The present invention relates to an examination and imaging system for fired cartridge cases, and more specifically to an examination and imaging system for use by firearms manufacturers to gather fired cartridge case identification data.
It is well known that fired bullets and spent cartridge cases are left with markings from the firearm from which they come. The markings left on spent cartridge cases result from forced contact between the cartridge and metal parts within the firearm, namely the firing pin and breech. Because the breech and firing pin of each individual firearm are slightly different from firearm to firearm, those of each other firearm, markings are left on each fired cartridge case (a kind of “fingerprint”) unique to each firearm. These “fingepripnts” can be and have been used to determine if two or more cartridge cases have been fired from the same firearm (handgun, rifle, or shotgun). For example, an automated process and apparatus for capturing, storing and comparing fired cartridge case images is disclosed in U.S. Pat. No. 5,654,801 and sold by Forensic Technology WAI Inc. as the IBIS® system. However, despite its success, the ability of the IBIS® system to link cartridge cases to a particular identified firearm has been limited to cases where a firearm has been recovered as evidence. Thus, there is a need for a system that obtains information on firearms before sale (and subsequent use in potential crimes) so that firearm information and evidence gathered in criminal and other investigations, such as fired cartridge cases, can be compared against and linked to particular firearms.
The present invention provides a method of comparing the markings on spent cartridge cases and identifying the particular firearms, by serial number, from which they were fired without possession of the firearm as evidence. In accordance with the present invention, firearm manufacturers will have the ability to gather firearms identification data to be employed subsequently during forensic analysis of spent cartridge cases.
In brief, the object of the present invention is to provide firearm manufacturers with a solution for recovering, sorting, marking, and acquiring the images of spent cartridge cases during firearm test-fires and, most preferably, a system that is fully automated.
It is one object of the present invention to provide fully automated industrial cartridge casing recovery, sorting, marking, and imaging for use by firearm manufactures in an industrial environment. In a preferred embodiment, the system and method includes five sub-systems, which work in the following sequence: a firearm serial number recognition sub-system; a cartridge case recovery sub-system; a cartridge case sorting sub-system; a cartridge case marking sub-system; and an image acquisition sub-system. The firearm serial number recognition sub-system is a hardware and software sub-system that reads the serial number of a firearm and stores it in a database. The cartridge case recovery sub-system is a mechanical sub-system, which recovers the firearm's ejected cartridge cases and transports them to the sorting sub-system. The cartridge case sorting sub-system identifies the orientation of the cartridge cases and reorients them if necessary, the object being to put the cartridge cases into the correct position for marking. The cartridge case marking sub-system stamps a reference numeral related to the firearm serial numbers on the cartridge cases with a stylus. The reference number is encrypted in a 2D matrix (barcode) form on the cartridge cases. The image acquisition sub-system automatically acquires the firing pin and breech face images of a cartridge case after reading the stamped reference number on its side. This sub-system processes many cartridge cases one after another.
For a more complete understanding of the present invention, and for further advantages thereof, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
The present invention is a novel firearms identification system that provides a solution for recovering, sorting, marking, and acquiring the images of spent cartridge cases during firearm test-fires. In the preferred embodiment of the invention hereinafter described, the system provides a fully automated cartridge case recovery, sorting, marking, and imaging for use by firearm manufacturers in an industrial environment (e.g. a firearms manufacturer's test fire range). The preferred system includes a sequence of five sub-systems as follows: a firearm serial number recognition sub-system; a cartridge case recovery sub-system; a cartridge case sorting sub-system; a cartridge case marking sub-system; and an image acquisition sub-system.
Referring to
The serial number recognition device 130 consists of a CCD (charge-coupled device) digital camera 108 connected to a computer equipped with high-resolution image grabber technology (a PCI card). A suitable image grabber is a commercially available PCI card from Matrox Inc by the name of Matrox frame Grabber Meteor 2/4. Digital camera 108 is preferably controlled by a computer which signals to the camera to take a picture (image) of the firearm serial number 106 at a preselected time prior to test firing of the firearm. This is done through OCR (Optical Character Recognition) software which instructs the frame grabber card to activate the digital camera to grab an image of the serial number on the firearm positioned in front of the camera. The image of the serial number is electronically transmitted to the computer for further processing and/or stored in the computer's memory or other storage medium (e.g. disk, storage tape, etc.) for later processing. After the image of the serial number is obtained and transmitted to the computer, the image is analyzed and processed by the computer with Optical Character Recognition (OCR) algorithm and software which are designed to read and recognize the serial number of the specific firearm. At this point in the process, the system then preferably sends the image for storage in a database and next sends the serial number (in alphanumerical format) for storage in the same database after an automatic or manual validation. The level of confidence preset in the software controlling the OCR software predefines the automatic or manual validation. The image of the serial number and the serial number itself are then linked to the record of the acquired cartridge case image for the firearm in the database. In an alternative embodiment of the firearm serial number recognition sub-system, the image capture from the CCD digital camera 108 is stored directly in the computer database and associated to the firearm serial number without being processed by the OCR algorithm.
Referring to
Referring to
Referring to
Referring to
In the operation of the sorting sub-system shown in
The rotating device 312 comprises a cylinder with four chambers 314 to hold each of the respective cartridge cases 600 and is mounted to a pneumatic rotary actuator 316 driven by a solenoid valve that is controlled by the PLC and a pneumatic piston 320 for translation displacements. Once the transfer block 307 is positioned above the rotating device, the cartridge cases fall through four openings to reach the rotating device's chambers 314. At this stage, four vacuum cups 319 that axe mounted on a linear pneumatic slide 321 pick up the primer side up cartridge cases and leave any casings that have not been oriented primer side up. The remaining cartridge cases (i.e., the cases that were not oriented primer side up and therefore not picked up by the vacuum cups) are then rotated 180 degrees so that their primer side is facing up. This rotation of the rotating device 312 is performed by rotary actuator 316. The vacuum cups 319 then reposition the previously extracted cartridge cases into the empty chambers 314 of the rotating device. At that point, the orientation of all the cartridge cases is the same (primer side up) and pneumatic piston 320 moves laterally the housing block 322 (that holds the rotating device) to align the openings of the rotating device 314, with openings 318. In the next step, gate 313, moved by a pneumatic cylinder 323 that is driven by a solenoid valve, releases the cartridge cases 600 to the cartridge case marking subsystem only when the four sensors 325 confirm to the PLC the presence of four cartridge cases. Sensors 325 can be of the same type as sensors 308, namely, fiber optic sensors.
Referring to
In the preferred sub-system, two machines are used at the same time to speed up the marking step. Once the cartridge cases have been marked, a vision system 420 with a CCD, (Charge Coupled Device) camera 415 reads the 2D-matrix code to validate if each cartridge case has been clearly marked for marking validation purposes. The vision system 420 uses a commercially available CCD (e.g., SmartSensor Series 600 manufactured by DVT) which includes software to read for validation purposes that the marking of the 2D bar code on the cartridge case has been properly done. After this validation process, the indexing device/table positions the cartridge cases holding device 418 in front of a pick and place device (
Referring to
The sorted and marked cartridge cases are positioned into a carrier media 417. This carrier media is placed manually on the motorized XY table 518 under the microscope 519 for the image acquisitions. Preferably, an automated acquisition procedure is then started, controlled by a computer. The bar code reader 523 identifies the current carrier media by reading a bar coded label attached to its side. The NY table moves sequentially to pre-programmed positions that match the cartridge case locations in the carrier device. The XY table's translations to a position under the microscope for image acquisition, the microscope's focus and the light intensity can be accomplished manually, but automated control of these steps via a computer is preferred. A small motor with a vacuum cup 521 lifts and rotates the first cartridge case in front of the digital camera (smart sensor) 522. That camera 522, assisted by lighting, reads the reference number represented by a 2D-matrix code engraved on the cartridge case. A suitable light for reading the 2D bar code is one that brings contrast to the 2D matrix code engraved on the cartridge case's surface. A commercially available light suitable for this purpose is an LED illuminator sold under the name NERLITE® S-40. The reference number that has now been read is used to validate that the correct cartridge case is being acquired.
Preferably, the acquisition of the firing pin and breech face images is done automatically with the help of a ring light 520. The process of cartridge case breech face and firing pin marks examination has been successfully automated using apparatus as set out in U.S. Pat. No. 5,654,801, which is hereby incorporated by reference. After the first image acquisition (firing pin and breech face), the next cartridge case is positioned under the microscope 519 (preferably automatically via control by a computer) and the acquisition procedure is repeated. The system continues the automatic reference number reading and the image acquisition for all the cartridge cases in the carrier media 417. Once all the cartridge cases images of the carrier media have been acquired the operator validates the images by verifying that every image corresponds to the quality required by the QA (quality assurance) standards. This can be accomplished by a visual inspection of the images by the operator who validates whether the images appear in focus and the light intensity seems adequate. Preferably this is done using a monitor with multiviewer window capability, such as that employed in the commercially available IBIS system sold by Forensic Technology WAI, Inc. of Canada, to allow a more efficient validation process. The multiviewer is a window generated by a software application displaying multiple acquired images on a monitor. Preferably, the multiviewer process employs a tiling (configurable) format, such as that employed by the IBIS system, enabling the operator to perform a fast quality assurance verification of the images. Any image that does not meet the quality standards is reacquired until quality standards are met.
After the acquisition and validation procedures are successfully executed, the acquired cartridge cases can then be used in a correlation procedure. The correlation procedure is to compare a discovered or tested-fired cartridge case against the database of images acquired as described above. Any suitable image comparison software can be used to correlate the images. A suitable correlation process is described in U.S. Pat. No. 5,654,801
Preferably, the carrier media with the cartridge cases is covered with a protective plastic plate for storage after image acquisition. The carrier media are also identified by specific barcode. The barcode stored in the database helps to trace the cartridge cases for later use in investigations or other evidentiary purposes. For example, the test fired cartridge cases may be compared under a comparison microscope with evidence from crime scenes to validate “hits” (i.e., potential matches) indicated by the automated image correlation process.
Although the present invention has been described with respect to preferred embodiments, various changes, substitutions and modifications of this invention may be suggested to one skilled in the art, and it is intended that the present invention encompass such changes, substitutions and modifications as fall within the scope of the appended claims.
Number | Date | Country | |
---|---|---|---|
60236492 | Sep 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10486460 | Jun 2004 | US |
Child | 12056660 | US |