The creation of a dimensional document can be a labor-intensive process. The widespread production of dimensional documents such as pop-out greeting cards, cut-and-fold paper boxes, and other printed substrates that are foldable into three-dimensional structures would increase if barriers to production were reduced. The design of a dimensional document can require a high degree of skill, thus making widespread consumer adoption difficult. On the production side, print shops and other document production facilities cannot easily implement new technologies or train personnel to create and execute workflows that leverage appropriate resources to create a final piece.
In addition, many print shops may not have all equipment needed to complete the production of a dimensional document. Such facilities often need to sub-contract portions of the job to different service providers. Current systems are not able to effectively leverage production resources that may be available in disparate geographic locations.
The embodiments described in this disclosure are directed to the problems described above.
In an embodiment, a method for forming a dimensional document includes maintaining a dimensional document production system having a processor and a knowledge base. The knowledge base contains production rules for each of a plurality of dimensional documents. The production rules comprise a plurality of jobs and identification of resources required to complete each job. In this embodiment, the method includes receiving, from multiple service providers via a communications network, capability information corresponding to resources that are available to each service provider. The method also includes using the processor to associate the capability information with the production rules and store the associated capability information in the knowledge base. The method also includes receiving a user selection of a dimensional document to be produced, accessing the knowledge base to select the production rules that will be appropriate for the document to be produced, and accessing the associated capability information to automatically generate at least one workflow for the document to be produced. Each workflow includes at least a first job and the identification of a first service provider who will complete the first job, as well as a second job and the identification of a second one service provider who will complete the second job.
The workflow may be executed by communicating the first job to the first service provider and communicating the second job to the second one of the service providers. The method also may include presenting a workflow to the user by selecting, from a set of automatically generated workflows, a workflow subset. In such an embodiment, the selection is based on at least time required, cost, and/or preference for a particular service provider.
The method also may include maintaining an online catalog of dimensional documents for which production rules are stored in the knowledge base. If so, the method may include receiving, from multiple plurality of service providers via the online catalog, capability information for at least one job to be performed in the manufacture of at least one of the dimensional documents. The online catalog also may contain indicia of dimensional documents for which production rules are stored in the knowledge base. If so, the online catalog may include a user interface via which a service provider may register (i) production rules for a new dimensional document into the knowledge base, and (ii) capability information for at least one job to be performed in the manufacture of the new dimensional document.
Optionally, the method also may include determining whether the knowledge base contains capability information for each job in the workflow. For any particular job for which capability information is not available, the method may include soliciting capability information from multiple service providers for completion of the particular job, adding the solicited capability information to the knowledge base, and updating the automatically generated workflow to include capability and service provider information for the particular job. As an additional option, the method may include presenting a set of possible workflows to the user, along with at least one comparable variable associated with each workflow, receiving a user selection of one of the presented plurality of possible workflows, and executing the user-selected workflow by communicating at least one job in the user-selected workflow to a first service provider and communicating at least another job in the user-selected workflow to a second service provider.
In an alternate embodiment, a dimensional document production system includes a processor, a knowledge base, and a processor-readable storage medium. The knowledge base contains production rules for each of a plurality of dimensional documents, wherein the production rules comprise a plurality of jobs and identification of resources required to complete each job. The processor-readable storage medium communicates with the processor; and contains instructions for receiving, from a set of service providers, capability information corresponding to resources that are available to each service provider. The instructions are also for associating the capability information with the production rules, storing the associated capability information in the knowledge base, receiving a user selection of a dimensional document to be produced, selecting from the knowledge base the production rules that will be appropriate for the document to be produced. and accessing the associated capability information to automatically generate at least one workflow for the document to be produced. Each workflow includes at least a first job and a first service provider who will complete the first job, and a second job and a second service provider who will complete the second job. The system also may include a display; a user input; and a housing that holds the display, the user input, and the processor as a kiosk.
Aspects, features, benefits and advantages of the embodiments described in this document will be apparent with regard to the following description, appended claims, and accompanying drawings where:
Before the present methods and systems are described, it is to be understood that this invention is not limited to the particular systems, methodologies or protocols described, as these may vary. The terminology used in this document is for the purpose of describing particular embodiments only, and it is not intended to limit the scope of the present disclosure.
For purposes of the discussion below, the term “assembly device” refers to a machine used to perform an operation on a dimensional document. Exemplary assembly devices include printers, die cutters, collators, creasing or scoring devices, glue application facilities, perforators, inserters, shrink wrappers and the like.
A “dimensional document” refers to a substrate made of paper, cardboard, or other material to which printed material, cut lines, and score lines may be applied. A dimensional document is typically printed as a flat, but with several facets having boundaries formed by cut lines and/or score lines so that the document can be folded along the score lines to provide three-dimensional features.
A “job” refers to a logical unit of work that is to be completed. For example, a job may include one or more instructions and one or more parameters that, when processed, result in an output. In a document production environment, a job may include one or more print jobs from one or more clients. A production system may produce a plurality of jobs. As described below, group of jobs may be distributed among multiple resources to produce a dimensional document.
A “knowledge base” is an electronic repository of searchable data. A knowledge base also may include rules that are used to answer queries posed by a user or by a processor. A knowledge base may refer to a software component, such as, but not limited to, a database or a table. Alternatively, a knowledge base may refer to a hardware component, such as, but not limited to, a tangible storage medium.
A “resource” refers to an element of a document production environment that performs a function. A resource can be an assembly device or manpower. For example, in a document production environment, a human operator may be required to transport an intermediate work product, such as a printed document, between or among resources as part of a job. A resource also may create and/or apply a unique piece of artwork, or a hand-finished element, to a document.
As used in this document and in the appended claims, the singular forms “a,” “an,” and “the” include the plural reference unless the context clearly dictates otherwise. The term “comprising” means “including, but not limited to.” Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art.
The DDPS 200 communicates via a communications network 230 with a first dimensional document service provider 220 that houses multiple assembly devices or other resources that perform various actions on a substrate to yield a print job. The service provider 220 may include assembly devices such as a printer 222, cutter 224, and a scoring device 226. The service provider 220 also may include other resources such as a finishing station 228 where machine-implemented or manual activities may occur such as folding, postage metering, or application of delicate items. The DDPS 200 may be housed at the same location as, and optionally integral with, the first service provider 220, in which case the network 230 may be an intranet or simply a system bus or other appropriate system. Alternatively, the DDPS 200 may be a physically separate entity that communicates with the first service provider 220 via a dedicated or public network 230.
The first service provider 220 may exchange assembly device and resource capability information with the DDPS 200. The DDPS may store the information, along with information about additional service providers, in its knowledge base 202. For example, DDPS 200 may store capability information about a second service provider 240 that is capable of embossing a document, a third service provider 250 that is capable of applying paint, a fourth service provider 260 that may apply ribbons or thread, and a fifth service provider 270 that creates and/or applies hand-crafted items such as artwork or sculpture.
The DDPS accesses its knowledge base to populate a document template for production 310. The document template contains production rules for various document attributes. Examples of production rules may include rules specifying a particular type of substrate; rules specifying locations of cut and score lines; instructions for particular graphics to be printed on certain facets of the document; and rules for binding, artwork application, embossing, the application of thread or paint, or other finishing steps.
The rules contained in various document templates may be associated with capability information for various print service providers 315. Capability information for a service provider may include information about the types, capabilities, and interaction style (e.g., manual or automated/programmable) of one or more resources that are available to the service provider. For example, a first service provider may have printing, cutting, scoring, perforating, and sealing machines that may perform associated steps of a document production process in an automated manner. A second service provider may be able to apply embossing to a document, while a third service provider may have artists are available to hand-apply custom craftwork to the document. Multiple service providers may be able to provide one or more services to collectively form a single dimensional document.
The capability data may be associated with document production rules in any appropriate manner. For example, as shown in
Returning to
When the DDPS populates a document template for a desired document, it then accesses its knowledge base to select one or more acceptable workflow plans that comprise a complete print job for the document 320. A workflow plan is a data set identifying those resources and service providers that will be used to perform each of the various steps required to prepare a finished dimensional document. The knowledge base may include an ontology and data set corresponding to service provider resources and document production rules.
For some documents, complete workflow plans including available resources for every step in the document assembly process may not be available in the knowledge base 325. If not, the DDPS may solicit bids 360 from various service providers for providing the service using any appropriate means, such as public advertisements, transmitting messages to registered service providers, or other modes of contact. When the bids and associated capability information are received 350, they are entered into the knowledge base 355 and associated with document production rules 315 as with other capability data.
In other situations, when determining 325 whether all steps are available, the system may find that complete workflow plans including available resources for every step in the document assembly process are available in the knowledge base. If so, the DDPS may select 330 one or more of the possible workflows for presentation to the user. For example, referring to
The user may then receive a user selection of a workflow 335, which may be as simple as confirmation of an order or as complex as allowing the user to select the specific service providers that will provide various jobs in the workflow. The system may then manage the workflow 340 by communicating with each of the service providers in the workflow and alerting them as to which job or jobs each will perform.
In some embodiments, the DDPS may provide an catalog interface that is accessible by multiple document service providers, end users, or others. The catalog interface, which may be available via a web portal, kiosk, web browser or a computing or communications device, or other interface with searching and data input capability, may include a catalog of various dimensional document designs for which rules are available. The service provider may access the catalog 380 and enter its capabilities for various resources so that it is registered in the knowledge base as having resources that can complete some or all jobs in the workflow that is associated with the rules. In some embodiments, when accessing the catalog 380 the service provider may offer a particular dimensional document that is not found in the catalog. If so, the service provider may create a rule set for the document, enter its capabilities for each rule in the set, and this creates a new workflow to be stored in the knowledge base and the catalog. An alternate workflow may have Service Provider #2 perform the scoring instead of Service Provider #1. Other service providers may then see one or more of these workflows and may associate their capabilities with the various rules in a workflow.
In addition, a print provider who would like to prepare a certain type of document but lacks a capability for a particular job in its production may use the system's online catalog 380 to identify other service providers who have the capability to perform that function. The print provider may then associate another service provider with its capabilities for outsource management of a particular job.
An overview of the various aspects of the DDPS is also provided in
A controller 620 interfaces with one or more optional memory devices 625 to the system bus 600. These memory devices 625 may include, for example, an external or internal DVD drive, a CD ROM drive, a hard drive, flash memory, a USB drive or the like. As indicated previously, these various drives and controllers are optional devices.
Program instructions may be stored in the ROM 610 and/or the RAM 615. Optionally, program instructions may be stored on a tangible computer readable storage medium such as a compact disk, a digital disk, flash memory, a memory card, a USB drive, an optical disc storage medium such as a Blu-ray™ disc, and/or another recording medium.
An optional display interface 630 may permit information from the bus 600 to be displayed on the display 635 in audio, visual, graphic or alphanumeric format. Communication with external devices may occur using various communication ports 640. An exemplary communication port 640 may be attached to a communications network, such as the Internet or an intranet.
The hardware may also include an interface 645 which allows for receipt of data from input devices such as a keyboard 650 or other input device 655 such as a mouse, a joystick, a touch screen, a remote control, a pointing device, a video input device and/or an audio input device.
An embedded system, such as a sub-system within a xerographic apparatus, may optionally be used to perform one, some or all of the operations described above. Likewise, a multiprocessor system may optionally be used to perform one, some or all of the operations described above.
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3902655 | Huffman | Sep 1975 | A |
5235519 | Miura | Aug 1993 | A |
5291583 | Bapat | Mar 1994 | A |
5353390 | Harrington | Oct 1994 | A |
5364017 | Bennett | Nov 1994 | A |
5454644 | Augustin | Oct 1995 | A |
5457904 | Colvin | Oct 1995 | A |
5513117 | Small | Apr 1996 | A |
5518574 | Yates et al. | May 1996 | A |
5528517 | Løken | Jun 1996 | A |
5687087 | Taggart | Nov 1997 | A |
5768142 | Jacobs | Jun 1998 | A |
5805784 | Crawford | Sep 1998 | A |
5838574 | Olson et al. | Nov 1998 | A |
5881538 | Blohm | Mar 1999 | A |
5923556 | Harris | Jul 1999 | A |
6005959 | Mohan et al. | Dec 1999 | A |
6090027 | Brinkman | Jul 2000 | A |
6092054 | Tackbary et al. | Jul 2000 | A |
6117061 | Popat et al. | Sep 2000 | A |
6134018 | Dziesietnik et al. | Oct 2000 | A |
6153039 | Jacobsen | Nov 2000 | A |
6237787 | Gallo et al. | May 2001 | B1 |
6243172 | Gauthier et al. | Jun 2001 | B1 |
6246468 | Dimsdale | Jun 2001 | B1 |
6332149 | Warmus et al. | Dec 2001 | B1 |
6409019 | Hornsby et al. | Jun 2002 | B1 |
6505858 | Kirchmeyer et al. | Jan 2003 | B1 |
6687016 | Gauthier | Feb 2004 | B2 |
6689035 | Gerber | Feb 2004 | B1 |
6771387 | Gauthier | Aug 2004 | B2 |
6895549 | Albright et al. | May 2005 | B1 |
6896250 | Hillebrand | May 2005 | B2 |
6939063 | Bussell | Sep 2005 | B2 |
6948115 | Aizikowitz et al. | Sep 2005 | B2 |
6953513 | Volkert | Oct 2005 | B1 |
7013616 | Powers et al. | Mar 2006 | B1 |
7164490 | Manico et al. | Jan 2007 | B2 |
7191392 | Coar | Mar 2007 | B1 |
7197465 | Hu et al. | Mar 2007 | B1 |
7243303 | Purvis et al. | Jul 2007 | B2 |
7293652 | Learn et al. | Nov 2007 | B2 |
7327362 | Grau | Feb 2008 | B2 |
7346408 | Van Bael et al. | Mar 2008 | B2 |
7366643 | Verdura et al. | Apr 2008 | B2 |
7406194 | Aizikowitz et al. | Jul 2008 | B2 |
7647752 | Magnell | Jan 2010 | B2 |
7729924 | Setya | Jun 2010 | B2 |
7765469 | Sembower et al. | Jul 2010 | B2 |
7788883 | Buckley et al. | Sep 2010 | B2 |
7832560 | Tilton | Nov 2010 | B2 |
8028501 | Buckley et al. | Oct 2011 | B2 |
20020085001 | Taylor | Jul 2002 | A1 |
20020118874 | Chung et al. | Aug 2002 | A1 |
20030012454 | Manico et al. | Jan 2003 | A1 |
20030035138 | Schilling | Feb 2003 | A1 |
20030052021 | McKenzie | Mar 2003 | A1 |
20030083763 | Kiyohara et al. | May 2003 | A1 |
20030091227 | Chang et al. | May 2003 | A1 |
20030098994 | Tacke | May 2003 | A1 |
20030164875 | Myers | Sep 2003 | A1 |
20030200111 | Damji | Oct 2003 | A1 |
20040073407 | Nguyen et al. | Apr 2004 | A1 |
20040120603 | Gupta | Jun 2004 | A1 |
20050005261 | Severin | Jan 2005 | A1 |
20050050052 | Zimmerman et al. | Mar 2005 | A1 |
20050157342 | Bru | Jul 2005 | A1 |
20050249400 | Fukumoto | Nov 2005 | A1 |
20050278614 | Aizikowitz et al. | Dec 2005 | A1 |
20050278621 | Aizikowitz et al. | Dec 2005 | A1 |
20060080274 | Mourad | Apr 2006 | A1 |
20060155561 | Harper | Jul 2006 | A1 |
20060217831 | Butterworth et al. | Sep 2006 | A1 |
20060284360 | Hume et al. | Dec 2006 | A1 |
20070008584 | Kawabuchi et al. | Jan 2007 | A1 |
20070041035 | Sembower et al. | Feb 2007 | A1 |
20070042885 | Rietjens et al. | Feb 2007 | A1 |
20070112460 | Kiselik | May 2007 | A1 |
20070172986 | Huang et al. | Jul 2007 | A1 |
20080048308 | Lam | Feb 2008 | A1 |
20080077415 | Shannon et al. | Mar 2008 | A1 |
20080255945 | Percival et al. | Oct 2008 | A1 |
20090063381 | Chan et al. | Mar 2009 | A1 |
20090070213 | Miller et al. | Mar 2009 | A1 |
20090236752 | Lee et al. | Sep 2009 | A1 |
20090254322 | Herman et al. | Oct 2009 | A1 |
20090282782 | Walker et al. | Nov 2009 | A1 |
20090287632 | Gombert et al. | Nov 2009 | A1 |
20090287717 | Gombert et al. | Nov 2009 | A1 |
20100060909 | Conescu et al. | Mar 2010 | A1 |
20100098319 | Gombert et al. | Apr 2010 | A1 |
20100110479 | Gombert et al. | May 2010 | A1 |
20100222908 | Gombert et al. | Sep 2010 | A1 |
20110054849 | Walker et al. | Mar 2011 | A1 |
20110116133 | Walker et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
2005000681 | Jan 2005 | WO |
2005054983 | Jun 2005 | WO |
2005122079 | Dec 2005 | WO |
WO 2007021920 | Feb 2007 | WO |
Entry |
---|
Liang Lu et al., “Folding Cartons with Fixtures: A Motion Planning Approach”, IEEE Transactions on Robotics and Automation, vol. 16, No. 4, Aug. 2000. |
Chen, “A Knowledge Base System for Carton Package Design”, GA2008, 11th Generative Art Conference Dec. 2008. |
http://www.esko.com/tmp/080606115325/G2558322—Kongsber—tables—us—pdf, Sep. 1, 2009. |
Number | Date | Country | |
---|---|---|---|
20110149337 A1 | Jun 2011 | US |