Method and system for forming plug and play metal compound catalysts

Information

  • Patent Grant
  • 8575059
  • Patent Number
    8,575,059
  • Date Filed
    Tuesday, December 11, 2007
    17 years ago
  • Date Issued
    Tuesday, November 5, 2013
    11 years ago
Abstract
A metal compound catalyst is formed by vaporizing a quantity of catalyst material and a quantity of carrier thereby forming a vapor cloud, exposing the vapor cloud to a co-reactant and quenching the vapor cloud. The nanoparticles are impregnated onto supports. The supports are able to be used in existing heterogeneous catalysis systems. A system for forming metal compound catalysts comprises components for vaporizing a quantity of catalyst material and a quantity of carrier, quenching the resulting vapor cloud, forming precipitate nanoparticles comprising a portion of catalyst material and a portion of carrier, and subjecting the nanoparticles to a co-reactant. The system further comprises components for impregnating the supports with the nanoparticles.
Description
BACKGROUND OF THE INVENTION

In the oil refining and fine chemical industries, catalysts are required to transform one chemical or one material into another. For example, to make cyclohexane from benzene, benzene is passed through porous ceramic supports that have been impregnated with catalysts designed and configured to hydrogenate it into cyclohexane. In one particular process, platinum is nitrated and impregnated onto supports in the wet chemical process 100 shown in FIG. 1. A platinum group metal, such as platinum, osmium, ruthenium, rhodium, palladium or iridium, is collected in step 101. For the sake of brevity, platinum will be discussed herein but it will be apparent to those of ordinary skill in the art that different platinum group metals can be used to take advantage of their different properties. Since blocks of elemental platinum are not useable as a catalyst, the platinum is nitrated in the step 102, forming a salt, specifically PtNO3. The nitration is typically performed using well known methods of wet chemistry. The PtNO3 is dissolved into a solvent such as water in a step 103, causing the PtNO3 to dissociate into Pt+ and NO3− ions. In the step 104, the salt is adsorbed onto the surfaces of supports 104B through transfer devices 104A, such as pipettes. An example of a support 104B is shown in FIG. 2. Generally, a support 104B is a highly porous ceramic material that is commercially available in a vast array of shapes, dimensions and pore sizes to accommodate particular requirements of a given application. The supports 104B are dried to remove water then transferred to an oven for an air calcining step 105. In the oven, the supports 104B are exposed to heat and optionally pressure that causes the Pt+ to coalesce into elemental Pt particles on the surfaces of the supports 104B. In the step 106, end product catalysts are formed. The end product is a support 104B that is impregnated with elemental platinum. These supports are generally used in catalytic conversion by placing them in reactors of various configurations. For example, benzene is passed through the supports 104B which convert the benzene into cyclohexane in the fine chemical industry. In the oil refining industry, the supports are used in a similar fashion. The process steps are used to convert crude oil into a useable fuel or other desirable end product. The process described in FIG. 1 has opportunities for improvement. Although the platinum sticks sufficiently well to the surface of the support 104b, platinum atoms begin to move and coalesce into larger particles at the temperatures that catalysis generally occurs. It is understood that the effectiveness and activity of a catalyst are directly proportional to the size of the catalyst particles on the surface of the support. As the particles coalesce into larger clumps, the particle sizes increase, the surface area of the catalyst decreases and the effectiveness of the catalyst is detrimentally affected. As the effectiveness of the catalyst decreases, the supports 104B must be removed from the reactors and new supports added. During the transition period, output is stopped and overall throughput is adversely affected. Also, platinum group metal catalysts are very expensive, and every addition of new supports comes at great cost. What is needed is a plug and play catalyst that is usable in current oil refineries and fine chemical processing plants, allowing an increase in throughput and decrease in costs.


SUMMARY OF THE INVENTION

A method of making a metal compound catalyst comprises providing a quantity of nanoparticles, wherein at least some of the nanoparticles comprise a first portion comprising catalyst material bonded to a second portion comprising a carrier, providing a quantity of supports; and impregnating the supports with the nanoparticles. In some embodiments, the supports comprise pores and voids. The catalyst material comprises any among a list of at least one metal, at least one metal alloy, and any combination thereof. Also, the catalyst material comprises any among a list of nitrogen, carbon, phosphorous, hydrogen, oxygen, sulfur, and any combination thereof. Preferably, providing a quantity of nanoparticles comprises loading a quantity of catalyst material and a quantity of carrier into a plasma gun in a desired ratio, vaporizing a quantity of catalyst and quantity of carrier, thereby forming a vapor cloud quenching the vapor cloud, thereby forming precipitate nanoparticles, and injecting a co-reactant such that the co-reactant will react with one of the vapor cloud, the first portion of the precipitate nanoparticles and any combination thereof. The co-reactant is injected into a substantially low oxygen environment. The co-reactant comprises any among a list of a carbon compound, a nitrogen compound, a phosphorous compound, and oxygen compound, a hydrogen compound, a sulfur compound, and any combination thereof. Preferably, the carrier comprises an oxide such as silica, alumina, yttria, zirconia, titania, ceria, baria, and any combination thereof. Preferably, impregnating the supports comprises suspending the nanoparticles in a solution, thereby forming a suspension, and mixing the suspension with a quantity of the supports. Alternatively, impregnating the supports comprises suspending the nanoparticles in a solution, thereby forming a suspension, and mixing the suspension with a slurry having supports suspended therein. The slurry comprises any among an organic solvent, an aqueous solvent, and a combination thereof. Preferably, the method further comprises drying the supports. The method further comprises exposing the supports to any one of heat, pressure or a combination thereof, thereby calcining the nanoparticles onto the supports.


A system for forming a metal compound catalyst comprises means for providing a quantity of nanoparticles, wherein at least some of the nanoparticles comprise a first portion of catalyst material bonded to a second portion of carrier, means for collecting the nanoparticles, means for forming a suspension by mixing the nanoparticles into a liquid, and means for combining the suspension with a quantity of supports, thereby supports with the dispersion. Preferably, the catalyst material comprises any among a list of at least one metal, at least one metal alloy, and any combination thereof. Also, the catalyst material comprises any among a list of nitrogen, carbon, phosphorous, hydrogen, oxygen, sulfur, and any combination thereof. Preferably, the means for providing a quantity of nanoparticles comprises means for loading a quantity of catalyst material and a quantity of carrier into a plasma gun in a desired ratio means for vaporizing the quantity of catalyst material and carrier material in a reaction chamber, thereby forming a reactant vapor cloud means for quenching the reactant vapor cloud thereby forming solid nanoparticles, and means for injecting a co-reactant such that the co-reactant will react with any among the vapor cloud, the first portion of the nanoparticles, and any combination thereof. Preferably, the means for injecting a co-reactant comprises means for injecting the co-reactant into a substantially low oxygen environment. The co-reactant comprises any among a list of a carbon compound, a nitrogen compound, a phosphorous compound, an oxygen compound, a hydrogen compound, and any combination thereof. The system further comprises means for drying the supports. Preferably, the system further comprises means for exposing the supports to any among heat, pressure, and a combination thereof thereby calcining the nanoparticles onto the supports. Preferably, means for combining the suspension with supports comprises means for impregnating supports with the suspension. Alternatively, the means for combining the suspension with supports comprises means for mixing the suspension with a slurry having supports. The slurry comprises any among an organic solvent, an aqueous solvent, and any combination thereof.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is better understood by reading the following detailed description of an exemplary embodiment in conjunction with the accompanying drawings.



FIG. 1 prior art illustrates an existing process for forming a useful support for use in heterogenous catalysis.



FIG. 2 prior art shows a porous support generally used as a support in heterogeneous catalysis.



FIG. 3 shows the preferred embodiment of a novel process for forming a support for use in heterogeneous catalysis.



FIG. 4A shows an example of a nanoparticle formed as part of the process of FIG. 3.



FIG. 4B shows a close up of an impregnated porous support.



FIG. 4C shows a close up of an impregnated macro support.



FIG. 5 shows an example of the supports being used as heterogeneous catalysts.



FIG. 5A shows the hydrogenation of benzene into cyclohexane.





DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to implementations of the present invention as illustrated in the accompanying drawings. The drawings may not be to scale. The same reference indicators will be used throughout the drawings and the following detailed description to refer to identical or like elements. In the interest of clarity, not all of the routine features of the implementations described herein are shown and described. It will, of course, be appreciated that in the development of any such actual implementation, numerous implementation-specific decisions must be made in order to achieve the developer's specific goals, such as compliance with application, safety regulations and business related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that such a development effort will be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.


The following description of the invention is provided as an enabling teaching which includes its best currently known embodiment. One skilled in the relevant arts, including but not limited to chemistry and physics, will recognize that many changes can be made to the embodiment described, while still obtaining the beneficial results of the present invention. It will also be apparent that some of the desired benefits of the present invention can be obtained by selecting some of the features of the present invention without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present inventions are possible and may even be desirable in certain circumstances, and are a part of the present invention. Thus, the following description is provided as illustrative of the principles of the present invention and not in limitation thereof, since the scope of the present invention is defined by the claims. The terms “nanoparticle,” “nanoparticle powder,” and “nano powder” are generally understood by those of ordinary skill to encompass a quantity of material comprising particles on the order of nanometers in diameter, as described herein. The term “metal compound” is generally understood by those of ordinary skill to encompass a compound comprising at least one metal and at least one non metal.



FIG. 3 illustrates the inventive steps for a process 300 of forming a “plug and play” catalyst for use in such industries as chemical manufacturing and oil refining. The method begins at the step 310. A quantity of a catalyst material 312 is loaded into a plasma gun 315. Preferably, the catalyst material 312 comprises a transition metal. Transition metals (TM) and their compounds are able to provide excellent catalytic properties. Although transition metals are described, all metals are contemplated. Other metals, such as platinum group metals and poor metals, also exhibit catalytic properties. Generally, transition metals comprise scandium, titanium, chromium, vanadium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, cadmium, tantalum, tungsten, and mercury. Poor metals comprise aluminum, germanium, gallium, tin, antimony, lead, indium, tellurium, polonium and bismuth. Platinum group metals comprise ruthenium, rhodium, palladium, osmium, iridium, and platinum. The catalyst material 312 is able to comprise more than one starting metal. By way of example, the material 312 is a single alloy comprising multiple metals. Alternatively, the catalyst material 312 comprises multiple homogenous metals or metal compounds such as oxides. Particularly, metals are used in heterogeneous catalysis. Heterogeneous catalysts provide a surface for the chemical reaction to take place on or provide an activation point for chemical reactions. Also, in step 310, a quantity of carrier material 314 is loaded into the plasma gun 315. In some embodiments, the carrier material 314 is an oxide. By way of example, oxides such as Alumina (Al2O3), Silica (SiO2), Zirconia (ZrO2), Titania (TiO2), Ceria (CeO2) Baria (BaO), and Yttria (Y2O3) can be used. Other useful oxides will be apparent to those of ordinary skill. In some embodiments, the catalyst material 312 and carrier material 314 are loaded manually into a hopper (not shown) which automatically loads the materials into the plasma gun 315. In alternate embodiments, an automated system is able to load the catalyst material 312 and oxide carrier 314 into the plasma gun 315. The ratio of the TM to the carrier can be adjusted to meet particular demands of a given application. Next, in step 320, the plasma gun 315 vaporizes the catalyst material 312 along with the carrier 314 to form a vapor cloud 325. The vapor cloud will comprise both the catalyst material, for example TM, and the carrier in the ratio that was loaded into the plasma gun 315 in step 310.


Still referring to FIG. 3, the resulting vapor cloud 325 is then put through a quenching step 330. Preferably, the quenching step occurs in a highly turbulent quench chamber 327 to facilitate rapid, even, consistent quenching of the vapor cloud 325 into precipitate nanoparticles. Such a rapid quench chamber is described in detail in U.S. Patent Publication No. 2008/0277267, and is hereby incorporated by reference. As the gaseous TM and carrier cool, they solidify into nanoparticles. An example of a resulting nanoparticle 400 is shown in FIG. 4A. As shown, the nanoparticle comprises a portion of carrier 410, and a portion of TM catalyst 420. The ratio of size between the TM catalyst 420 and carrier 410 will generally be determined by the ratio of the starting quantities of catalyst material 312, such as TM and carrier material 314 in the step 310 of FIG. 3. To further enhance the catalytic effects of the TM, the TM is combined with a nonmetal to form a metal compound. Preferably, the combination is effectuated by injecting a co-reactant, in this example a co-reactant gas 337 into the reaction chamber 327. Preferably, the co-reactant 337 is injected as a gas post plasma. In some embodiments, the injected gas 337 is organic. Alternatively, the injected gas is an oxygen compound, a hydrogen compound, a nitrogen compound, a phosphorous compound, a sulfur compound, or a carbon containing compound. Preferably, as the particles 400 precipitate, the gas 337 dissociates into its component elements that then react with the metal portion 420 of the nanoparticle 400. Alternatively, a chemical reaction occurs between the gas to the metal portion 420 of the nanoparticle 400. As described, the gas 337 interacts with the metal portion 420 of the nanoparticles 400 after the nanoparticles have precipitated from the vapor cloud 325. Interaction between the gas 337 and the vapor cloud 325 itself is also contemplated. The gas 337 dissociates into its constituent elements which then react with the catalyst material 312 in its vapor state before precipitation. Alternatively, the gas 337 reacts with the catalyst material 312 without dissociating. It is understood the reaction of the gas 337 with the catalyst material 312 or metal portion 420 of the nanoparticle 400 is able to occur before, during, or after precipitation, or may begin before precipitation and complete after precipitation. By way of example, and not intended to be in any way limiting, if the end catalyst product desired is the metal compound tungsten carbide, the starting catalyst material 312 will be a quantity of tungsten. Along with a quantity of a carrier 314, such as alumina, the quantity of tungsten is loaded into the plasma gun 315. After vaporization, nanoparticles of tungsten will collide with nanoparticles of alumina and form the nanoparticles 400. Further down the reaction chamber 327 from the plasma gun 315, methane vapor 337 (CH4) is injected. It is important to note that the methane vapor 337 is injected into the reaction chamber 327 where the temperature is sufficient to dissociate methane into its components, carbon and hydrogen. Alternatively, the methane reacts with the tungsten. As described above, the reaction is able to occur before, during, after, or throughout the precipitation of tungsten- on-alumina nanoparticles 400. Also, to avoid combustion of the methane into carbon dioxide and water, rather than elemental carbon and hydrogen, a substantially low oxygen environment is provided for the reaction chamber 327. A low oxygen reaction chamber is described in detail in [US APPLICATION # FOR SDC 03200] and is hereby incorporated by reference. When the methane dissociates, the hydrogen atoms form hydrogen vapor. The carbon atom is known to be extremely reactive, and will carburize the tungsten forming tungsten carbide. Alternatively, a chemical reaction will react the methane to the tungsten. Referring to the example nanoparticle 400 in FIG. 4, the catalyst portion 420 is the metal compound tungsten carbide. It can be appreciated by those of ordinary skill in the art that other compound catalysts are able to be formed by the process 300. If a different metal compound, such as a metal nitride is the desired final product, the desired metal will be loaded into the plasma gun 315 and ammonia (NH3) rather than methane will be injected into the reaction chamber 327. As ammonia dissociates into its constituent elements, they will react with the desired metal to form a metal nitride. It will be apparent to those of ordinary skill that many combinations of metals and nonmetals are able to be combined in the manner described, and the two examples given are not intended in any way to limit the scope of the disclosure. As new catalysts are required for new chemical processes, the process 300 is able to be applied through a routine, although possibly time consuming engineering endeavor. The particles 400 will generally be in the range of 0.5 to 200 nm in size, and can be as small as a molecular length of the catalyst portion 420 and as large as would be achievable by ball milling. The particle size is able to be varied with varying starting materials, vaporization speeds, quench speeds and plasma temperatures.


U.S. Pat. No. 5,989,648 to Phillips discloses a method for forming nanoparticle metal catalysts on carriers. However, referring back to FIG. 3, it is important to note that nanoparticles 400 such as the one shown in FIG. 4 are not generally compatible with existing processes for chemical conversion. For compatibility with existing processes, the nanoparticles 400 are bonded to a support. To that end, more steps are taken to bring the nanoparticles 400 to a useable form. In some embodiments, the process 300 continues with step 340, where the nanoparticles 400 are combined with a liquid to form a dispersion 345. Preferably, a liquid that will not react with the TM or the carrier material is used. Some appropriate liquids are aqueous solutions or organic solutions employing solvents such as alcohols, ethers, hydrocarbons, esters, amines, or the like. Since the nanoparticles 400 are small, other precautions are generally taken to ensure that they suspend evenly within the dispersion. To that end, an adjunct 348 is able to be added to the dispersion. The adjunct 348, also referred to commonly in the art as a surfactant or dispersant, adheres to the nanoparticles 400 and causes them to repel each other, thereby causing the nanoparticles 400 to suspend evenly in the dispersion 345. The dispersion 345 is also referred to as a suspension.


To bring the nanoparticles 400 closer to a usable catalyst, the nanoparticles 400 are impregnated onto supports 355. The supports 355 are also known to those skilled in the relevant art as porous oxides. Alternatively, the supports 355 are also referred to as extrudates because they are generally made using an extrusion process. The supports 355 are similar to the supports 104b in FIGS. 1 and 2. Such supports have found utility due to their highly accessible and large surface area, as high as 250 m2/g. In alternative embodiments, a macroscopic support particle is able to be used. In such an embodiment, the size of the macroscopic support particle is selected to provide maximum surface area to which nanoparticles 400 are bonded or fixed. The step 350A shows the preferred embodiment of achieving the impregnation. The dispersion 345 is combined with a quantity of substantially dry porous supports 355A to form a mixture 359A. Alternatively, as shown in the step 350B, the dispersion 345 is combined with a slurry 358 having macroscopic support particles 355B suspended therein, thereby forming the mixture 359B. The slurry 358 is able to be a suspension of water, alcohol, or any suitable organic or inorganic liquid which will not react with the macroscopic supports 355B or nanoparticles 400. In the step 350A, capillary forces will draw in the dispersion 345, and in turn the nanoparticles 400, into the various voids and pores within the structure of the porous supports 355A, thereby forming impregnated porous supports 365A. To aid in the impregnation, the mixture can be agitated or subjected to heat or pressure. In the step 350B, nanoparticles 400 come to rest on the surfaces of macroscopic supports thereby forming impregnated macro supports 365B. In some embodiments, the steps 350A or 350B are repeated at least once for enhanced impregnation.


Next, in the steps 360A and 360B, the impregnated porous supports 365A or macro supports 365B are allowed to dry. A close up view the impregnated porous support 365A is shown in FIG. 4B. As the liquid in the dispersion 345 evaporates, the nanoparticles 400 settle onto the surface of the support 365A and into the pores 367 within the support 365A. FIG. 4C shows an example of an impregnated macro support 365B. As the liquids in the dispersion 345 and slurry 358 dry, nanoparticles 400 settle onto the surface of the macro support 365B. When the impregnated porous supports 365A or macro supports 365B dry, electrostatic interactions and other non covalent forces between the nanoparticles 400 and the porous supports 365A or macro supports 365B effectuate some adhesion. Advantageously, such forces cause the nanoparticles 400 to stick onto the surfaces and pores 367 of the supports 365A or 365B, and effectuate transfer of the supports 365 through the remainder of the process 300. Referring back to FIG. 3, a calcining step 370A or 370B is performed to form oxide-oxide bonds between the carrier portion 410 of the nanoparticles 400 and the impregnated supports 365A or 365B by exposing them to heat 372, pressure 375, or a combination thereof. The calcining temperature is generally from 350 to 1000 degrees centigrade, and the pressure is on the order of ambient atmosphere to several atmospheres. Calcining is able to occur in an inert environment or in air. For optimum oxide-oxide bonds, the carrier material 314 is chosen to correspond to the material of which the support 365A or 365B is comprised. By way of example, if the carrier material 314 is alumina, then the support 365A or 364B preferably comprises alumina, although dissimilar oxides are also contemplated. Due to the physical and chemical bond between the supports 365A and 365B and the nanoparticles 400, islands of nanoparticles that are bonded, fixed or otherwise pinned to the surfaces of the supports 365A or 365B will not migrate and coalesce during catalytic conversion. The surface area for catalysis remains high, and therefore the catalytic activity remains high. In effect, operations such as fine chemical plants and oil refineries will not be required to stop operations and swap out ineffective catalyst supports with fresh catalyst supports with the same frequency as existing processes, thereby increasing throughput at the plants and refineries and reducing their overall cost of operation.



FIG. 5 shows an example of the impregnated porous supports 365A being used in the fine chemical industry to hydrogenate benzene into cyclohexane. Macro supports 365B are able to be used as well. Although this example details use in the fine chemical industry, it will be apparent to those of ordinary skill in the arts of chemistry, chemical engineering, or the like that any process using heterogeneous catalysis is able to benefit from this disclosure. An amount of impregnated porous supports 365A is loaded into a reactor 510. Preferably, the reactor 510 has a mesh opening 515 on one end wherein the meshing has a smaller opening pitch than the size of the supports 365 such that the supports 365 do not fall through the opening 515. Benzene is passed into the vat 510 via the conduit 520. As the benzene passes through the vat 510, the benzene fills into the voids and pores of the supports 365A.



FIG. 5A shows an example of a benzene molecule 525 being hydrogenated into cyclohexane 525A in a cross section of a pore 367. When the benzene molecule 525 comes into contact with the catalyst portion 420 of the nanoparticle 400 that is bonded to the surface of the support 365A, the catalyst portion 420 of the nanoparticle 400 will effectuate hydrogenation of the benzene molecule 525 and hydrogen molecules 525B into cyclohexane 525A.

Claims
  • 1. A method of making a metal compound catalyst comprising: a. providing a quantity of nanoparticles, comprising the steps: i. loading a quantity of catalyst material in powder form and a quantity of carrier comprising an oxide into a plasma gun in a desired ratio;ii. vaporizing the quantity of catalyst material and the quantity of carrier by the plasma gun, thereby forming a vapor cloud;iii. quenching the vapor cloud received from the plasma gun, thereby forming precipitate nanoparticles; andiv. injecting a co-reactant into a substantially low oxygen environment such that the co-reactant will react with one of the vapor cloud, the precipitate nanoparticles, and any combination thereof,wherein at least some of the nanoparticles comprise a first portion comprising a catalyst material bonded to a second portion comprising a carrier, wherein the carrier comprises an oxide;b. providing a quantity of supports comprising a same oxide as in the carrier loaded in the plasma gun;c. combining the supports with the nanoparticles; andd. forming a structure having the catalyst material bonded with the carrier, wherein the carrier is bonded with the support through an oxide-oxide bond.
  • 2. The method of claim 1 wherein the supports comprise pores and voids.
  • 3. The method of claim 1 wherein the quantity of catalyst material comprises at least one metal, at least one metal alloy, or any combination thereof.
  • 4. The method of claim 1 wherein the quantity of catalyst material comprises nitrogen, carbon, phosphorous, hydrogen, oxygen, sulphur, or any combination thereof.
  • 5. The method of claim 1 wherein the co-reactant comprises a carbon compound, a nitrogen compound, a phosphorus compound, an oxygen compound, a hydrogen compound, a sulfur compound, or any combination thereof.
  • 6. The method of claim 1 wherein the carrier loaded into the plasma gun comprises silica, alumina, yttria, zirconia, titania, ceria, baria, or any combination thereof.
  • 7. The method of claim 1 wherein combining the supports with the nanoparticles comprises: a. suspending the nanoparticles in a solution, thereby forming a suspension; andb. mixing the suspension with the quantity of supports.
  • 8. The method of claim 1 wherein combining the supports with the nanoparticles comprises: a. suspending the nanoparticles in a solution, thereby forming a suspension; andb. mixing the suspension with a slurry having supports suspended therein.
  • 9. The method of claim 8 wherein the slurry comprises an organic solvent, an aqueous solvent, or a combination thereof.
  • 10. The method of claim 1 further comprising drying the supports.
  • 11. The method of claim 1 further comprising exposing the supports to any one of heat, pressure or a combination thereof, thereby calcining the nanoparticles onto the supports.
  • 12. A supported catalyst, comprising: a. a support structure comprising an oxide; andb. a nanoparticle, wherein the nanoparticle has been quenched from a vapor cloud induced by a plasma gun from a catalyst material and a carrier material comprising a same oxide as in the support structure in powder form and reacted with a co-reactant in a substantially low oxygen environment, the nanoparticle comprising a catalyst portion and a carrier portion, the carrier portion being bonded through an oxide-oxide bond-to the support structure.
  • 13. The supported catalyst of claim 12 wherein the catalyst portion comprises a metal, a metal compound, a metal alloy, or any combination thereof.
  • 14. The supported catalyst of claim 12 wherein the carrier portion comprises silica, alumina, yttria, zirconia, titania, ceria, baria, or any combination thereof.
  • 15. The method of claim 7 wherein the supports are dry porous supports.
  • 16. The method of claim 8 wherein the supports are macroscopic support particles.
  • 17. A method of making a supported metal compound catalyst comprising: a. providing a quantity of nanoparticles for combining with a quantity of supports, comprising the steps: i. loading a quantity of catalyst material in powder form into a plasma gun and loading a quantity of a carrier comprising an oxide into the plasma gun in a desired ratio, wherein the catalyst comprises a metal;ii. vaporizing the quantity of catalyst material and vaporizing the quantity of carrier using the plasma gun, thereby forming a vapor cloud;iii. receiving the vapor cloud from the plasma gun by a quench chamber;iv. quenching the vapor cloud received from the plasma gun, thereby forming a quantity of precipitate nanoparticles;v. injecting a co-reactant into a substantially low oxygen environment such that the co-reactant will react with one of the vapor cloud, the precipitate nanoparticles, and any combination thereof;wherein at least some of the nanoparticles comprise a first portion comprising a catalyst material bonded to a second portion comprising a carrier; andb. impregnating the at least some of the nanoparticles into a quantity of dry porous supports comprising a porous oxide, wherein the porous oxide comprises a same oxide as the carrier loaded in the plasma gun, comprising the steps: i. combining the at least some of the nanoparticles with a liquid dispersant to form a dispersion;ii. combining the dispersion with the quantity of dry porous supports to create a mixture;iii. subjecting the mixture to one of agitating, heating, and applying pressure;iv. allowing the mixture to dry, thereby creating impregnated supports;v. calcining the impregnated supports by exposing them to one of heat and pressure;thereby making a supported metal compound catalyst having a structure in which the support is bonded with the carrier through an oxide-oxide bond and the carrier is bonded with the catalyst material.
  • 18. A method of making a supported metal compound catalyst comprising: a. providing a quantity of nanoparticles for combining with a quantity of supports, comprising the steps: i. loading a quantity of catalyst material comprising a metal into a plasma gun and loading a quantity of a carrier comprising an oxide in powder form into the plasma gun in a desired ratio, wherein the carrier comprises an oxide;ii. vaporizing the quantity of catalyst material and vaporizing the quantity of carrier using the plasma gun, thereby forming a vapor cloud;iii. receiving the vapor cloud from the plasma gun by a quench chamber;iv. quenching the vapor cloud received from the plasma gun, thereby forming a quantity of precipitate nanoparticles;v. injecting a co-reactant into a substantially low oxygen environment such that the co-reactant will react with one of the vapor cloud, the precipitate nanoparticles, and any combination thereof;wherein at least some of the nanoparticles comprise a first portion comprising a catalyst material bonded to a second portion comprising a carrier; andb. impregnating the at least some of the nanoparticles into a quantity of macroscopic support particles comprising a same oxide as in the carrier loaded in the plasma gun, comprising the steps: i. combining the at least some of the nanoparticles with a liquid dispersant to form a dispersion;ii. combining a quantity of macroscopic support particles with a selected liquid to create a slurry, wherein the selected liquid comprises one of water, alcohol, organic liquid, and inorganic liquid, and wherein the selected liquid does not react with the macroscopic supports and does not react with the at least some of the nanoparticles;iii. combining the dispersion with the slurry to create a mixture;iv. subjecting the mixture to one of agitating, heating, and applying pressure;v. allowing the mixture to dry, thereby creating impregnated supports;vi. calcining the impregnated supports by exposing them to one of heat and pressure;thereby making a supported metal compound catalyst in which the support is bonded with the carrier through an oxide-oxide bond and the carrier is bonded with the catalyst material.
  • 19. The method of claim 1, wherein the nanoparticles are bonded to the supports.
RELATED APPLICATION(S)

This patent application claims priority under 35 U.S.C. §119(e) of the co-pending U.S. Provisional Patent Application Ser. No. 60/999,057, filed Oct. 15, 2007, and entitled “Nano Particle Catalysts” which is hereby incorporated by reference in its entirety.

US Referenced Citations (322)
Number Name Date Kind
2284554 Beyerstedt May 1942 A
2419042 Todd Apr 1947 A
2519531 Worn Aug 1950 A
2562753 Trost Jul 1951 A
2689780 Rice Sep 1954 A
3001402 Koblin Sep 1961 A
3067025 Chisholm Dec 1962 A
3145287 Siebein et al. Aug 1964 A
3178121 Wallace, Jr. Apr 1965 A
3179782 Matvay Apr 1965 A
3313908 Unger et al. Apr 1967 A
3401465 Larwill Sep 1968 A
3450926 Kiernan Jun 1969 A
3457788 Miyajima Jul 1969 A
3537513 Austin Nov 1970 A
3741001 Fletcher et al. Jun 1973 A
3752172 Cohen et al. Aug 1973 A
3774442 Gustavsson Nov 1973 A
3830756 Sanchez et al. Aug 1974 A
3871448 Vann et al. Mar 1975 A
3892882 Guest et al. Jul 1975 A
3914573 Muehlberger Oct 1975 A
3959420 Geddes et al. May 1976 A
3969482 Teller Jul 1976 A
4008620 Narato et al. Feb 1977 A
4018388 Andrews Apr 1977 A
4139497 Castor et al. Feb 1979 A
4157316 Thompson et al. Jun 1979 A
4171288 Keith et al. Oct 1979 A
4174298 Antos Nov 1979 A
4227928 Wang Oct 1980 A
4248387 Andrews Feb 1981 A
4253917 Wang Mar 1981 A
4284609 deVries Aug 1981 A
4369167 Weir Jan 1983 A
4388274 Rourke et al. Jun 1983 A
4431750 McGinnis et al. Feb 1984 A
4436075 Campbell et al. Mar 1984 A
4458138 Adrian et al. Jul 1984 A
4459327 Wang Jul 1984 A
4505945 Dubust et al. Mar 1985 A
4513149 Gray et al. Apr 1985 A
4731517 Cheney Mar 1988 A
4764283 Ashbrook et al. Aug 1988 A
4765805 Wahl et al. Aug 1988 A
4824624 Palicka et al. Apr 1989 A
4855505 Koll Aug 1989 A
4866240 Webber Sep 1989 A
4885038 Anderson et al. Dec 1989 A
4983555 Roy et al. Jan 1991 A
4987033 Abkowitz et al. Jan 1991 A
5015863 Takeshima et al. May 1991 A
5041713 Weidman Aug 1991 A
5043548 Whitney et al. Aug 1991 A
5070064 Hsu et al. Dec 1991 A
5073193 Chaklader et al. Dec 1991 A
5157007 Domesle et al. Oct 1992 A
5230844 Macaire et al. Jul 1993 A
5338716 Triplett et al. Aug 1994 A
5369241 Taylor et al. Nov 1994 A
5371049 Moffett et al. Dec 1994 A
5372629 Anderson et al. Dec 1994 A
5392797 Welch Feb 1995 A
5439865 Abe et al. Aug 1995 A
5442153 Marantz et al. Aug 1995 A
5460701 Parker et al. Oct 1995 A
5464458 Yamamoto Nov 1995 A
5485941 Guyomard et al. Jan 1996 A
5534149 Birkenbeil et al. Jul 1996 A
5553507 Basch et al. Sep 1996 A
5562966 Clarke et al. Oct 1996 A
5582807 Liao et al. Dec 1996 A
5611896 Swanepoel et al. Mar 1997 A
5630322 Heilmann et al. May 1997 A
5652304 Mizrahi Jul 1997 A
5726414 Kitahashi et al. Mar 1998 A
5749938 Coombs May 1998 A
5776359 Schultz et al. Jul 1998 A
5788738 Pirzada et al. Aug 1998 A
5811187 Anderson et al. Sep 1998 A
5837959 Muehlberger et al. Nov 1998 A
5851507 Pirzada et al. Dec 1998 A
5853815 Muehlberger Dec 1998 A
5905000 Yadav et al. May 1999 A
5935293 Detering et al. Aug 1999 A
5989648 Phillips Nov 1999 A
5993967 Brotzman, Jr. et al. Nov 1999 A
5993988 Ohara et al. Nov 1999 A
6012647 Ruta et al. Jan 2000 A
6033781 Brotzman, Jr. et al. Mar 2000 A
6045765 Nakatsuji et al. Apr 2000 A
6059853 Coombs May 2000 A
6102106 Manning et al. Aug 2000 A
6117376 Merkel Sep 2000 A
6213049 Yang Apr 2001 B1
6214195 Yadav et al. Apr 2001 B1
6228904 Yadav et al. May 2001 B1
6254940 Pratsinis et al. Jul 2001 B1
6261484 Phillips et al. Jul 2001 B1
6267864 Yadav et al. Jul 2001 B1
6322756 Arno et al. Nov 2001 B1
6342465 Klein et al. Jan 2002 B1
6344271 Yadav et al. Feb 2002 B1
6379419 Celik et al. Apr 2002 B1
6387560 Yadav et al. May 2002 B1
6395214 Kear et al. May 2002 B1
6398843 Tarrant Jun 2002 B1
6409851 Sethuram et al. Jun 2002 B1
6413781 Geis et al. Jul 2002 B1
6416818 Aikens et al. Jul 2002 B1
RE37853 Detering et al. Sep 2002 E
6444009 Liu et al. Sep 2002 B1
6475951 Domesle et al. Nov 2002 B1
6517800 Cheng et al. Feb 2003 B1
6524662 Jang et al. Feb 2003 B2
6531704 Yadav et al. Mar 2003 B2
6548445 Buysch et al. Apr 2003 B1
6554609 Yadav et al. Apr 2003 B2
6562304 Mizrahi May 2003 B1
6562495 Yadav et al. May 2003 B2
6569397 Yadav et al. May 2003 B1
6569518 Yadav et al. May 2003 B2
6572672 Yadav et al. Jun 2003 B2
6579446 Teran et al. Jun 2003 B1
6596187 Coll et al. Jul 2003 B2
6603038 Hagemeyer et al. Aug 2003 B1
6607821 Yadav et al. Aug 2003 B2
6610355 Yadav et al. Aug 2003 B2
6623559 Huang Sep 2003 B2
6635357 Moxson et al. Oct 2003 B2
6641775 Vigliotti et al. Nov 2003 B2
6652822 Phillips et al. Nov 2003 B2
6652967 Yadav et al. Nov 2003 B2
6669823 Sarkas et al. Dec 2003 B1
6682002 Kyotani Jan 2004 B2
6689192 Phillips et al. Feb 2004 B1
6699398 Kim Mar 2004 B1
6706097 Zornes Mar 2004 B2
6706660 Park Mar 2004 B2
6710207 Bogan, Jr. et al. Mar 2004 B2
6713176 Yadav et al. Mar 2004 B2
6716525 Yadav et al. Apr 2004 B1
6746791 Yadav et al. Jun 2004 B2
6772584 Chun et al. Aug 2004 B2
6786950 Yadav et al. Sep 2004 B2
6813931 Yadav et al. Nov 2004 B2
6817388 Tsangaris et al. Nov 2004 B2
6832735 Yadav et al. Dec 2004 B2
6838072 Kong et al. Jan 2005 B1
6855410 Buckley Feb 2005 B2
6855426 Yadav Feb 2005 B2
6855749 Yadav et al. Feb 2005 B1
6886545 Holm May 2005 B1
6896958 Cayton et al. May 2005 B1
6902699 Fritzemeier et al. Jun 2005 B2
6916872 Yadav et al. Jul 2005 B2
6919527 Boulos et al. Jul 2005 B2
6933331 Yadav et al. Aug 2005 B2
6972115 Ballard Dec 2005 B1
6986877 Takikawa et al. Jan 2006 B2
6994837 Boulos et al. Feb 2006 B2
7007872 Yadav et al. Mar 2006 B2
7022305 Drumm et al. Apr 2006 B2
7052777 Brotzman, Jr. et al. May 2006 B2
7073559 O'Larey et al. Jul 2006 B2
7081267 Yadav Jul 2006 B2
7101819 Rosenflanz et al. Sep 2006 B2
7147544 Rosenflanz Dec 2006 B2
7147894 Zhou et al. Dec 2006 B2
7166198 Van Der Walt et al. Jan 2007 B2
7166663 Cayton et al. Jan 2007 B2
7172649 Conrad et al. Feb 2007 B2
7172790 Koulik et al. Feb 2007 B2
7178747 Yadav et al. Feb 2007 B2
7208126 Musick et al. Apr 2007 B2
7211236 Stark et al. May 2007 B2
7217407 Zhang May 2007 B2
7220398 Sutorik et al. May 2007 B2
7307195 Polverejan et al. Dec 2007 B2
7323655 Kim Jan 2008 B2
7384447 Kodas et al. Jun 2008 B2
7417008 Richards et al. Aug 2008 B2
7494527 Jurewicz et al. Feb 2009 B2
7541012 Yeung et al. Jun 2009 B2
7541310 Espinoza et al. Jun 2009 B2
7572315 Boulos et al. Aug 2009 B2
7611686 Alekseeva et al. Nov 2009 B2
7615097 McKechnie et al. Nov 2009 B2
7618919 Shimazu et al. Nov 2009 B2
7622693 Foret Nov 2009 B2
7678419 Kevwitch et al. Mar 2010 B2
7803210 Sekine et al. Sep 2010 B2
7874239 Howland Jan 2011 B2
7897127 Layman et al. Mar 2011 B2
7905942 Layman Mar 2011 B1
8051724 Layman et al. Nov 2011 B1
8076258 Biberger Dec 2011 B1
8142619 Layman et al. Mar 2012 B2
20010042802 Youds Nov 2001 A1
20020018815 Sievers et al. Feb 2002 A1
20020068026 Murrell et al. Jun 2002 A1
20020079620 DuBuis et al. Jun 2002 A1
20020100751 Carr Aug 2002 A1
20020102674 Anderson Aug 2002 A1
20020131914 Sung Sep 2002 A1
20020143417 Ito et al. Oct 2002 A1
20020182735 Kibby et al. Dec 2002 A1
20020183191 Faber et al. Dec 2002 A1
20020192129 Shamouilian et al. Dec 2002 A1
20030036786 Duren et al. Feb 2003 A1
20030042232 Shimazu Mar 2003 A1
20030066800 Saim et al. Apr 2003 A1
20030072677 Kafesjian et al. Apr 2003 A1
20030108459 Wu et al. Jun 2003 A1
20030110931 Aghajanian et al. Jun 2003 A1
20030139288 Cai et al. Jul 2003 A1
20030143153 Boulos et al. Jul 2003 A1
20030172772 Sethuram et al. Sep 2003 A1
20030223546 McGregor et al. Dec 2003 A1
20040009118 Phillips et al. Jan 2004 A1
20040023302 Archibald et al. Feb 2004 A1
20040023453 Xu et al. Feb 2004 A1
20040064964 Lee Apr 2004 A1
20040077494 LaBarge et al. Apr 2004 A1
20040103751 Joseph et al. Jun 2004 A1
20040119064 Narayan et al. Jun 2004 A1
20040127586 Jin et al. Jul 2004 A1
20040167009 Kuntz et al. Aug 2004 A1
20040176246 Shirk et al. Sep 2004 A1
20040208805 Fincke et al. Oct 2004 A1
20040213998 Hearley et al. Oct 2004 A1
20040238345 Koulik et al. Dec 2004 A1
20040251017 Pillion et al. Dec 2004 A1
20040251241 Blutke et al. Dec 2004 A1
20050000321 O'Larey et al. Jan 2005 A1
20050000950 Schroder et al. Jan 2005 A1
20050066805 Park et al. Mar 2005 A1
20050077034 King Apr 2005 A1
20050097988 Kodas et al. May 2005 A1
20050106865 Chung et al. May 2005 A1
20050163673 Johnson et al. Jul 2005 A1
20050199739 Kuroda et al. Sep 2005 A1
20050220695 Abatzoglou et al. Oct 2005 A1
20050227864 Sutorik et al. Oct 2005 A1
20050233380 Pesiri et al. Oct 2005 A1
20050240069 Polverejan et al. Oct 2005 A1
20050258766 Kim Nov 2005 A1
20050275143 Toth Dec 2005 A1
20060051505 Kortshagen et al. Mar 2006 A1
20060068989 Ninomiya et al. Mar 2006 A1
20060094595 Labarge May 2006 A1
20060096393 Pesiri May 2006 A1
20060105910 Zhou et al. May 2006 A1
20060108332 Belashchenko May 2006 A1
20060153728 Schoenung et al. Jul 2006 A1
20060153765 Pham-Huu et al. Jul 2006 A1
20060159596 De La Veaux et al. Jul 2006 A1
20060166809 Malek et al. Jul 2006 A1
20060222780 Gurevich et al. Oct 2006 A1
20060231525 Asakawa et al. Oct 2006 A1
20070048206 Hung et al. Mar 2007 A1
20070049484 Kear et al. Mar 2007 A1
20070063364 Hsiao et al. Mar 2007 A1
20070084308 Nakamura et al. Apr 2007 A1
20070084834 Hanus et al. Apr 2007 A1
20070087934 Martens et al. Apr 2007 A1
20070163385 Takahashi et al. Jul 2007 A1
20070173403 Koike et al. Jul 2007 A1
20070178673 Gole et al. Aug 2007 A1
20070253874 Foret Nov 2007 A1
20070292321 Plischke et al. Dec 2007 A1
20080006954 Yubuta et al. Jan 2008 A1
20080031806 Gavenonis et al. Feb 2008 A1
20080038578 Li Feb 2008 A1
20080064769 Sato et al. Mar 2008 A1
20080105083 Nakamura et al. May 2008 A1
20080116178 Weidman May 2008 A1
20080125308 Fujdala et al. May 2008 A1
20080138651 Doi et al. Jun 2008 A1
20080175936 Tokita et al. Jul 2008 A1
20080206562 Stucky et al. Aug 2008 A1
20080207858 Kowaleski et al. Aug 2008 A1
20080274344 Vieth et al. Nov 2008 A1
20080277092 Layman et al. Nov 2008 A1
20080277264 Biberger et al. Nov 2008 A1
20080277266 Layman Nov 2008 A1
20080277267 Biberger et al. Nov 2008 A1
20080277268 Layman Nov 2008 A1
20080277269 Layman et al. Nov 2008 A1
20080277270 Biberger et al. Nov 2008 A1
20080277271 Layman Nov 2008 A1
20080280049 Kevwitch et al. Nov 2008 A1
20080280751 Harutyunyan et al. Nov 2008 A1
20080280756 Layman Nov 2008 A1
20090010801 Murphy et al. Jan 2009 A1
20090054230 Veeraraghavan et al. Feb 2009 A1
20090088585 Schammel et al. Apr 2009 A1
20090114568 Trevino et al. May 2009 A1
20090162991 Beneyton et al. Jun 2009 A1
20090168506 Han et al. Jul 2009 A1
20090170242 Lin et al. Jul 2009 A1
20090181474 Nagai Jul 2009 A1
20090200180 Capote et al. Aug 2009 A1
20090253037 Park et al. Oct 2009 A1
20090274903 Addiego Nov 2009 A1
20090286899 Hofmann et al. Nov 2009 A1
20100089002 Merkel Apr 2010 A1
20100275781 Tsangaris Nov 2010 A1
20110006463 Layman Jan 2011 A1
20110143041 Layman et al. Jun 2011 A1
20110143915 Yin et al. Jun 2011 A1
20110143916 Leamon Jun 2011 A1
20110143926 Leamon Jun 2011 A1
20110143930 Yin et al. Jun 2011 A1
20110143933 Yin et al. Jun 2011 A1
20110144382 Yin et al. Jun 2011 A1
20110152550 Grey et al. Jun 2011 A1
20110158871 Arnold et al. Jun 2011 A1
20110174604 Duesel et al. Jul 2011 A1
20110247336 Farsad et al. Oct 2011 A9
20120045373 Biberger Feb 2012 A1
20120171098 Hung et al. Jul 2012 A1
Foreign Referenced Citations (29)
Number Date Country
56-146804 Nov 1981 JP
61-086815 May 1986 JP
63-214342 Sep 1988 JP
05-228361 Sep 1993 JP
05-324094 Dec 1993 JP
H6-065772 Sep 1994 JP
7031873 Feb 1995 JP
07-256116 Oct 1995 JP
11-502760 Mar 1999 JP
2000-220978 Aug 2000 JP
2004-233007 Aug 2004 JP
2004-249206 Sep 2004 JP
2004-290730 Oct 2004 JP
2005-503250 Feb 2005 JP
2005-122621 May 2005 JP
2005-218937 Aug 2005 JP
2005-342615 Dec 2005 JP
2006-001779 Jan 2006 JP
2006-508885 Mar 2006 JP
2006-247446 Sep 2006 JP
2006-260385 Sep 2006 JP
493241 Mar 1976 SU
201023207 Jun 2010 TW
WO-9628577 Sep 1996 WO
WO 02092503 Nov 2002 WO
2004052778 Jun 2004 WO
WO 2006079213 Aug 2006 WO
WO-2008130451 Oct 2008 WO
WO-2008130451 Oct 2008 WO
Non-Patent Literature Citations (81)
Entry
Kenvin et al., Journal of Catalysis, v. 135, p. 81-91, May 1992.
J. Heberlein, “New Approaches in Thermal Plasma Technology”, Pure Appl. Chem., vol. 74, No. 3, 2002, pp. 327-335.
T. Yoshida, “The Future of Thermal Plasma Processing for Coating”, Pure & Appl. Chem., vol. 66, No. 6, 1994 pp. 1223-1230.
A. Gutsch et al., “Gas-Phase Production of Nanoparticles”, Kona No. 20, 2002, pp. 24-37.
Dr. Heike Mühlenweg et al., “Gas-Phase Reactions—Open Up New Roads to Nanoproducts”, Degussa ScienceNewsletter No. 08, 2004, pp. 12-16.
Coating Generation: Vaporization of Particles in Plasma Spraying and Splat Formation, M. Vardelle, A. Vardelle, K-I Ii, P. Fauchais, Universite de Limoges, 123 Avenue A. Thomas 87000, Limoges, F. , Pure & Chem, vol. 68, No. 5, pp. 1093-1099, 1996.
H. Konrad et al., “Nanostructured Cu—Bi Alloys Prepared by Co-Evaporation in a Continuous Gas Flow,” NanoStructured Materials, vol. 7, No. 6, Apr. 1996, pp. 605-610.
M.Vardelle et al., “Experimental Investigation of Powder Vaporization in Thermal Plasma Jets,” Plasma Chemistry and Plasma Processing, vol. 11, No. 2, Jun. 1991, pp. 185-201.
P. Fauchais et al., “Plasma Spray: Study of the Coating Generation,” Ceramics International, Elsevier, Amsterdam, NL, vol. 22, No. 4, Jan. 1996, pp. 295-303.
P. Fauchais et al., “Les Dépô^ts Par Plasma Thermique,” Revue Generale De L'Electricitie, RGE. Paris, FR, No. 2, Jan. 1993, pp. 7-12.
P. Fauchais et al, “La Projection Par Plasma: Une Revue,” Annales De Physique, vol. 14, No. 3, Jun. 1989, pp. 261-310.
National Aeronautics and Space Administration, “Enthalpy”, http://www.grc.nasa.gov/WWW/K-12/airplane/enthalpy.html, Nov. 23, 2009, 1 page.
Hanet al., Deformation Mechanisms and Ductility of Nanostructured Al Alloys, Mat. Res. Soc. Symp. Proc. vol. 821, Jan. 2004, Material Research Society, http://www.mrs.org/s—mrs/bin.asp?CID=2670&DOC=FILE.PDF., 6 pages.
United States Patent and Trademark Office, Office Action, mailed Jan. 7, 2010, U.S. Appl. No. 12/001,643, filed Dec. 11, 2007, First Named Inventor: Maximilian A. Biberger, 8 pages.
United States Patent and Trademark Office, Office Action, mailed Feb. 18, 2010, U.S. Appl. No. 12/001,644, filed Dec. 11, 2007, First Named Inventor: Maximilian A. Biberger, 7 pages.
United States Patent and Trademark Office, Office Action, mailed Feb. 19, 2010, U.S. Appl. No. 12/152,109, filed May 9, 2008, First Named Inventor: Maximilian A. Biberger, 17 pages.
United States Patent and Trademark Office, Advisory Action, Mailed Mar. 4, 2010, U.S. Appl. No. 12/001,643, filed Dec. 11, 2007, First Named Inventor: Maximilian A. Biberger, pp. 9.
Untied States Patent and Trademark Office, Office Action, Mailed: Feb. 26, 2010, U.S. Appl. No. 12/474,081, filed May 28, 2009, First Named Inventor: Maximilian A. Biberger, 7 pages.
Untied States Patent and Trademark Office, Advisory Action, Mailed: May 4, 2010, U.S. Appl. No. 12/474,081, filed May 28, 2009, First Named Inventor: Maximilian A. Biberger, 4 pages.
Untied States Patent and Trademark Office, Office Action, Mailed Jun. 16, 2010, U.S. Appl. No. 12/001,643, filed Dec. 11, 2007, First Named Inventor: Maximilian A. Biberger, 8 pages.
Untied States Patent and Trademark Office, Office Action, Mailed Jun. 30, 2010, U.S. Appl. No. 12/001,644, filed Dec. 11, 2007, First Named Inventor: Maximilian A. Biberger, 8 pages.
Untied States Patent and Trademark Office, Office Action, Mailed Jun. 23, 2010, U.S. Appl. No. 12/474,081, filed May 28, 2009, First Named Inventor: Maximilian A. Biberger, 11 pages.
Derwent English Abstract for Publication No. SU 193241 A, Application No. 1973SU1943286 filed on Jul. 2, 1973, published on Mar. 1, 1976, entitled“Catalyst for Ammonia Synthesis Contains Oxides of Aluminium, Potassium, Calcium, Iron and Nickel Oxide for Increased Activity,” 3 pgs.
Nagai, Yasutaka, et al., “Sintering Inhibition Mechanism of Platinum Supported on Ceria-based Oxide and Pt-oxide-support Interaction,” Journal of Catalysis 242 (2006), pp. 103-109, Jul. 3, 2006, Elsevier.
United States Patent and Trademark Office, Office Action mailed. Dec. 8, 2010, for U.S. Appl. No. 12/474,081, pp. 1-13.
Advisory action dated Sep. 23, 2011, U.S. Appl. No. 12/001,643, filed Dec. 11, 2007, Applicant: Maximilian A. Biberger, 8 pages.
United States Patent and Trademark Office, Office Action mailed Jun. 21, 2011, for U.S. Appl. No. 12/001,644, 12 pgs.
United States Patent and Trademark Office, Office Action mailed Jun. 22, 2011, for U.S. Appl. No. 12/001,643, 13 pgs.
Bateman, James E. et al., “Alkylation of Porous Silicon by Direct Reaction with Alkenes and Alkynes,” Angew. Chem Int. Ed., Dec. 17, 1998, 37, No. 19, pp. 2683-2685.
Langner, Alexander et al., “Controlled Silicon Surface Functionalization by Alkene Hydrosilylation,” J. Am. Chem. Soc., Aug. 25, 2005, 127, pp. 12798-12799.
Liu, Shu-Man et al., “Enhanced Photoluminescence from Si Nano-organosols by Functionalization with Alkenes and Their Size Evolution,” Chem. Mater., Jan. 13, 2006, 18, pp. 637-642.
Fojtik, Anton, “Surface Chemistry of Luminescent Colloidal Silicon Nanoparticles,” J. Phys. Chem. B., Jan. 13, 2006, pp. 1994-1998.
Li, Dejin et al., “Environmentally Responsive “Hairy” Nanoparticles: Mixed Homopolymer Brushes on Silica Nanoparticles Synthesized by Living Radical Polymerization Techniques,” J.Am. Chem. Soc., Apr. 9, 2005, 127,pp. 6248-6256.
Neiner, Doinita, “Low-Temperature Solution Route to Macroscopic Amounts of Hydrogen Terminated Silicon Nanoparticles,” J. Am. Chem. Soc., Aug. 5, 2006, 128, pp. 11016-11017.
Fojtik, Anton et al., “Luminescent Colloidal Silicon Particles,” Chemical Physics Letters 221, Apr. 29, 1994, pp. 363-367.
Netzer, Lucy et al., “A New Approach to Construction of Artificial Monolayer Assemblies,” J. Am. Chem. Soc., 1983, 105, pp. 674-676.
Chen, H.-S. et al., “On the Photoluminescence of Si Nanoparticles,” Mater. Phys. Mech. 4, Jul. 3, 2001, pp. 62-66.
Kwon, Young-Soon et al., “Passivation Process for Superfine Aluminum Powders Obtained by Electrical Explosion of Wires,” Applied Surface Science 211, Apr. 30, 2003, pp. 57-67.
Liao, Ying-Chih et al., “Self-Assembly of Organic Monolayers on Aerosolized Silicon Nanoparticles,” J.Am. Chem. Soc., Jun. 27, 2006, 128, pp. 9061-9065.
Zou, Jing et al., “Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles,” Nano Letters, Jun. 4, 2004, vol. 4, No. 7, pp. 1181-1186.
Tao, Yu-Tai, “Structural Comparison of Self-Assembled Monolayers of n-Alkanoic Acids on the surfaces of Silver, Copper, and Aluminum,” J. Am. Chem. Soc., May 1993, 115, pp. 4350-4358.
Sailor, Michael et al., “Surface Chemistry of Luminescent Silicon Nanocrystallites,” Adv. Mater, 1997, 9, No. 10, pp. 783-793.
Li, Xuegeng et al., “Surface Functionalization of Silicon Nanoparticles Produced by Laser-Driven Pyrolysis of Silane Followed by HF-HNO3 Etching,” Langmuir, May 25, 2004, pp. 4720-4727.
Carrot, Geraldine et al., “Surface-Initiated Ring-Opening Polymerization: A Versatile Method for Nanoparticle Ordering,” Macromolecules, Sep. 17, 2002, 35, pp. 8400-8404.
Jouet, R. Jason et al., “Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids,” Chem. Mater., Jan. 25, 2005, 17, pp. 2987-2996.
Yoshida, Toyonobu, “The Future of Thermal Plasma Processing for Coating,” Pure & Appl. Chem., vol. 66, No. 6, 1994, pp. 1223-1230.
Kim, Namyong Y. et al., “Thermal Derivatization of Porous Silicon with Alcohols,” J. Am. Chem. Soc., Mar. 5, 1997, 119, pp. 2297-2298.
Hua, Fengjun et al., “Organically Capped Silicon Nanoparticles with Blue Photoluminescence Prepared by Hydrosilylation Followed by Oxidation,” Langmuir, Mar. 2006, pp. 4363-4370.
Stiles, A.B., Catalyst Supports and Supported Catalysts, Manufacture of Carbon-Supported Metal Catalysts, pp. 125-132, published Jan. 1, 1987, Butterworth Publishers, 80 Montvale Ave., Stoneham, MA 02180.
United States Patent and Trademark Office, Advisory Action mailed Jul. 21, 2011, for U.S. Appl. No. 12/474,081, 3 pgs.
“Platinum Group Metals: Annual Review 1996” (Oct. 1997). Engineering and Mining Journal, p. 63.
U.S. Appl. No. 13/291,983, filed Nov. 8, 2011, for Layman et al.
U.S. Appl. No. 12/152,084, filed May 9, 2008, for Biberger.
U.S. Appl. No. 13/028,693, filed Feb. 16, 2011, for Biberger.
U.S. Appl. No. 12/943,909, filed Nov. 10, 2010, for Layman.
U.S. Appl. No. 12/152,111, filed May 9, 2008, for Biberger et al.
U.S. Appl. No. 12/151,830, filed May 8, 2008, for Biberger et al.
U.S. Appl. No. 12/968,248, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,245, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,241, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,239, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/969,128, filed Dec. 15, 2010, for Biberger.
U.S. Appl. No. 12/962,463, filed Dec. 7, 2010, for Leamon.
U.S. Appl. No. 12/961,030, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/961,108, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/961,200, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/968,253, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,235, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/969,306, filed Dec. 15, 2010, for Lehman et al.
U.S. Appl. No. 12/969,447, filed Dec. 15, 2010, for Biberger et al.
U.S. Appl. No. 12/969,087, filed Dec. 15, 2010, for Biberger.
U.S. Appl. No. 12/962,533, filed Dec. 7, 2010, for Yin et al.
U.S. Appl. No. 12/962,523, filed Dec. 7, 2010, for Yin et al.
U.S. Appl. No. 12/001,643, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/474,081, filed May 28, 2009, for Biberger et al.
U.S. Appl. No. 12/001,644, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/969,457, filed Nov. 15, 2010, for Leamon et al.
U.S. Appl. No. 12/969,503, filed Nov. 15, 2010, for Leamon et al.
U.S. Appl. No. 12/954,813, filed Nov. 26, 2010, for Biberger.
U.S. Appl. No. 12/954,822, filed Nov. 26, 2010, for Biberger.
U.S. Appl. No. 13/033,514, filed Feb. 23, 2011, for Biberger et al.
Provisional Applications (1)
Number Date Country
60999057 Oct 2007 US