | Mar 2010 | B2 |
7803210 | Sekine et al. | Sep 2010 | B2 |
7874239 | Howland | Jan 2011 | B2 |
7897127 | Layman et al. | Mar 2011 | B2 |
7905942 | Layman | Mar 2011 | B1 |
8051724 | Layman et al. | Nov 2011 | B1 |
8076258 | Biberger | Dec 2011 | B1 |
8142619 | Layman et al. | Mar 2012 | B2 |
20010042802 | Youds | Nov 2001 | A1 |
20020018815 | Sievers et al. | Feb 2002 | A1 |
20020068026 | Murrell et al. | Jun 2002 | A1 |
20020079620 | DuBuis et al. | Jun 2002 | A1 |
20020100751 | Carr | Aug 2002 | A1 |
20020102674 | Anderson | Aug 2002 | A1 |
20020131914 | Sung | Sep 2002 | A1 |
20020143417 | Ito et al. | Oct 2002 | A1 |
20020182735 | Kibby et al. | Dec 2002 | A1 |
20020183191 | Faber et al. | Dec 2002 | A1 |
20020192129 | Shamouilian et al. | Dec 2002 | A1 |
20030036786 | Duren et al. | Feb 2003 | A1 |
20030042232 | Shimazu | Mar 2003 | A1 |
20030066800 | Saim et al. | Apr 2003 | A1 |
20030072677 | Kafesjian et al. | Apr 2003 | A1 |
20030108459 | Wu et al. | Jun 2003 | A1 |
20030110931 | Aghajanian et al. | Jun 2003 | A1 |
20030139288 | Cai et al. | Jul 2003 | A1 |
20030143153 | Boulos et al. | Jul 2003 | A1 |
20030172772 | Sethuram et al. | Sep 2003 | A1 |
20030223546 | McGregor et al. | Dec 2003 | A1 |
20040009118 | Phillips et al. | Jan 2004 | A1 |
20040023302 | Archibald et al. | Feb 2004 | A1 |
20040023453 | Xu et al. | Feb 2004 | A1 |
20040064964 | Lee | Apr 2004 | A1 |
20040077494 | LaBarge et al. | Apr 2004 | A1 |
20040103751 | Joseph et al. | Jun 2004 | A1 |
20040119064 | Narayan et al. | Jun 2004 | A1 |
20040127586 | Jin et al. | Jul 2004 | A1 |
20040167009 | Kuntz et al. | Aug 2004 | A1 |
20040176246 | Shirk et al. | Sep 2004 | A1 |
20040208805 | Fincke et al. | Oct 2004 | A1 |
20040213998 | Hearley et al. | Oct 2004 | A1 |
20040238345 | Koulik et al. | Dec 2004 | A1 |
20040251017 | Pillion et al. | Dec 2004 | A1 |
20040251241 | Blutke et al. | Dec 2004 | A1 |
20050000321 | O'Larey et al. | Jan 2005 | A1 |
20050000950 | Schroder et al. | Jan 2005 | A1 |
20050066805 | Park et al. | Mar 2005 | A1 |
20050077034 | King | Apr 2005 | A1 |
20050097988 | Kodas et al. | May 2005 | A1 |
20050106865 | Chung et al. | May 2005 | A1 |
20050163673 | Johnson et al. | Jul 2005 | A1 |
20050199739 | Kuroda et al. | Sep 2005 | A1 |
20050220695 | Abatzoglou et al. | Oct 2005 | A1 |
20050227864 | Sutorik et al. | Oct 2005 | A1 |
20050233380 | Pesiri et al. | Oct 2005 | A1 |
20050240069 | Polverejan et al. | Oct 2005 | A1 |
20050258766 | Kim | Nov 2005 | A1 |
20050275143 | Toth | Dec 2005 | A1 |
20060051505 | Kortshagen et al. | Mar 2006 | A1 |
20060068989 | Ninomiya et al. | Mar 2006 | A1 |
20060094595 | Labarge | May 2006 | A1 |
20060096393 | Pesiri | May 2006 | A1 |
20060105910 | Zhou et al. | May 2006 | A1 |
20060108332 | Belashchenko | May 2006 | A1 |
20060153728 | Schoenung et al. | Jul 2006 | A1 |
20060153765 | Pham-Huu et al. | Jul 2006 | A1 |
20060159596 | De La Veaux et al. | Jul 2006 | A1 |
20060166809 | Malek et al. | Jul 2006 | A1 |
20060222780 | Gurevich et al. | Oct 2006 | A1 |
20060231525 | Asakawa et al. | Oct 2006 | A1 |
20070048206 | Hung et al. | Mar 2007 | A1 |
20070049484 | Kear et al. | Mar 2007 | A1 |
20070063364 | Hsiao et al. | Mar 2007 | A1 |
20070084308 | Nakamura et al. | Apr 2007 | A1 |
20070084834 | Hanus et al. | Apr 2007 | A1 |
20070087934 | Martens et al. | Apr 2007 | A1 |
20070163385 | Takahashi et al. | Jul 2007 | A1 |
20070173403 | Koike et al. | Jul 2007 | A1 |
20070178673 | Gole et al. | Aug 2007 | A1 |
20070253874 | Foret | Nov 2007 | A1 |
20070292321 | Plischke et al. | Dec 2007 | A1 |
20080006954 | Yubuta et al. | Jan 2008 | A1 |
20080031806 | Gavenonis et al. | Feb 2008 | A1 |
20080038578 | Li | Feb 2008 | A1 |
20080064769 | Sato et al. | Mar 2008 | A1 |
20080105083 | Nakamura et al. | May 2008 | A1 |
20080116178 | Weidman | May 2008 | A1 |
20080125308 | Fujdala et al. | May 2008 | A1 |
20080138651 | Doi et al. | Jun 2008 | A1 |
20080175936 | Tokita et al. | Jul 2008 | A1 |
20080206562 | Stucky et al. | Aug 2008 | A1 |
20080207858 | Kowaleski et al. | Aug 2008 | A1 |
20080274344 | Vieth et al. | Nov 2008 | A1 |
20080277092 | Layman et al. | Nov 2008 | A1 |
20080277264 | Biberger et al. | Nov 2008 | A1 |
20080277266 | Layman | Nov 2008 | A1 |
20080277267 | Biberger et al. | Nov 2008 | A1 |
20080277268 | Layman | Nov 2008 | A1 |
20080277269 | Layman et al. | Nov 2008 | A1 |
20080277270 | Biberger et al. | Nov 2008 | A1 |
20080277271 | Layman | Nov 2008 | A1 |
20080280049 | Kevwitch et al. | Nov 2008 | A1 |
20080280751 | Harutyunyan et al. | Nov 2008 | A1 |
20080280756 | Layman | Nov 2008 | A1 |
20090010801 | Murphy et al. | Jan 2009 | A1 |
20090054230 | Veeraraghavan et al. | Feb 2009 | A1 |
20090088585 | Schammel et al. | Apr 2009 | A1 |
20090114568 | Trevino et al. | May 2009 | A1 |
20090162991 | Beneyton et al. | Jun 2009 | A1 |
20090168506 | Han et al. | Jul 2009 | A1 |
20090170242 | Lin et al. | Jul 2009 | A1 |
20090181474 | Nagai | Jul 2009 | A1 |
20090200180 | Capote et al. | Aug 2009 | A1 |
20090253037 | Park et al. | Oct 2009 | A1 |
20090274903 | Addiego | Nov 2009 | A1 |
20090286899 | Hofmann et al. | Nov 2009 | A1 |
20100089002 | Merkel | Apr 2010 | A1 |
20100275781 | Tsangaris | Nov 2010 | A1 |
20110006463 | Layman | Jan 2011 | A1 |
20110143041 | Layman et al. | Jun 2011 | A1 |
20110143915 | Yin et al. | Jun 2011 | A1 |
20110143916 | Leamon | Jun 2011 | A1 |
20110143926 | Leamon | Jun 2011 | A1 |
20110143930 | Yin et al. | Jun 2011 | A1 |
20110143933 | Yin et al. | Jun 2011 | A1 |
20110144382 | Yin et al. | Jun 2011 | A1 |
20110152550 | Grey et al. | Jun 2011 | A1 |
20110158871 | Arnold et al. | Jun 2011 | A1 |
20110174604 | Duesel et al. | Jul 2011 | A1 |
20110247336 | Farsad et al. | Oct 2011 | A9 |
20120045373 | Biberger | Feb 2012 | A1 |
20120171098 | Hung et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
56-146804 | Nov 1981 | JP |
61-086815 | May 1986 | JP |
63-214342 | Sep 1988 | JP |
05-228361 | Sep 1993 | JP |
05-324094 | Dec 1993 | JP |
H6-065772 | Sep 1994 | JP |
7031873 | Feb 1995 | JP |
07-256116 | Oct 1995 | JP |
11-502760 | Mar 1999 | JP |
2000-220978 | Aug 2000 | JP |
2004-233007 | Aug 2004 | JP |
2004-249206 | Sep 2004 | JP |
2004-290730 | Oct 2004 | JP |
2005-503250 | Feb 2005 | JP |
2005-122621 | May 2005 | JP |
2005-218937 | Aug 2005 | JP |
2005-342615 | Dec 2005 | JP |
2006-001779 | Jan 2006 | JP |
2006-508885 | Mar 2006 | JP |
2006-247446 | Sep 2006 | JP |
2006-260385 | Sep 2006 | JP |
493241 | Mar 1976 | SU |
201023207 | Jun 2010 | TW |
WO-9628577 | Sep 1996 | WO |
WO 02092503 | Nov 2002 | WO |
2004052778 | Jun 2004 | WO |
WO 2006079213 | Aug 2006 | WO |
WO-2008130451 | Oct 2008 | WO |
WO-2008130451 | Oct 2008 | WO |
Entry |
---|
Kenvin et al., Journal of Catalysis, v. 135, p. 81-91, May 1992. |
J. Heberlein, “New Approaches in Thermal Plasma Technology”, Pure Appl. Chem., vol. 74, No. 3, 2002, pp. 327-335. |
T. Yoshida, “The Future of Thermal Plasma Processing for Coating”, Pure & Appl. Chem., vol. 66, No. 6, 1994 pp. 1223-1230. |
A. Gutsch et al., “Gas-Phase Production of Nanoparticles”, Kona No. 20, 2002, pp. 24-37. |
Dr. Heike Mühlenweg et al., “Gas-Phase Reactions—Open Up New Roads to Nanoproducts”, Degussa ScienceNewsletter No. 08, 2004, pp. 12-16. |
Coating Generation: Vaporization of Particles in Plasma Spraying and Splat Formation, M. Vardelle, A. Vardelle, K-I Ii, P. Fauchais, Universite de Limoges, 123 Avenue A. Thomas 87000, Limoges, F. , Pure & Chem, vol. 68, No. 5, pp. 1093-1099, 1996. |
H. Konrad et al., “Nanostructured Cu—Bi Alloys Prepared by Co-Evaporation in a Continuous Gas Flow,” NanoStructured Materials, vol. 7, No. 6, Apr. 1996, pp. 605-610. |
M.Vardelle et al., “Experimental Investigation of Powder Vaporization in Thermal Plasma Jets,” Plasma Chemistry and Plasma Processing, vol. 11, No. 2, Jun. 1991, pp. 185-201. |
P. Fauchais et al., “Plasma Spray: Study of the Coating Generation,” Ceramics International, Elsevier, Amsterdam, NL, vol. 22, No. 4, Jan. 1996, pp. 295-303. |
P. Fauchais et al., “Les Dépô^ts Par Plasma Thermique,” Revue Generale De L'Electricitie, RGE. Paris, FR, No. 2, Jan. 1993, pp. 7-12. |
P. Fauchais et al, “La Projection Par Plasma: Une Revue,” Annales De Physique, vol. 14, No. 3, Jun. 1989, pp. 261-310. |
National Aeronautics and Space Administration, “Enthalpy”, http://www.grc.nasa.gov/WWW/K-12/airplane/enthalpy.html, Nov. 23, 2009, 1 page. |
Hanet al., Deformation Mechanisms and Ductility of Nanostructured Al Alloys, Mat. Res. Soc. Symp. Proc. vol. 821, Jan. 2004, Material Research Society, http://www.mrs.org/s—mrs/bin.asp?CID=2670&DOC=FILE.PDF., 6 pages. |
United States Patent and Trademark Office, Office Action, mailed Jan. 7, 2010, U.S. Appl. No. 12/001,643, filed Dec. 11, 2007, First Named Inventor: Maximilian A. Biberger, 8 pages. |
United States Patent and Trademark Office, Office Action, mailed Feb. 18, 2010, U.S. Appl. No. 12/001,644, filed Dec. 11, 2007, First Named Inventor: Maximilian A. Biberger, 7 pages. |
United States Patent and Trademark Office, Office Action, mailed Feb. 19, 2010, U.S. Appl. No. 12/152,109, filed May 9, 2008, First Named Inventor: Maximilian A. Biberger, 17 pages. |
United States Patent and Trademark Office, Advisory Action, Mailed Mar. 4, 2010, U.S. Appl. No. 12/001,643, filed Dec. 11, 2007, First Named Inventor: Maximilian A. Biberger, pp. 9. |
Untied States Patent and Trademark Office, Office Action, Mailed: Feb. 26, 2010, U.S. Appl. No. 12/474,081, filed May 28, 2009, First Named Inventor: Maximilian A. Biberger, 7 pages. |
Untied States Patent and Trademark Office, Advisory Action, Mailed: May 4, 2010, U.S. Appl. No. 12/474,081, filed May 28, 2009, First Named Inventor: Maximilian A. Biberger, 4 pages. |
Untied States Patent and Trademark Office, Office Action, Mailed Jun. 16, 2010, U.S. Appl. No. 12/001,643, filed Dec. 11, 2007, First Named Inventor: Maximilian A. Biberger, 8 pages. |
Untied States Patent and Trademark Office, Office Action, Mailed Jun. 30, 2010, U.S. Appl. No. 12/001,644, filed Dec. 11, 2007, First Named Inventor: Maximilian A. Biberger, 8 pages. |
Untied States Patent and Trademark Office, Office Action, Mailed Jun. 23, 2010, U.S. Appl. No. 12/474,081, filed May 28, 2009, First Named Inventor: Maximilian A. Biberger, 11 pages. |
Derwent English Abstract for Publication No. SU 193241 A, Application No. 1973SU1943286 filed on Jul. 2, 1973, published on Mar. 1, 1976, entitled“Catalyst for Ammonia Synthesis Contains Oxides of Aluminium, Potassium, Calcium, Iron and Nickel Oxide for Increased Activity,” 3 pgs. |
Nagai, Yasutaka, et al., “Sintering Inhibition Mechanism of Platinum Supported on Ceria-based Oxide and Pt-oxide-support Interaction,” Journal of Catalysis 242 (2006), pp. 103-109, Jul. 3, 2006, Elsevier. |
United States Patent and Trademark Office, Office Action mailed. Dec. 8, 2010, for U.S. Appl. No. 12/474,081, pp. 1-13. |
Advisory action dated Sep. 23, 2011, U.S. Appl. No. 12/001,643, filed Dec. 11, 2007, Applicant: Maximilian A. Biberger, 8 pages. |
United States Patent and Trademark Office, Office Action mailed Jun. 21, 2011, for U.S. Appl. No. 12/001,644, 12 pgs. |
United States Patent and Trademark Office, Office Action mailed Jun. 22, 2011, for U.S. Appl. No. 12/001,643, 13 pgs. |
Bateman, James E. et al., “Alkylation of Porous Silicon by Direct Reaction with Alkenes and Alkynes,” Angew. Chem Int. Ed., Dec. 17, 1998, 37, No. 19, pp. 2683-2685. |
Langner, Alexander et al., “Controlled Silicon Surface Functionalization by Alkene Hydrosilylation,” J. Am. Chem. Soc., Aug. 25, 2005, 127, pp. 12798-12799. |
Liu, Shu-Man et al., “Enhanced Photoluminescence from Si Nano-organosols by Functionalization with Alkenes and Their Size Evolution,” Chem. Mater., Jan. 13, 2006, 18, pp. 637-642. |
Fojtik, Anton, “Surface Chemistry of Luminescent Colloidal Silicon Nanoparticles,” J. Phys. Chem. B., Jan. 13, 2006, pp. 1994-1998. |
Li, Dejin et al., “Environmentally Responsive “Hairy” Nanoparticles: Mixed Homopolymer Brushes on Silica Nanoparticles Synthesized by Living Radical Polymerization Techniques,” J.Am. Chem. Soc., Apr. 9, 2005, 127,pp. 6248-6256. |
Neiner, Doinita, “Low-Temperature Solution Route to Macroscopic Amounts of Hydrogen Terminated Silicon Nanoparticles,” J. Am. Chem. Soc., Aug. 5, 2006, 128, pp. 11016-11017. |
Fojtik, Anton et al., “Luminescent Colloidal Silicon Particles,” Chemical Physics Letters 221, Apr. 29, 1994, pp. 363-367. |
Netzer, Lucy et al., “A New Approach to Construction of Artificial Monolayer Assemblies,” J. Am. Chem. Soc., 1983, 105, pp. 674-676. |
Chen, H.-S. et al., “On the Photoluminescence of Si Nanoparticles,” Mater. Phys. Mech. 4, Jul. 3, 2001, pp. 62-66. |
Kwon, Young-Soon et al., “Passivation Process for Superfine Aluminum Powders Obtained by Electrical Explosion of Wires,” Applied Surface Science 211, Apr. 30, 2003, pp. 57-67. |
Liao, Ying-Chih et al., “Self-Assembly of Organic Monolayers on Aerosolized Silicon Nanoparticles,” J.Am. Chem. Soc., Jun. 27, 2006, 128, pp. 9061-9065. |
Zou, Jing et al., “Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles,” Nano Letters, Jun. 4, 2004, vol. 4, No. 7, pp. 1181-1186. |
Tao, Yu-Tai, “Structural Comparison of Self-Assembled Monolayers of n-Alkanoic Acids on the surfaces of Silver, Copper, and Aluminum,” J. Am. Chem. Soc., May 1993, 115, pp. 4350-4358. |
Sailor, Michael et al., “Surface Chemistry of Luminescent Silicon Nanocrystallites,” Adv. Mater, 1997, 9, No. 10, pp. 783-793. |
Li, Xuegeng et al., “Surface Functionalization of Silicon Nanoparticles Produced by Laser-Driven Pyrolysis of Silane Followed by HF-HNO3 Etching,” Langmuir, May 25, 2004, pp. 4720-4727. |
Carrot, Geraldine et al., “Surface-Initiated Ring-Opening Polymerization: A Versatile Method for Nanoparticle Ordering,” Macromolecules, Sep. 17, 2002, 35, pp. 8400-8404. |
Jouet, R. Jason et al., “Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids,” Chem. Mater., Jan. 25, 2005, 17, pp. 2987-2996. |
Yoshida, Toyonobu, “The Future of Thermal Plasma Processing for Coating,” Pure & Appl. Chem., vol. 66, No. 6, 1994, pp. 1223-1230. |
Kim, Namyong Y. et al., “Thermal Derivatization of Porous Silicon with Alcohols,” J. Am. Chem. Soc., Mar. 5, 1997, 119, pp. 2297-2298. |
Hua, Fengjun et al., “Organically Capped Silicon Nanoparticles with Blue Photoluminescence Prepared by Hydrosilylation Followed by Oxidation,” Langmuir, Mar. 2006, pp. 4363-4370. |
Stiles, A.B., Catalyst Supports and Supported Catalysts, Manufacture of Carbon-Supported Metal Catalysts, pp. 125-132, published Jan. 1, 1987, Butterworth Publishers, 80 Montvale Ave., Stoneham, MA 02180. |
United States Patent and Trademark Office, Advisory Action mailed Jul. 21, 2011, for U.S. Appl. No. 12/474,081, 3 pgs. |
“Platinum Group Metals: Annual Review 1996” (Oct. 1997). Engineering and Mining Journal, p. 63. |
U.S. Appl. No. 13/291,983, filed Nov. 8, 2011, for Layman et al. |
U.S. Appl. No. 12/152,084, filed May 9, 2008, for Biberger. |
U.S. Appl. No. 13/028,693, filed Feb. 16, 2011, for Biberger. |
U.S. Appl. No. 12/943,909, filed Nov. 10, 2010, for Layman. |
U.S. Appl. No. 12/152,111, filed May 9, 2008, for Biberger et al. |
U.S. Appl. No. 12/151,830, filed May 8, 2008, for Biberger et al. |
U.S. Appl. No. 12/968,248, filed Dec. 14, 2010, for Biberger. |
U.S. Appl. No. 12/968,245, filed Dec. 14, 2010, for Biberger. |
U.S. Appl. No. 12/968,241, filed Dec. 14, 2010, for Biberger. |
U.S. Appl. No. 12/968,239, filed Dec. 14, 2010, for Biberger. |
U.S. Appl. No. 12/969,128, filed Dec. 15, 2010, for Biberger. |
U.S. Appl. No. 12/962,463, filed Dec. 7, 2010, for Leamon. |
U.S. Appl. No. 12/961,030, filed Dec. 6, 2010, for Lehman. |
U.S. Appl. No. 12/961,108, filed Dec. 6, 2010, for Lehman. |
U.S. Appl. No. 12/961,200, filed Dec. 6, 2010, for Lehman. |
U.S. Appl. No. 12/968,253, filed Dec. 14, 2010, for Biberger. |
U.S. Appl. No. 12/968,235, filed Dec. 14, 2010, for Biberger. |
U.S. Appl. No. 12/969,306, filed Dec. 15, 2010, for Lehman et al. |
U.S. Appl. No. 12/969,447, filed Dec. 15, 2010, for Biberger et al. |
U.S. Appl. No. 12/969,087, filed Dec. 15, 2010, for Biberger. |
U.S. Appl. No. 12/962,533, filed Dec. 7, 2010, for Yin et al. |
U.S. Appl. No. 12/962,523, filed Dec. 7, 2010, for Yin et al. |
U.S. Appl. No. 12/001,643, filed Dec. 11, 2007, for Biberger et al. |
U.S. Appl. No. 12/474,081, filed May 28, 2009, for Biberger et al. |
U.S. Appl. No. 12/001,644, filed Dec. 11, 2007, for Biberger et al. |
U.S. Appl. No. 12/969,457, filed Nov. 15, 2010, for Leamon et al. |
U.S. Appl. No. 12/969,503, filed Nov. 15, 2010, for Leamon et al. |
U.S. Appl. No. 12/954,813, filed Nov. 26, 2010, for Biberger. |
U.S. Appl. No. 12/954,822, filed Nov. 26, 2010, for Biberger. |
U.S. Appl. No. 13/033,514, filed Feb. 23, 2011, for Biberger et al. |
Number | Date | Country | |
---|---|---|---|
60999057 | Oct 2007 | US |