This application is a national stage entry of PCT/NL2018/050340, filed Nov. 29, 2018, which claims priority to: Netherlands Application No. 2018969, filed May 23, 2017, the entire contents of all of which are herein incorporated by reference in their entireties.
The invention relates to a method for forming structures in fluid, especially under water. The invention further relates to structures formed in fluid, especially under water.
Under water structures are known in the art for use in fresh or salt water, made from flowable, setting material, such as concrete or other cement based materials. The setting of the material provides for a lasting shape of the structure, whereas the flowing capacity prior to setting provides for the possibility of shaping the structure, for example in a mould.
It is known in the art to form structures or components thereof on shore in a mould, allow it to set and then transport the structures or parts thereof to a location for sue of the structure. There the structure is lowered in to a body of water and placed on the bottom of said body of water, for example a river, lake, sea or ocean. If parts of the structure are formed first, they may be assembled before and/or after lowering them into the water. The structure as formed is made to sink to the bottom and rest thereupon at least be force of gravity and of the weight of the water on top of it.
It is furthermore known to form a structure on the bottom of a body of water from a flowable, setting material, by providing a cast positioned on the bottom, connecting a filling hose to it and allowing the flowing material to flow into the cast. To this end the flowing material has to be insoluble in the water and have to drive any water from the cast while being inserted. The flowing material will pour into the cast at least by gravity, pushing the water out. After cast and setting of the structure the cast may be removed again.
U.S. Pat. No. 4,583,882 discloses a method and apparatus for under water forming of structures, in which a gelled mass is used which has a density high enough to ensure the structure to sink to and rest on the water bottom.
It is an aim of the present disclosure to provide for an alternative method for forming structures from flowable, setting material. An aim of the present disclosure is to provide for a method for forming structures in a liquid, such as for example under water. An aim of the present disclosure is to provide for a method for forming relatively light weight structures. An aim of the present disclosure is to provide for a method for forming structures from a flowable, setting material, which provides for a relatively high degree of freedom for shaping such structure. An aim of the present disclosure is to provide structures or parts thereof manufactured in a liquid such as under water.
In an aspect a method according to the disclosure comprises forming a structure in a liquid, such as under water, using a flowing, settable material, wherein the material used has a density which is substantially equal to the density of the liquid in which the structure is formed.
In embodiments the material can be injected directly into the liquid, such as water at a desired level at which the structure is to be formed. Since the density of the material is substantially the same as the density of the surrounding liquid, it will neither sink nor rise in the water to any relevant extent. In embodiments of a method of the present disclosure the material can be injected directly into the liquid at a desired level at which the structure is to be formed, free forming said structure in the liquid.
In embodiments according to the present disclosure the structure can be formed using a casing or cast. Preferably a casing used in such method is flexible and/or pliable and/or a light weight casing.
A casing for use in a method of the disclosure can for example be an inflatable.
In embodiments of the disclosure a material can be used comprising non-compressible particles. In embodiments such particles can be made using glass, wherein the particles are preferably glass spheres.
In embodiments a structure can be made according to the present disclosure, in a liquid such as under water, where after the structure stays in the liquid, especially under water for further use, at the same or a different location. If it is to be used at a different location the structure can be easily towed to such location due to the neutral buoyancy of the material. No or only very little lifting has to be provided for.
In embodiments a structure can be made according to the present disclosure, in a liquid such as under water, where after the structure is removed from the liquid at least partly, for further use, at the same or a different location, for example at least partly outside the water. If it is to be used at a different location the structure can be easily towed to such location due to the neutral buoyancy of the material, or can be lifted from the liquid and then be transported to a location of use.
The present disclosure is also directed to structures formed with a method of the present invention, as well as systems for forming structures in a liquid, such as under water, such as for performing a method of the disclosure.
Obviously some or all of the embodiments or parts thereof as disclosed can be combined within the scope of the present disclosure as defined by the claims.
In further elucidation of the present invention embodiments of the present disclosure, such as but not limited to embodiments of a structure, as well as methods and systems for forming the same shall be described hereafter, with reference to the drawings. These should by no means be considered as limiting the scope of the disclosure in any way.
More specifically in the drawings:
In this description embodiments of the invention will be described with reference to the drawings by way of example only. These embodiments should by no means be understood as limiting the scope of the disclosure. At least all combinations of elements and features of the embodiments shown are also considered to have been disclosed herein. In this description the same or similar elements and features will be referred to by the same or similar reference signs.
In this description expressions of orientation such as top, bottom, vertical etcetera are used for convenience only and refer to the orientation as seen in the accompanying drawings. Such expressions are not to be regarded as limiting the orientation, and indeed, as will be described below, structures according to the description can be used in any orientation.
In this disclosure a flowable, setting material should be understood as a material composition which may be a mixture of different components, which may be mixed at any stage in the method, though preferably the material is fully mixed upon introducing it into a cast or mould or into a liquid, especially the water. Such material can be cement or concrete based material, or a polymer based material of combinations thereof.
In this disclosure methods, structures and objects and systems are described, as well as materials to be used therefor and/or therewith, mainly in relation to water, especially salt water. However, these can also be used in or with different liquids, including but not limited to naturally occurring liquids, oils or oil products and water containing additives, for example but not limited to additives for increasing or decreasing the density of the water. However, for most applications water is used as it naturally occurs.
In this disclosure substantially should, at least with respect to the density of the material and surrounding water, be understood as meaning that there may be a small difference between the densities of said material and said surrounding water. Within the definition of substantially the same density may fall a density of the material which is between 10% higher and 10% lower, such as for example between 5% higher and 5% lower than the density of the water, for example between 4% higher and 4% lower, such as between 3% higher and 3% lower. In embodiments the density of the material is between 0 and 10% higher, for example between 0% and 5% higher than the density of the water, more preferably between 0 and 4% higher. In embodiments the density of the material is between 0 and 10% lower, for example between 0% and 5% lower than the density of the water, more preferably between 0 and 4% lower.
When referring to density of the material this should be understood as at least including an average density of the material, wherein the highest density of the material during use is preferably not more than 10% higher than the lowest density, more preferably not more than 8%, more preferably not more than 5%.
In this disclosure neutrally buoyant material should be understood as at least meaning that the material behaves in the surrounding liquid as if it is substantially weightless. It can be understood as meaning that it will not by itself sink or rise to a surface in the surrounding liquid. It can be understood as meaning that the density of the material, such as slurry or paste used for forming an object is substantially the same as the density of the liquid, such as but not limited to water, in which said forming is performed.
Free forming should in this disclosure be understood as at least meaning forming of a structure by injecting the material into the water without a cast or into an open cast, such that at least part of the flowing material during setting is in direct contact with the water. Free forming can also include forming the structure onto and/or against and/or partly in a support structure. Such support structure can be a natural structure, for example but not limited to a water bottom, rock, riff or the like, or an artificial structure, such as but not limited to an anchoring structure or frame, a wall such as a quay, a pillar or foundation or a shell shaped support structure.
In this disclosure injecting material should be understood as including inserting the material into water and/or a cast or casing at any pressure and any flow and speed of flow or debit, such that it overcomes at least a counter pressure from the water into which the material is injected and/or water and/or air in a cast or casing into which the material is injected and/or a counter pressure exerted by the cast or casing, when used. Such injection can also include providing a reduced pressure in a cast or casing for sucking the material into such casing or cast.
In this disclosure a structure formed from or using said flowable, setting material should be understood as also including structures which are to form parts of larger structures. In this disclosure a structure formed from or using said flowable, setting material should be understood as also including structures in which parts are formed using other materials, such as frames, inserts, connectors and the like.
In this disclosure non-compressible particles should at least be understood as meaning particles which do substantially not compress by the weight of water available above the material when being injected into the water or into a casing and the weight of the material itself. Wherein substantially not compress should in this disclosure at least be understood as compression of less than 5% of the initial volume of the particles, preferably less than 3%, more preferably less than 1% and/or a reduction in size in a vertical direction of less than 5% of the initial said dimension of the particles, preferably less than 3%, more preferably less than 1%, preferably both prior to and after setting of the material.
In the drawings schematically methods are disclosed for forming structures 100 under water 1 using a flowing, settable material 2. According to the disclosure the material 2 used has a density Dm which is substantially equal to the density Dw of the water 1 in which the structure 100 is formed. The density Dm of the material 2 is chosen and/or controlled such that it has said density Dm substantially equal to the density of the water Dw at the level where the material is to be injected into the water 1 or into a casing or cast 3. The material 2 can further on also be referred to as neutrally buoyant material 2. Preferably the material 2 is water resistant, which can be understood as at least meaning that when injected into the water the material will not separate or deteriorate, that substantially no parts of the material will dissolve in the water and that the material can set in the water to harden the structure.
By injecting the material 2 with a density Dm substantially equal to the density Dw of the water 1 surrounding the material 2 when injecting has the advantage that the material will have neutral buoyancy at said level and will therefore substantially neither sink nor float upward. It will stay substantially at the position where it is injected or be pushed into and/or through a cast or casing when using such. Moreover, it will substantially retain the shape it is brought into during setting, without the necessity of solid, closed casings which can withstand the pressure of the water and/or the material.
Hence with a method according to the present disclosure the material can be injected directly into the water, free forming structures as is schematically shown in
As can be seen in
For forming structures in a liquid, such as under water, a system can be used, comprising at least one source C of flowable, settable material or components for forming such material, and feeding line or lines 6, such as for example at least one hose 19 for under water delivery of said material or components thereof. At least one pump 19D can be provided for pumping said material 2 or components through the relevant hose or hoses 19, such that the material 2 or mixture of components can be injected into the water 1 through a nozzle 18C connected to said hose or hoses 19. At least one component can be provided for regulating the density Dm of the material 2 or mixture of components, such that the density Dm can be adjusted to correspond substantially with the density Dw of the water 1 in which it is to be injected, at the level at which it is to be injected. It shall be clear that materials 2 for use can be provided as a premix, for example in matches. Alternatively a mixture of components can be provided as a premix. Additionally or alternatively components for the material 2 can be mixed in situ.
For delivery of the material 2 at a desired position the delivery line or lines, especially an outlet thereof, can be manipulated in any desired manner. Especially when free forming is used, the delivery end of a delivery hose 19, such as a nozzle 18C can be manipulated, for example by a diver, an ROV, a manipulator arm or arms, for example mounted on an ROV or a surface operated vessel, or can be self propelled and remote controlled.
As schematically shown in
In embodiments a support structure can for example be a relatively heavy element 6, such as for example a concrete or basalt block, frame or the like can be placed on said bottom 5A, below the line 4, where after the material 2 may be injected into and/or onto and/or against the said element 6, filling at least a gap G between the line 4 and the element 6 and/or forming a support structure 100 for said line 4. Such element 6 can be advantageous in that it can prevent the structure 100 from being subject to currents which could otherwise possible displace the structure 100. Such element 6 can additionally or alternatively provide further support and/or can make a method of forming a structure quicker and/or easier and/or less expensive since less material 2 is needed and less such material 2 has to set after injection. Similarly a method according to the disclosure can be used for repair of structures, for example for supporting a line 4, which structures and/or line may have deteriorated or changed position over time, losing a proper support function for the line. By injecting material 2 with a method of the disclosure, such supporting function can at least partly be reestablished.
In
In
In
In
In
It shall be clear that in a similar manner other surfaces and openings in other structures at least below a water line or water surface can be treated with material 2 according to the invention. Again it shall be noted that due to the specifically chosen density of the material 2 prior to and during setting the material will substantially stay where it has been injected, without floating up or down in the water.
In
A material 2 used in the present disclosure can be a cement or concrete based material. The material 2 can be neutrally buoyant, which should be understood as at least meaning that the material 2 when injected into a body of water at a predetermined depth below the water surface of said body of water will substantially hover in said body of water, i.e. will be suspended without substantial movement up or down in said water due to gravity and water pressure. As discussed, the material 2 can be designed to have a density Dm substantially equal to the density Dw of the water 1 at said depth. In this disclosure water or body of water should be understood as at least meaning, but is not limited to, a body of salt or fresh water. In embodiments additives can be added to the water 1 in order to for example increase or decrease the density, especially if a body of water is used in a relatively confined space, such as a basin, dock or the like, with a body of water confined to said space. Such additives will be known in the art and can for example be, but are not limited to salt, fluids having a density other than water or the like.
A material 2 or a basis material for mixing a material 2 can for example comprise cement, a pozzolanic filler, water, micro fibers and a set accelerating admixture or additive. Such components are well known in the art. Micro fibers can for example be made of plastics, such as but not limited to PE or PVA, and can for example have a length of several mm and a thickness of several μm. By way of example only fibers can be used having a length of between 2 and 8 mm, for example about 4 mm, and a thickness between 10 and 40 μm, for example about 20 μm. A pozzolanic filler can for example be but not limited to metakoloin or microsillica. The water is preferably potable water. The cement can for example be Heidelberg cement. The material can be mixed, for example by in-line mixing in a transport line system between different supplies 17 and an outlet end 18 of a supply line 19. Alternatively or additionally part or all of the material can be mixed prior to providing it to a supply line 19. The material 2 is preferably mixed into a flowable constitution, such that it can be transported through the supply line 19 and dispensed through the outlet end thereof. The material may be relatively dry or can for example be a slurry when fed into the supply line 19 and is preferably a slurry when dispensed out of the outlet end 18 and injected into the water 1 or into a casing or cast or such mould 20. Especially if the material is to be injected into the water 1 the material is mixed such that it does not dissolve in said water 1. The material preferably has a consistency such that it adheres to itself when being expelled from the outlet end 18 and hence does not disintegrate when expelled from the outlet end 18. It shall be clear that a material 2 suitable for use can also be based on or comprise polymers, such as for example polyester based materials.
In embodiments the material can have a density below about 2400 kg/m3, such as for example below 2000 kg/m3. A material 2 can, in flowable condition, prior to setting, for example have a density between 1026 kg/m3+/−10%, for example 1026 kg/m3+/−5%. The density can for example be between 970 and 1080 kg/m3 for use in salt water such as sea water, for example for use in water at depths up to about 1000 m. These densities are obviously only disclosed by way of example and should not be considered as limiting the scope of the disclosure. In a method the density of the liquid, such as water at the location where the structure is or is to be formed can be determined, for example by measurement, and the density of the material to be used for forming the structure can then be adjusted based on said determined density. Alternatively the density can be chosen based on a known density of the liquid in which the structure or object is to be formed. Obviously when forming a structure in a relatively confined space or body of liquid the density of the liquid could be chosen based on or adapted to a density of the material used for forming the structure or a part thereof. This should also be understood as falling within forming structures in a liquid, preferably underwater using a flowing, settable material, wherein the material used has a density which is substantially equal to the density of the liquid in which the structure is formed.
In embodiments the material 2 can comprise non compressive particles 13, especially particles 13 which are substantially non reactive with other components of the material 2, such that these particles 13 substantially maintain their shape, dimensions and consistence prior to during and after setting. The particles preferably have a density which is relatively low compared to most of the further components of the material and/or to the density of the liquid, especially water in which the material 2 is to be used, at least in flowable condition, such that the particles lower the density of the material 2. The particles 13 are preferably substantially non compressible at least at pressures occurring at the depth in the water at which the material is injected into the water or into a cast or casing as will be discussed. Preferably they are non compressible at even higher pressures. This provides for a material and a structure formed therewith which during and after setting will remain its shape more easily, whereas the load bearing capacity can be increased. Especially of the further components of the material are also substantially non-compressible, which is common for at least most cement or concrete based materials without weight reducing fillers.
The particles may be solid particles or can be partly or entirely hollow particles. Preferably such particles 13 are used having regular shapes, weights and dimensions, preferably such that all particles 13 are substantially identical to each other. Such particles can for example have, but are not limited to having, a crush strength above 2000 PSI or 13.8 Mpa, for example up to 8000 PSI or 55.2 MPa. Such particles 13 can for example have a density between for example but not limited to 0.3 and 0.7 g/cc (300-700 kg/m3). In embodiments a material 2 according to the disclosure can comprise glass based particles, such as glass beads. Glass particles, especially glass beads are known in the art and can be hollow glass beads. Such particles can for example be hollow glass microspheres. Particles 13 can alternatively or additionally be or comprise expanded particles, such as for example expanded glass or clay, for example foamed particles 13.
By way of example only, sea water at 0° C. and 35 psu (salinity) can for example have a density at a water surface level of about 1.028 g/cm3, at a depth D of 4000 m a density of about 1.046 g/cm3 and at a depth of 10.000 m a density of about 1.071 g/cm3. See table 1.
Values associated with the change in seawater density with depth are listed in the table 1.
A concrete mixture slurry to be used as a basis for a material 2 as described can for example have a density of 1.442 g/cm3 at atmospheric level. Preferably a material is used which is substantially non-compressible (1 g/cm3=1000 kg/m3). By using particles having a substantially lower density than the concrete slurry the average density of the material 2 can be reduced to a desired level. For example, for use at a depth in sea water of 1000 m according to table 1, the average density of the material 2 has to be reduced to about 1.033 g/m3 (1033 kg/m3). Starting from a cement based basis material having a density of about 1442 kg/m3 and particles 13 having a density of 500 kg/m3 this would mean that about 1 part particles should be added to each about 1.3 parts of cement based basis material. It is noted that this is only described by way of example and should in no way be considered as limiting the disclosure. As can be seen from for example table 1 here before the density of water does not vary very much with the depth of the body of liquid such as water. This means that for structures and object shaving a limited height, for example a height in the order of meters to tens of meters or even some hundreds of meters, the density difference over the height can in most cases be neglected or the density can be taken for example based on an average over said height or at an injection level.
The material used can be a mixture of components, wherein a number of the components is mixed and fed to a first position near a second position at which the structure is to be formed, and is mixed with at least one further component at or near said first position, such that the thus formed mixture is or can be used for forming the structure.
The density of the material 2 is preferably defined in flowable condition.
In
In
The runner 28 can move in a first direction F28, in
After printing or otherwise forming a structure 100 the structure 100 can be removed from the location of forming to a different location, for example by towing, lifting, driving or any other suitable manner.
In
In
After setting of the material the mould can be removed, if desired, or can stay on the structure partly or entirely. The structure can stay under water 1, for example to be used under water as an artificial reef, breaker, jetty, anchoring structure or the like, or can be lifted out of the water 1 to be used outside the water, for example as a play structure 100 on land. Since the material 2 used has a relatively low density, the structure can be relatively light compared to a similar structure made used traditional methods and materials. The structure 100 can have a relatively complex configuration, using a mould 20 which is relatively easy to manufacture and need not be rigid, as would a mould for forming such structure outside the water 1.
After removal of the mould 20 the hull of the boat can be brought to the water surface 1A to float, as schematically shown at the upper right hand corner of
It shall be clear that any structure 100 formed in a body of water according to the present disclosure can be easily lifted in the water, unless anchored, and can be suspended in the body of water substantially without further provisions, such that it can be moved easily, at or below the water surface 1A.
In the present disclosure casings can be used which have a predetermined final shape when filled, such as inflatable casings as described. They may be filled such that they are tensioned at least to some extent for improving shape retention, especially during setting of the material 2. Additionally or alternatively flexible casings can be used which are less or not shape retaining and/or which do not have a predetermined final shape when filled, but are mouldable after filling in order to be shaped. For example a sack can be filled with the flowable material 2, in the body of liquid such as water, after which during setting the shape of the sack can be moulded, for example by hand or mechanically, in which shape the material can then set. For example the flexible casing can be filled close to the surface of the body of liquid or in a position of use. Such flexible casing can for example, but is not limited to, be used in a situation of
The invention is by no means limited to the embodiments specifically disclosed and discussed here above. Many variations thereof are possible, including but not limited to combinations of parts of embodiments shown and described. For example a mould according to the disclosure can be provided with multiple entry openings for introducing the material and/or with one or more one way valves to expel air and/or water from the mould during filling. A method according to the disclosure can be used for forming any structure in a body of water, for later use of the structure entirely or partly in the same or a different body of water of outside any body of water. A method and material of the disclosure can be used for temporary purposes such as temporary repair of structures.
These and many other amendments are considered to have been disclosed herein also, including but not limited to all combinations of elements of the invention as disclosed, within the scope of the invention as presented.
Number | Date | Country | Kind |
---|---|---|---|
2018969 | May 2017 | NL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NL2018/050340 | 5/23/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/217086 | 11/29/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3466879 | Justice | Sep 1969 | A |
3726950 | Turzillo | Apr 1973 | A |
3736759 | Blose | Jun 1973 | A |
3984989 | Turzillo | Oct 1976 | A |
4393901 | Beck | Jul 1983 | A |
4488836 | Cour | Dec 1984 | A |
4513029 | Sakai | Apr 1985 | A |
4583882 | Szabo | Apr 1986 | A |
10202751 | Pisklak | Feb 2019 | B2 |
20060174804 | Caveny | Aug 2006 | A1 |
20080066652 | Fraser | Mar 2008 | A1 |
20100061461 | Bankoski et al. | Mar 2010 | A1 |
20120257677 | Bankoski et al. | Oct 2012 | A1 |
20150175481 | Pisklak | Jun 2015 | A1 |
20150191993 | Falcone | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
60148907 | Aug 1985 | JP |
2011128269 | Oct 2011 | WO |
2018033643 | Feb 2018 | WO |
Entry |
---|
Tumbleston et al.,“Continuous liquid interface production of 3D objects” pp. 1349-1352, Mar. 2015. |
International Search Report dated Sep. 28, 2018 issued in corresponding International Patent Application No. PCT/NL2018/050340 (2 pgs.). |
International Preliminary Report on Patentability dated Apr. 16, 2019 issued in corresponding International Patent Application No. PCT/NL2018/050340 (6 pgs.). |
Susanna Minasyan et al., “An Image Compression Scheme Based on Parametric Haar-like Transform”, 2005 IEEE International Symposium on Circuits and Systems (ISCAS), May 23-26, 2005, pp. 2088-2091. |
Number | Date | Country | |
---|---|---|---|
20210180285 A1 | Jun 2021 | US |