The present disclosure relates generally to internal combustion engines, and more particularly, to methods and systems for precombustion chambers useful with internal combustion engines.
Internal combustion engines commonly combust liquid fuels, including diesel fuel or gasoline. In addition to these common fuel types, some internal combustion engines are configured for use with alternative fuels, the combustion of which produces a relatively low amount of greenhouse gases and/or soot. These alternative-fuel-compatible engines may be configured for combustion of fuel having a relatively high amount (e.g., 85% or more) of ethanol, for example. Alternative-fuel-compatible engines may also be configured for combustion of methanol. While alternative fuels provide advantages, the combustion of alternative fuels, including ethanol and/or methanol, also introduces challenges. For example, these fuels can be relatively slow to evaporate, making uniform ignition difficult. Additionally, these fuels can have a lower energy density as compared to diesel fuel, requiring the injection of a higher mass of fuel to generate a particular amount of power. The need to inject a larger amount of fuel can, for example, further impact the ability to produce uniform combustion by further slowing evaporation.
An exemplary diesel engine with a device for ultrasonic atomization of fuel is described in GB2077351 to Maynard et al. (the '351 patent). The device described in the '351 patent includes a precombustion portion with an ultrasonic injector. The ultrasonic injector is able to inject fuel into a spherical precombustion chamber through which fuel is ultimately supplied to an engine cylinder. While the precombustion chamber and ultrasonic device of the '351 patent may be useful for precombustion of diesel fuel, it may be unable to achieve the same results when combusting a low greenhouse gas fuel.
The disclosed methods and systems may solve one or more of the problems set forth above and/or other problems in the art. The scope of the current disclosure, however, is defined by the claims, and not by the ability to solve any specific problem.
In one aspect, a fuel injector assembly for an internal combustion engine may include a proximal end portion, a distal end portion, and a fuel injector extending at least to the distal end portion, the fuel injector including a fuel opening. The fuel injector assembly may also include a chamber formed between the proximal and distal end portions, a flame passage extending from the chamber to the distal end portion, and an atomizer configured to provide atomization of liquid fuel injected into the chamber.
In another aspect, a combustion system may include a fuel storage device for storing a liquid fuel, an internal combustion engine including a combustion chamber, and a fuel injector configured to directly inject a first portion of the fuel into the combustion chamber. The combustion system may also include an atomizer configured to receive a second portion of the fuel and inject the second portion of the fuel into a precombustion chamber upstream of the combustion chamber.
In yet another aspect, a method of combusting fuel may include supplying fuel, in liquid form, to an atomizer, injecting the fuel supplied to the atomizer into a precombustion chamber and atomizing the fuel supplied to the atomizer. The method of combusting fuel may also include injecting fuel into a combustion chamber, igniting the atomized fuel in the precombustion chamber, and igniting the fuel injected into the combustion chamber with the ignited atomized fuel.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate various exemplary embodiments and together with the description, serve to explain the principles of the disclosed embodiments.
Both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the features, as claimed. As used herein, the terms “comprises,” “comprising,” “having,” including,” or other variations thereof, are intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements, but may include other elements not expressly listed or inherent to such a process, method, article, or apparatus. Moreover, in this disclosure, relative terms, such as, for example, “about,” “substantially,” “generally,” and “approximately” are used to indicate a possible variation of ±10% in the stated value.
Internal combustion engine 14 may include an engine block 20 and cylinder head 22. Engine block 20 may define a plurality of cylinders in which pistons 18 are disposed. These cylinders may each form a respective combustion chamber 16 with head 22 to combust fuel injected with a direct injector 32 of fuel supply system 12, as described below. While one cylinder and combustion chamber 16 is shown in
In the exemplary configuration illustrated in
Fuel injector assembly 28 may facilitate combustion of fuel outside of combustion chamber 16, such as within a precombustion chamber (also referred to herein as a chamber). In particular, fuel injector assembly 28 may include a precombustion chamber 35 adjacent to and in fluid communication with igniter 34 and atomizer 36. Fuel injector assembly 28 may be formed with a housing 30 that secures direct injector 32, igniter 34, and atomizer 36 together as a single integral structure. For example, direct injector 32, igniter 34, and atomizer 36 may be installed and/or removed from head 22 together as a unit with housing 30. Fuel injector assembly 28 may be installed within head 22 in any desirable manner, such as via a press fit, threading, etc. As shown in
Direct injector 32 may be an electronically-controlled fuel injector that includes a proximal end and a distal end having one or more direct injector fuel openings 40. In the exemplary configuration shown in
Fuel injector assembly 28 may further include a bore that extends through the proximal end of housing 30 to secure atomizer 36 adjacent to injector 32. Atomizer 36 may be configured to inject fuel to an interior of housing 30, such as chamber 35. In at least one aspect, atomizer 36 may be an atomizing fuel injector that includes one or more atomizer orifices or openings 39 at a distal end thereof, and an atomizing element 38. Atomizer 36 may be, for example, an ultrasonic atomizer, an electrostatic atomizer, or a supersonic atomizer.
In a first exemplary configuration, atomizer 36 may be an ultrasonic device in which atomizing element 38 is an ultrasonic transducer, such as a piezoelectric transducer or a magnetostrictive transducer. Atomizing element 38 may be connected to an energy source, such as an AC energy source that supplies electrical energy to cause atomizing element 38 to vibrate at high frequency. In an alternate configuration, atomizer 36 may be an electrostatic device. When atomizer 36 is formed as an electrostatic device, atomizing element 38 may include a high voltage electrode or lead within atomizer 36 that is connected to an electrical energy source. This high voltage lead may enable the application of an electrical field to facilitate breakup of fuel injected with atomizer 36 into chamber 35. In another exemplary configuration, atomizer 36 may be a supersonic device. When configured for supersonic injection of fuel, atomizer opening 39 may inject fuel at a speed greater than the speed of sound. For example, fuel injected with atomizer openings 39 of atomizer 36 may be supplied to these openings 39 at a sufficient pressure such that fuel exits atomizer opening 39 at a speed higher than the speed of sound.
Precombustion chamber 35 may have a suitable shape for receiving fuel from atomizer 36 and for facilitating the combustion of this fuel at a location upstream of combustion chamber 16. For example, chamber 35 may have an approximately annular or toroidal shape that surrounds a longitudinal axis of fuel injector assembly 28. As shown in
A proximal end of precombustion chamber 35 may include an opening through which a distal end of igniter 34 extends. This distal end may include electrodes configured to generate a spark. The proximal end of chamber 35 may further include an opening through which a distal end of atomizer 36 extends allowing atomizer openings 39 to inject fuel within chamber 35. A distal end of chamber 35 may be connected to one or more flame paths or passages 42. Flame passages 42 may be formed within housing 30 so as to extend from the distal end or floor of chamber 35 to a distal end of fuel injector assembly 28. As shown in
The disclosed aspects of fuel combustion system 10 may be employed in a variety of internal combustion engines that are configured to combust fuels, including internal combustion engines for combusting fuel other than gasoline and diesel fuel. For example, fuel combustion system 10 may be useful for combusting a low GHG fuel, such as methanol. System 10 may be included in a power generation system, machine (e.g., dozer, excavator, loader, pipelaying machine, grading machine, etc.), vehicle, or other device that employs an internal combustion engine. System 10 may include a plurality of cylinders that form a plurality of combustion chambers 16. Each of these cylinders may include a respective fuel injector assembly 28, the plurality of fuel injector assemblies 28 being configured to receive fuel from a single fuel storage device 50 or a plurality of fuel storage devices 50.
During the operation of system 10, fuel stored in one or more fuel storage devices 50 may be pumped, at high pressure, to a plurality of fuel injector assemblies 28 positioned within engine head 22. A first portion of the fuel supplied to a particular assembly 28 may be supplied to injector 32 for injection directly into combustion chamber 16, while a second portion of fuel for the same assembly 28 may be supplied to atomizer 36 for atomization and injection into the interior of fuel injector assembly 28, and in particular, injection into the interior of combustion precombustion chamber 35. Atomizer 36 may be electronically-controlled such that atomizer 36 is configured to inject fuel independently of direct injector 32. Igniter 34 may also be electronically-controlled to ignite fuel within chamber 35 in a controlled manner. To facilitate the combustion of fuel within combustion chambers 16, one or more intake valves 24 and one or more exhaust valves 26 may open and close so as to respectively provide fresh intake air (e.g., air substantially free of fuel) to combustion chambers 16, and to allow combustion products to exit combustion chambers 16.
A first step 202 of method 200 may include injecting fuel into a chamber formed within fuel injector assembly 28, such as precombustion chamber 35. Fuel, such as low GHG fuel, may be supplied as a high-pressure flow to an inlet of atomizer 36. The fuel received by atomizer 36 may traverse one or more internal passages of atomizer 36 to atomizer opening(s) 39 through which fuel is injected while being ultrasonically atomized, electrostatically atomized, or supersonically atomized to produce a plurality of fine droplets that readily evaporate within chamber 35. In the example of ultrasonic atomization, an ultrasonic transducer (e.g., atomizing element 38), may be activated with an AC current applied in response to commands from an electronic control unit. This AC current may be supplied to a piezoelectric transducer or a magnetostrictive transducer so as to cause the transducer to vibrate at a high frequency and thereby generate a mechanical force to facilitate atomization of fuel injected via atomizer opening 39. In configurations where atomizer 36 electrostatically atomizes fuel injected via atomizer opening 39, an electric field may be generated with atomizing element 38 (e.g., a high-voltage lead secured within fuel injector assembly 28). This electric field may, for example, increase breakup of particles of fuel injected via atomizer opening 39 by reducing surface tension and by applying electrostatic force in addition to the aerodynamic shear encountered by the fuel that exits atomizer opening 39. In configurations where atomizer 36 is configured for supersonic injection of fuel, atomizer opening 39 may be sized to cause fuel to exit at supersonic speeds when highly-pressurized fuel is supplied to atomizer 36. A supersonically-configured atomizer 36 may omit a separate atomizing element 38 and may cause fuel to exit atomizer opening 39 at a speed greater than the speed of sound, facilitating atomization of fuel injected into chamber 35.
A step 204 may include injecting fuel into a combustion chamber 16 of internal combustion engine 14. In particular, step 204 may include storing low GHG in fuel storage device 50 and supplying this fuel from fuel storage device 50 to fuel injector assembly 28. The fuel may be pumped at high pressure to an electronically-controlled direct fuel injector 32. However, in at least some configurations, fuel may be pumped at a relatively low pressure to a mechanically-actuated (e.g., cam-actuated) electronically-controlled unit injector 32. In response to a command signal generated with an electronic control unit, direct injector 32 may inject fuel, via one or more injector openings 40, to a combustion chamber 16 formed within the interior of engine block 20 (e.g., towards a top surface of piston 18). Fuel injected with direct injector 32 via openings 40 may bypass chamber 35, and may also bypass the air intake section of engine 14. Thus, fuel injected via direct injector 32 may be supplied to engine 14 separately from intake air that enters respective combustion chambers 16 via one or more intake valves 24.
A step 206 may include igniting the fuel that was injected into precombustion chamber 35 during step 202. Atomized fuel within chamber 35 may be ignited by igniter 34, in response to a command from an electronic control unit. Igniter 34, which may include a spark plug, glow plug, or plasma ignition device, may generate a spark or otherwise discharge energy to ignite atomized fuel within chamber 35. To facilitate this ignition of atomized fuel within chamber 35, igniter 34 may include a distal end that extends within chamber 35, as shown in
A step 208 may include igniting the fuel injected via direct injector 32 into combustion chamber 16. The ignition of fuel within combustion chamber 16 may be initiated with flames generated by the ignition of atomized fuel in step 206. When atomized fuel within chamber 35 is ignited as described with respect to step 206, the resulting flames may enter and pass through one or more flame passages 42 to respective flame openings 44 formed at distal ends of fuel injector assembly 28. These flame openings 44 may be oriented toward the interior of respective combustion chambers 16. Thus, combustion of fuel injected with one or more direct injector fuel openings 40 may be initiated by flames that propagate after exiting from flame openings 44 of fuel injector assembly 28. Flame openings 44 may be positioned so as to initiate combustion in a suitably uniform manner, such that flames prorogate within combustion chamber 16 to facilitate complete combustion of fuel injected with one or more direct injector fuel openings 40.
While steps 202, 204, 206, and 208 have been described with an exemplary order, as understood, one or more of these steps may be performed in a different order. Moreover, one or of these steps may be performed simultaneously and/or at overlapping periods of time.
The disclosed fuel combustion system and method may allow for controlled combustion of fuel within a precombustion chamber 35, enabling the creation of hot flame jets that readily ignite the majority of the fuel injected to the interior of an engine cylinder. The use of an atomization device may also facilitate the injection of a larger quantity of fuel, improving power output and facilitating direct injection of a low GHG fuel. For example, it may be possible to employ a fuel injector having larger injector orifices, as compared to a diesel fuel injector for an engine having the same displacement, while avoiding problems associated with incomplete fuel combustion. Increased atomization of injected low GHG fuel, such as liquid methanol, can also prevent delayed and/or aggressive combustion and pool fires. Additionally, the disclosed system and method may enable combustion of a low GHG fuel, such as methanol, without the need to supply a second type of fuel. In particular, fuel combustion system 10 may be configured to combust fuel without the need to generate a pilot flame with diesel fuel. Fuel combustion system 10 may also enable the omission of a spark plug that extends to a combustion chamber of the engine.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed method and system without departing from the scope of the disclosure. Other embodiments of the method and system will be apparent to those skilled in the art from consideration of the specification and practice of the systems disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope of the disclosure being indicated by the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3983847 | Wyczalek | Oct 1976 | A |
4041922 | Abe | Aug 1977 | A |
4140090 | Lindberg | Feb 1979 | A |
4344403 | Child et al. | Aug 1982 | A |
4986248 | Kobayashi | Jan 1991 | A |
5725151 | Hetrick | Mar 1998 | A |
6450154 | Choi | Sep 2002 | B1 |
7007669 | Willi | Mar 2006 | B1 |
7424883 | McNichols | Sep 2008 | B2 |
8910612 | Woo et al. | Dec 2014 | B2 |
9145826 | Pendray | Sep 2015 | B2 |
9506441 | Smither | Nov 2016 | B2 |
9709005 | Pendray | Jul 2017 | B2 |
9771919 | Kim et al. | Sep 2017 | B2 |
11085402 | Vroman | Aug 2021 | B1 |
20070170276 | McNichols | Jul 2007 | A1 |
20080210773 | Malek | Sep 2008 | A1 |
20140069368 | Pendray | Mar 2014 | A1 |
20160053672 | Loetz | Feb 2016 | A1 |
20160160742 | Willi et al. | Jun 2016 | A1 |
20160363041 | Moffat | Dec 2016 | A1 |
20180135506 | Grover, Jr. | May 2018 | A1 |
20210131337 | Bromberg | May 2021 | A1 |
Number | Date | Country |
---|---|---|
1044973 | Dec 1978 | CA |
204572180 | Aug 2015 | CN |
107429602 | Dec 2017 | CN |
108730015 | Nov 2018 | CN |
108779701 | Nov 2018 | CN |
110206629 | Sep 2019 | CN |
110206629 | Sep 2019 | CN |
110725765 | Jan 2020 | CN |
108730015 | Mar 2020 | CN |
110206629 | Jul 2020 | CN |
112177764 | Jan 2021 | CN |
112796870 | May 2021 | CN |
113137321 | Jul 2021 | CN |
113494349 | Oct 2021 | CN |
2530442 | Jan 1976 | DE |
102007003051 | Jul 2008 | DE |
102016110844 | Dec 2016 | DE |
102015221076 | May 2017 | DE |
102021108298 | Oct 2021 | DE |
390603 | Oct 1990 | EP |
1910665 | Mar 2009 | EP |
2888889 | Jan 2007 | FR |
2901575 | Nov 2007 | FR |
2908834 | May 2008 | FR |
1512053 | May 1978 | GB |
2077351 | Dec 1981 | GB |
2077351 | Dec 1981 | GB |
2077351 | Jun 1984 | GB |
1039642 | Dec 1979 | IT |
4942749 | May 2012 | JP |
2615880 | Apr 2017 | RU |
WO-9625592 | Aug 1996 | WO |
WO-2007010166 | Jan 2007 | WO |
WO-2007135339 | Nov 2007 | WO |
2010101293 | Sep 2010 | WO |
WO-2010101293 | Sep 2010 | WO |
WO-2017093598 | Jun 2017 | WO |
WO-2019040432 | Feb 2019 | WO |
2020255647 | Dec 2020 | WO |
WO-2020255647 | Dec 2020 | WO |