Method and system for GPS augmentation of mail carrier efficiency

Information

  • Patent Grant
  • 8326450
  • Patent Number
    8,326,450
  • Date Filed
    Wednesday, December 7, 2005
    19 years ago
  • Date Issued
    Tuesday, December 4, 2012
    12 years ago
Abstract
Mail carriers are assisted in delivering mail pieces. Each group of mail pieces is received from a sorting system, for delivery to respective final destinations. Also, the sorting system provides delivery data, preferably in electronic form, about delivering the group of mail pieces. Subsequently, GPS is used to determine a location of the mail carrier along a mail route. Information is then provided to the mail carrier regarding delivery of the group of mail pieces, in response to the location of the mail carrier and in response to the delivery data that was received from the sorting system.
Description
TECHNICAL FIELD

The present invention relates generally to mail delivery, and more particularly to electronically assisted mail delivery.


BACKGROUND OF THE INVENTION

Recently, progress has been made in streamlining mail sortation. For example, U.S. Provisional Patent Application Ser. No. 60/589,634, filed Jul. 21, 2004 is incorporated herein by reference. That previous invention used a folder/divider system for escorting mail through a sortation system. One aspect of this progress has been an increased use of electronic databases to record destinations of mail pieces, and to associate those destinations with respective folder/dividers. This electronic data regarding the destination addresses of surface mail has not yet been exploited at the delivery end, after a carrier has obtained sorted mail from a sorting system.


The posts around the world are very interested in ways for making mail carriers more efficient. The USPS recently engaged four suppliers to develop methods of merging flats and letters mail streams and wrapping all the mail for each delivery point in a packet. This initiative was intended to reduce the amount of time each carrier must spend manually sorting mail for the route each morning before leaving the DDU (Destination Delivery Unit=local post office), and reduce “fingering time” in which the carrier determines how many pieces are to be delivered to each address. Fingering time varies between 20 and 45 seconds per address.


Mailers and mail recipients have indicated displeasure with the USPS' plans to bundle or wrap mail for each address into packets. If the USPS heeds these warnings, they will lose some of the efficiency because the fingering time will be not be reduced as much as planned.


Additionally, posts face another issue related to carrier efficiency. Since carriers work a five day week, and mail must be delivered six days a week, at least one day each week, a substitute carrier must be used on each route to sort and deliver the mail. Also, when a carrier is on vacation, or calls in sick, substitutes must be used. The substitutes are not as familiar with the route as the assigned carrier, so they take longer to sort the mail, learn the route, and finger the mail while in transit.


SUMMARY OF THE INVENTION

The present invention assists a mail carrier to deliver a group of mail pieces. The group of mail pieces is received from a sorting system, for delivery to respective final destinations. Also, the sorting system provides delivery data, preferably in electronic form, about delivering the group of mail pieces. Then, a global positioning system (GPS) is used to ascertain a location of the mail carrier along a mail route. And, information is provided to the mail carrier regarding delivery of the group of mail pieces, in response to the location of the mail carrier and in response to the delivery data that was received from the sorting system. For example, the mail carrier is alerted regarding the number of packages or mail pieces to be delivered, as a function of where the carrier is located.


The delivery data can include not just data about the destinations of mail to be delivered, but can also include data about the delivery route, including driving directions. This is particularly useful if the mail carrier is a new mail carrier for the mail route, or if the mail carrier is a substitute mail carrier for the mail route, or if the mail carrier is temporarily assigned an expanded route.


The delivery data received from the sorting system may include data regarding deliveries to the respective final destinations. In that case, the information provided to the mail carrier along his or her route includes guidance regarding deliveries that are upcoming soon along the mail route. Such guidance can describe what number of pieces or what types of pieces are to be delivered to each of the respective final destinations. However, even if the delivery data includes details about upcoming deliveries along a route, the mail carrier can have an option such that the information to the mail carrier additionally includes driving directions. The guidance provided to a carrier can usefully include a description of delivery points that are to be bypassed due to the number of mail pieces being zero for that delivery point.


It may happen that the mail carrier is temporarily assigned to an expanded route and another mail carrier is temporarily assigned to a reduced route, in order to more equally distribute work for the two mail carriers. Preferably, the mail pieces received from the sorting system would be sorted according to these temporary assignments. The information provided to the mail carrier can be provided verbally or visually or both, by an electronic device.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate presently preferred embodiments of the invention, and together with the general description given above and the detailed description given below, serve to explain the principles of the invention. As shown throughout the drawings, like reference numerals designate like or corresponding parts.



FIG. 1 is a flow chart showing a first method of the present invention.



FIG. 2 is a block diagram showing a first system according to the present invention.



FIG. 3 is a block diagram showing an electronic device according to an embodiment of the present invention.



FIG. 4 is a flow chart showing a second method of the present invention.



FIG. 5 is a block diagram showing a second system according to the present invention.





BEST MODE FOR CARRYING OUT THE INVENTION

This invention helps make carriers (and substitute carriers) more efficient by using the information gathered by the delivery sequence sorter, and information about the delivery route, combined with GPS (global positioning systems) technology.


Carrier delivery sequence sorters capture information on every mail piece on a route including how many pieces are to be delivered to each address. Additionally, information from special handling items (registered mail, etc), and parcels can be scanned for each route. This information along with route delivery sequence information is loaded into an electronic storage device having a memory, a method of communicating with an operator such as a display or an audio system, and a GPS technology. This combination of capabilities is hereafter referred to as a GPS system. The GPS system can either be a handheld device, or a GPS/map display having verbal instruction capability—such as currently available for cars. The GPS system gives substitute carriers precise information on the delivery sequence of the route while the carrier is delivering the mail.


Additionally, as the carrier approaches each delivery point, the GPS device tells the carrier how many mail pieces to deliver to that address. These might be verbal or visual prompts such as: “Three pieces of mail for this address”, or “no mail for this address, so proceed to the next one”, or “you have two special delivery items for this address.”


This invention eliminates the need for the carrier to finger through the mail to determine how many pieces are to be delivered to each address, eliminates the need for the carrier to be familiar with the route, and eliminates the need to remember when special items and parcels need to be delivered to each address. Thus, it makes both the mail carrier and substitute carriers far more efficient. The USPS has a stated goal of improving last mile efficiency.


This invention significantly improves the efficiency of mail carriers in two ways. First, it uses GPS technology combined with route information to guide substitute carriers along an unfamiliar route with specific instructions on the specific delivery sequence. Second, information generated by the delivery sequence sorter on the number of mail pieces to be delivered to each address is loaded into the memory of the GPS device each day. Information on special items is also loaded into the memory of the GPS. On the route, the GPS gives precise instructions to the carrier at each address on the number of mail pieces, parcels, and special items are to be delivered to that address.


These improvements eliminate backtracking to deliver missed items, and it reduces the amount of time the carrier spends at each address fingering through the mail to determine how many pieces are to be delivered to each address.


If this invention is successful in saving each carrier only 10 seconds at each address, and the average route in the US has 600 addresses, each carrier will save 1.67 hours delivering the mail every day. There are about 130,000 routes in the USA, and the mail is delivered 300 days each year. If the average salary for carriers is, say $45,000 per year, this savings of only 10 seconds per address will add up to savings of $1.4 billion each year.


Additional savings will be available to the USPS by enabling substitute carriers to be nearly as efficient as the regularly assigned carriers. The present invention will enable managers at the posts to optimize the routes on a daily basis based on the volume of mail for each address. So, on a given day, if one carrier has a heavier than normal amount of mail to deliver, and another carrier has a lighter than normal amount, the manager can dynamically modify the two routes so that each carrier has about the same amount of work to do. The GPS system along with the information on the mail to be delivered at each stop will enable the carrier with the lighter initial load to be efficient in delivering mail to a portion the other route. This will reduce overtime, and allow the managers to optimize workloads for all carriers each day based on mail volume information.


Key elements of this system and method include a GPS device having a display, and/or audible prompts, a memory loaded with information about the carrier route and delivery sequence. Data on the number of pieces to be delivered to each address on the route, can be downloaded into the GPS device memory each day based on information developed by a delivery sequence sorter during sorting operations. The system furthermore includes data from other items to be delivered (registered mail, parcels, etc), which is also loaded into the GPS system memory.


The GPS device guides carriers unfamiliar with the route through a delivery sequence that matches the delivery sequence into which the mail pieces were sorted. Additionally, at each stop, the GPS device advises the carrier on how many pieces are do be delivered, and if there are any special items to be delivered. Generally, if the GPS says “three pieces for this address”, they will be the next three pieces in the tray or bag—so the carrier will not have to finger through the mail to read each address to determine the number of pieces. This system will save the carrier time at each stop.


Referring now to the figures, FIG. 1 is a flow chart illustrating an embodiment 100 of the present method. The carrier receives 105 mail from the sorter (i.e. from the sorting system). The carrier also receives 110 delivery data from the sorter. Subsequently, the global positioning system (GPS) is used 115 to find the carrier's location along the mail route. Then, information is provided 120 to the carrier regarding delivery of the mail pieces, based on the location of the carrier and on the delivery data previously received from the sorter. Also, driving directions can be provided 125 to the carrier based on the location and/or based on the delivery data, if the carrier opted to receive driving directions.


Turning now to FIG. 2, a system 200 is shown for implementing the present invention. The sorter 210 provides mail 230 to the carrier vehicle 215. The sorter 210 also provides delivery data to an electronic device 220 that accompanies the carrier vehicle on the delivery route. Also in the carrier vehicle is a GPS unit 240 which provides location coordinate data to the electronic device 220. The electronic device 220 is then able to give guidance to the carrier via a user interface 250, regarding delivery of the mail 230. This guidance may include alerts that a delivery is coming up, or driving directions, or instructions to skip an address because there will be no deliveries today, or details about how many items are to be delivered to the next address.



FIG. 3 shows a consolidated electronic device 300 according to an embodiment of the present invention. A GPS unit 320 enables the device to find out its position coordinates, and those coordinates are then provided to a processing unit 330. Delivery data has already been provided to the processing unit and stored in memory therein, via means 310 which may simply be an input port. Like the coordinate data, the delivery data is also provided to the processing unit 330. Then, the processing unit is in a position to give guidance to the user, via a user interface 340.


Turning now to FIG. 4, this method 400 is for altering mail carrier routes. It is determined 405 whether today's workload is even divided between the carriers. For example, some carriers might have an extraordinarily large amount of mail to deliver on their route today, while other carriers might have an extraordinarily small amount. If there are substantial differences in workloads, then it may be possible to alter 410 routes in order to make the delivery amounts for each carrier more equal. In that case, a worker divides the sorted mail 415 according to the altered routes. That mail is provided to the carriers, along with providing 420 delivery data for the altered routes. In a situation like this, a carrier may well end up on unfamiliar territory, and therefore automatically receiving GPS-based driving directions could be particularly useful.



FIG. 5 illustrates another system 500 according to the present invention. In this embodiment, processing is done at a postal facility or the like, instead of within the carrier vehicle 507. A GPS unit 505 reports position data to a transceiver 520, which conveys the position data to a sorted mail database and processor 510 located at a postal facility (e.g. at a headquarters location). The processor can then provide guidance to the postal carrier via the transceiver 520 and interface 530. One advantage of letting a remote unit like 510 do this work is that such a unit would have more processing power than could be conveniently fitted into a carrier vehicle, and such processing power could be used to give guidance to several carriers at the same time. Another advantage would be that the carrier would not have to make sure that any data has been transferred to the carrier vehicle.


It will be understood by those skilled in the art that the configurations depicted in FIGS. 2, 3 and 5 may be adapted to battery operated handheld devices to be carried by the mail deliverers on walking routes. The same information on the number and types of mail pieces to be delivered can be conveyed by the device as the carrier approaches each address.


It is to be understood that all of the present figures, and the accompanying narrative discussions of best mode embodiments, do not purport to be completely rigorous treatments of the methods and systems under consideration. A person skilled in the art will understand that the steps of the present application represent general cause-and-effect relationships that do not exclude intermediate interactions of various types, and will further understand that the various structures described in this application can be implemented by a variety of different combinations of hardware and software, and in various configurations which need not be further elaborated herein.

Claims
  • 1. A method of assisting a mail carrier to deliver a group of mail pieces, comprising: receiving the group of the mail pieces from a sorting system, for delivery to respective final destinations;altering mail carrier routes based on a volume of mail pieces that have to be delivered by the mail carrier, the altering comprising: determining that the volume of the mail pieces for each carrier route is not evenly distributed for each mail carrier; andsubstantially equalizing the volume of the mail pieces for each carrier route such that work load allocation is optimized for each mail carrier;obtaining delivery data about delivering the group of mail pieces based on the altered mail carrier routes;using a global positioning system to ascertain a location of the mail carrier along a mail route based on the received group of the mail pieces;providing information to the mail carrier regarding delivery of the group of mail pieces, in response to the location of the mail carrier and in response to the delivery data; anddescribing what number of pieces and what types of pieces are to be delivered to each of the respective final destinations.
  • 2. The method of claim 1, further including providing data regarding the mail route, and wherein the information to the mail carrier includes route directions.
  • 3. The method of claim 1, wherein the delivery data includes data regarding deliveries to the respective final destinations, and wherein the information to the mail carrier includes guidance regarding the deliveries to a plurality of the respective final destinations which are upcoming along the mail route.
  • 4. The method of claim 3, further comprising the step of providing an option to the mail carrier such that the information to the mail carrier also includes directions to the delivery destinations.
  • 5. The method of claim 1, wherein the guidance includes a description of delivery points that are to be bypassed due to the number of pieces being zero.
  • 6. The method of claim 2, wherein a mail carrier is temporarily assigned an expanded route and another mail carrier is temporarily assigned a reduced route, wherein the expanded route and the reduced route are calculated to more equally distribute work for the mail carrier and the another mail carrier, and wherein the groups of mail pieces and delivery data are modified according to the expanded and reduced routes.
  • 7. The method of claim 1, wherein the delivery data is also used by the sorting system to sort the group of mail pieces.
  • 8. The method of claim 1, wherein the step of providing the information to the mail carrier is performed from the group consisting of verbal and visual communications.
  • 9. The method of claim 1, wherein the delivery data is obtained from the sorting system.
  • 10. A delivery system for assisting a mail carrier to deliver a group of mail pieces, comprising: at least one mail container for receiving the group of the mail pieces from a sorting system, the group of mail pieces being for delivery to respective final destinations wherein the sorting system optimizes mail carrier routes based on a volume of mail pieces that have to be delivered by the mail carrier such that work load allocation is substantially equal amongst mail carriers by first determining that that the volume of the mail pieces for each carrier route is not evenly distributed for each mail carrier;an electronic device for obtaining delivery data about delivering the group of mail pieces;a wireless unit for using a global positioning system to ascertain a location of the mail carrier along a mail route; anda user interface for providing information to the mail carrier regarding delivery of the group of mail pieces, in response to the location of the mail carrier and also in response to the delivery data.
  • 11. The delivery system of claim 10, wherein the delivery data includes data regarding the mail route, and wherein the information to the mail carrier includes route directions.
  • 12. The delivery system of claim 11, wherein the mail carrier is a new mail carrier for the mail route, or the mail carrier is a substitute mail carrier for the mail route, or the mail carrier is temporarily assigned an expanded route.
  • 13. The delivery system of claim 10, wherein the delivery data includes data regarding deliveries to the respective final destinations, and wherein the information to the mail carrier includes guidance regarding the deliveries to a plurality of the respective final destinations which are upcoming along the mail route.
  • 14. The delivery system of claim 13, wherein the guidance describes what number of pieces and what types of pieces are to be delivered to each of the plurality of the respective final destinations.
  • 15. The delivery system of claim 13, wherein the user interface is also for providing an option to the mail carrier such that the information to the mail carrier also includes route directions.
  • 16. The delivery system of claim 14, wherein the guidance includes a description of delivery points that are to be bypassed due to the number of pieces being zero.
  • 17. The delivery system of claim 12, wherein the mail carrier is temporarily assigned the expanded route and an other mail carrier is temporarily assigned a reduced route, wherein the expanded route and the reduced route are calculated to more equally distribute work for the mail carrier and the other mail carrier, and wherein the group of mail pieces received from the sorting system has been modified according to the expanded route.
  • 18. The delivery system of claim 10, wherein the delivery data is also used by the sorting system to sort the group of mail pieces.
  • 19. The delivery system of claim 10, wherein the user interface is for providing the information to the mail carrier from the group consisting of verbal and visual communications.
  • 20. The delivery system of claim 10, wherein the delivery data is obtained from the sorting system.
  • 21. An electronic device for assisting a mail carrier to deliver a group of mail pieces that is received from a sorting system, the group of mail pieces being for delivery to respective final destinations, comprising: a system for obtaining delivery data about the group of mail pieces and optimizing mail carrier routes based on a volume of mail pieces that have to be delivered by the mail carrier, the system: determining that the volume of the mail pieces for each carrier route is not evenly distributed for each mail carrier; andsubstantially equalizing the volume of the mail pieces for each carrier route;a wireless unit including a global positioning system to ascertain a location of the mail carrier along a mail route; anda user interface for providing information to the mail carrier regarding delivery of the group of mail pieces, in response to the location of the mail carrier and also in response to the delivery data, wherein the information includes an amount and what types of mail pieces to be delivered to the respective final destinations.
  • 22. The electronic device of claim 21, wherein the delivery data is obtained from the sorting system.
  • 23. The method of claim 1, further comprising dividing the sorted mail pieces according to the altered mail carrier routes.
  • 24. The method of claim 23, wherein the providing information includes providing the altered mail carrier routes.
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims priority to U.S. Provisional Application No. 60/634,014 filed Dec. 7, 2004 which is also incorporated by reference herein.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2005/044406 12/7/2005 WO 00 8/28/2007
Publishing Document Publishing Date Country Kind
WO2006/063121 6/15/2006 WO A
US Referenced Citations (124)
Number Name Date Kind
803968 Barry Nov 1905 A
1423952 McCracken Jul 1922 A
1783687 Shaw Dec 1930 A
2446610 Renfro Aug 1948 A
2852257 Sperry Sep 1958 A
3032341 Reist May 1962 A
3055480 Hyman Sep 1962 A
3420368 Sorrells Jan 1969 A
3452509 Hauer Jul 1969 A
3587856 Lemelson Jun 1971 A
3659890 Renfro May 1972 A
3757939 Henig Sep 1973 A
3884370 Bradshaw et al. May 1975 A
3889811 Yoshimura Jun 1975 A
3901797 Storace Aug 1975 A
3904027 Gilles et al. Sep 1975 A
3904516 Chiba Sep 1975 A
3933094 Murphy Jan 1976 A
3960264 Carbine et al. Jun 1976 A
3008813 Leersnijder Feb 1977 A
4008813 Leersnijder Feb 1977 A
4058217 Vaughan Nov 1977 A
4106636 Ouimet Aug 1978 A
4169529 Hunter Oct 1979 A
4244672 Lund Jan 1981 A
4303503 de Mimerand et al. Dec 1981 A
4507739 Haruki Mar 1985 A
4594754 Spicer Jun 1986 A
4627540 Takeda Dec 1986 A
4632252 Haruki et al. Dec 1986 A
4641753 Tamada Feb 1987 A
4681213 Winiasz Jul 1987 A
4688678 Zue Aug 1987 A
4738368 Shaw Apr 1988 A
4848538 Vaida et al. Jul 1989 A
4868570 Davis Sep 1989 A
4874281 Bergerioux Oct 1989 A
4878577 Romero Lledo et al. Nov 1989 A
4891088 Svyatsky Jan 1990 A
4895242 Michel Jan 1990 A
4920487 Baffes Apr 1990 A
4921107 Hofer May 1990 A
4921294 Klopfenstein May 1990 A
4923022 Hsieh May 1990 A
4965829 Lemelson Oct 1990 A
4978117 Maier et al. Dec 1990 A
5031223 Rosenbaum Jul 1991 A
5042667 Keough Aug 1991 A
5072401 Sansone et al. Dec 1991 A
5119954 Svyatsky Jun 1992 A
5186336 Pippin Feb 1993 A
5291002 Agnew Mar 1994 A
5470427 Mikel Nov 1995 A
5480032 Pippin Jan 1996 A
5718321 Brugger Feb 1998 A
5838277 Loomis et al. Nov 1998 A
5880958 Helms et al. Mar 1999 A
5881890 Wiley Mar 1999 A
5937485 Dittmer Aug 1999 A
5981891 Yamashita Nov 1999 A
6029111 Croyle Feb 2000 A
6126017 Hours Oct 2000 A
6208910 Michael et al. Mar 2001 B1
6227378 Jones May 2001 B1
6276509 Schuster Aug 2001 B1
6286662 Meier Sep 2001 B1
6347710 Ryan Feb 2002 B1
6365862 Miller Apr 2002 B1
6394449 Reist May 2002 B1
6403906 De Leo Jun 2002 B1
6411897 Gaspard, II Jun 2002 B1
6435353 Ryan Aug 2002 B2
6443311 Hendrickson Sep 2002 B2
6464067 Reist Oct 2002 B1
6555776 Roth et al. Apr 2003 B2
6561339 Olson May 2003 B1
6561360 Kalm May 2003 B1
6677548 Robu Jan 2004 B2
6814210 Hendzel Nov 2004 B1
6856860 Stringham et al. Feb 2005 B2
6897395 Shiibashi May 2005 B2
6921875 Hanson Jul 2005 B2
6946612 Morikawa Sep 2005 B2
6953906 Burns Oct 2005 B2
6994220 Schererz Feb 2006 B2
7004396 Quine Feb 2006 B1
7111742 Zimmermann Sep 2006 B1
7112031 Harres Sep 2006 B2
7112756 Hanson Sep 2006 B2
7138596 Pippin Nov 2006 B2
7170024 Burns Jan 2007 B2
7210893 Overman May 2007 B1
7227094 Oexle Jun 2007 B2
7235756 De Leo Jun 2007 B2
7259345 Kechel Aug 2007 B2
7259346 Svyatsky Aug 2007 B2
7304260 Boller Dec 2007 B2
7378610 Umezawa May 2008 B2
7396011 Svyatsky Jul 2008 B2
7397010 Wilke Jul 2008 B2
7397011 Berdelle-Hilge Jul 2008 B2
7464822 Coffelt et al. Dec 2008 B2
20020053533 Brehm May 2002 A1
20020055818 Gaspard, II May 2002 A1
20020089434 Ghazarian Jul 2002 A1
20020139726 Roth et al. Oct 2002 A1
20030006174 Harres Jan 2003 A1
20030038065 Pippin et al. Feb 2003 A1
20040030661 Amato Feb 2004 A1
20050131576 De Leo et al. Jun 2005 A1
20060070929 Fry Apr 2006 A1
20060124512 Quine Jun 2006 A1
20060180520 Ehrat Aug 2006 A1
20060191822 Avant Aug 2006 A1
20070090029 Avant Apr 2007 A1
20070131593 Burns Jun 2007 A1
20070272601 Cormack Nov 2007 A1
20080011653 Stemmle Jan 2008 A1
20080012211 Stemmle Jan 2008 A1
20080027986 Stemmle Jan 2008 A1
20080093273 Stemmle Apr 2008 A1
20080093274 Stemmle Apr 2008 A1
20080164185 Stemmle Jul 2008 A1
20090005900 Stemmle Jan 2009 A1
Foreign Referenced Citations (11)
Number Date Country
1202234 May 2002 EP
1396595 Mar 2004 EP
1396595 Mar 2004 EP
1528496 May 2005 EP
2630412 Oct 1989 FR
2 382 559 Apr 2003 GB
1-159088 Jun 1989 JP
1-271789 Oct 1989 JP
WO0016293 Mar 2000 WO
WO 0045977 Aug 2000 WO
WO 03043750 May 2003 WO
Related Publications (1)
Number Date Country
20090005900 A1 Jan 2009 US
Provisional Applications (1)
Number Date Country
60634014 Dec 2004 US