The present disclosure relates generally to methods and systems for identifying depth data associated with objects.
Improvements in computer processing power have led to the availability of ultra high resolution digital images, including gigapixel images and terapixel images. These ultra high resolution images can be used to depict various objects or locations in intricate detail for observation by interested parties.
Current high resolution imagery is typically captured by compositing a single image from a large number of individual shots captured by a camera. For instance, the Google Art Project services provided by Google Inc. provide access to high resolution images of various works of art from worldwide galleries. However, such composited images fail to completely represent certain types of artwork. In this regard, photographic images do not reveal depth information about the object being captured. For instance, texture information from paintings is lost when relying on conventional photography techniques. Such texture information can reveal characteristics of the base material and the paint, such as brushstrokes, thicknesses, and the like.
Light detection and ranging (LIDAR) has been used to create depth maps. However, many curators of galleries containing high-value artwork have concerns about incident laser radiation that the use of LIDAR can impose on artwork.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
One exemplary aspect of the present disclosure is directed to a method for identifying depth information associated with an object. The method includes capturing, with an image capturing device, a plurality of source images of the object. The image capturing device has a sensor that is tilted at a known angle with respect to an object plane of the object such that the image capturing device has a depth of field associated with each source image, the depth of field defining a plane that is angled with respect to the object plane. An image processor analyzes the plurality of source images to identify segments of the source images that satisfy an image quality metric. Position data is assigned to the identified segments of the source images, the position data including depth positions based on the plane defined by the depth of field.
Other exemplary aspects of the present disclosure are directed to systems, apparatus, and computer readable media for generating a composite image from a plurality of source images.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Generally, the present disclosure is directed to a system and method for identifying depth information associated with an object. To identify depth information, imagery is captured using a sensor plane that is tilted with respect to an object and an object plane associated therewith. In such a configuration, certain portions of the sensor plane are closer to the object plane and certain portions of the sensor plane are farther from the object plane. The ability to have extremely shallow depth of fields allows for the utilization of software focus detection techniques to precisely determine the relative or absolute depths of the in-focus regions. In particular, image analysis can be performed to identify portions of images that satisfy an image quality metric, thereby providing an indication of the in-focus regions of the image. The in-focus regions can be compared to position data to determine depth information for such regions based on their location in the object plane and an associated depth of field plane. Such a method also allows for generation of a depth map of the object being captured.
The system and method described herein can create a depth map by arranging the depth information from a number of source images that are associated with a depth of field of the image capturing device. The depth information used to create the depth map comes from sections of the source images that are in-focus in the plane defined by the depth of field. The segments of the source images that meet a predetermined image quality metric can be identified and be assigned position data including depth positions based on the plane defined by the depth of field. Once the segments of the source images have been identified and assigned position data, a depth map can be created.
According to aspects of the present disclosure, a coverage map can be generated that identifies the coordinates of segments of the source images used in the depth map. The coverage map can be provided to a user to facilitate manual control of the capturing of additional source images. In addition, the coverage map can be used to control the image capture system to target additional source image captures to more efficiently complete the depth map. The control of the image capture system can also be automatically adapted based at least in part on the coverage map to optimize overlap between captures depending on calculations for estimated depth of field, angle off axis, and actual captured in-focus area.
The systems and methods of the present disclosure can also enhance the effectiveness of a multi-camera or multi-lens image capture system. For instance, the coverage map can provide the exact coordinates of in-focus imagery for each source image in the planes defined by the respective depth of fields of multiple cameras. This information can be used to arrange the depth information from acceptable portions of the source images into a global depth map even if the cameras are capturing imagery from vastly different portions of the object. The global depth map can also be used to provide efficient control of the multiple cameras to target missing segments in the global depth map.
The image capture system 110 includes an image capture device 112, such as a digital camera. The digital camera can be configured to capture video and/or still images. As illustrated, the image capture system can include additional image capture devices, such as image capture device 114. Image capture device 114 is illustrated in dashed line to indicate that image capture system 110 can include any number of image capture devices as desired.
As can be seen in
As will be discussed in detail below, position data for an image captured by the image capture device 112 can be determined based on information received from the image sensor 202. For instance, each pixel of the digital image can be associated with a position based on the associated pixel sensor in the image sensor 202. The location of the pixel in the image relative to the pixel sensor array in the image sensor 202 allows for accurate determination of where in the depth of field (shown in
Image capture device 112 further includes an autofocus mechanism 206. The autofocus mechanism 206 controls the lens 202 and various other components of the image capture device 112 to properly focus the image capture device 112 on the object. As the image capture device 112 is continuously capturing source images of an object, the autofocus mechanism 206 causes the image capture device 112 to bring the object into focus allowing the items in the image capture device's depth of field to be revealed.
Image capture device 112 can be mounted to a positioning device 230, such as a camera mount. The positioning device 230 is configured to adjust the position of the image capture device 112 relative to the object (while maintaining a known angle between the sensor plane and the object plane) as the image capture device captures a plurality of source images of the object. The positioning device 230 can be controlled by a control system, such as the control system 130 of
In a particular embodiment, the positioning device 230 can be a pan/tilt mount for the image capture device 230. The pan/tilt mount can adjust the pan angle and the tilt angle of the image capture device 112 relative to the object to capture a plurality of source images from various locations on the object. In another embodiment, the positioning device 230 can impart motion of the image capture device 112 along an x-axis, y-axis, and z-axis relative to the object to capture a plurality of source images of the object. Again, however, known geometry of the tilted sensor plane permits the accurate determination of the relative distances from the camera to the in-focus regions. Additionally, if the distance between the sensor plane and the object planes is known, absolute distances from the camera to the in-focus regions can be determined.
The positioning device 230 can include one or more motors 232 to control the position of the positioning device 230 pursuant to commands from a control system. The motors 232 can track position information, such a pan angle and a tilt angle of a pan/tilt camera mount. Alternatively, position information can be captured by one or more position sensors 236 associated with the positioning device 230. The position information or data can be associated with individual source images captured by image capture device 112 and communicated through interface 212 to an image processing system for use in determining depth information and generating a depth map as will be discussed below.
Referring back to
Memory 132 stores information accessible by processor(s) 122, including instructions that can be executed by processor(s) 122. The instructions can be any set of instructions that when executed by the processor(s) 122, cause the processor(s) 122 to provide desired functionality. For instance, the instruction can cause the processor to analyze source images and assign position data to portions of the source image to generate a depth map.
The instructions can be software instructions rendered in a computer-readable form. When software is used, any suitable programming, scripting, or other type of language or combinations of languages may be used to implement the teachings contained herein. Alternatively, the instructions can be implemented by hard-wired logic or other circuitry, including, but not limited to application-specific circuits.
Memory 124 can also include data that may be retrieved, manipulated, created, or stored by processor(s) 122. For instance, memory 124 can include source images received from the image capture system 110, position data associated with the source images, portions of the source images, a coverage map, and/or a depth map generated from the plurality of source images.
Image processing system 120 can include or be coupled to one or more input devices 126 and output devices 128. Input device 126 may correspond to one or more peripheral devices configured to operate as a user interface with image processing system 140. Exemplary input devices can include but are not limited to a keyboard, touch-screen monitor, microphone, mouse and other suitable input devices. Output device 148 may correspond to a visual display device. As will be discussed below, the visual display can be used to display the depth map or a coverage plot to a user.
Image processing system 120 can also be coupled to a control system 130. While control system 130 is depicted in
The control system 130 is used to provide commands to the various components of the image capture system 110 to control the capture of source images of the object 10. For instance, the control system 130 can control the position of the image capture device 112 relative to the object by sending control commands to a positioning device associated with the image capture device 112. The control system can also control the image capture device 112 by sending signals to the image capture device 112 directing the image capture device to capture source images of the object 10. Control system 130 can be any suitable control device, such as processor, microcontroller, or other suitable control circuit. According to aspects of the present disclosure, the control system can control the capture of additional source images by the image capture system 110 based at least in part on a coverage map or the depth map generated by the image processing system 120.
Due to the inherent flexibility of computer based systems, system 100 can take a variety of forms. For instance, in one embodiment, the image processing system 120 and control system 130 can be part of a general purpose computer. Alternatively, the image processing system 120 and control system 130 can be stand alone special purpose computing devices dedicated to perform the functionality discussed herein. Even still, the image processing system 120 and control system 130 can form part of the image capture system 110 and can be associated with either the positioning device 230 or image capture device 112.
At (302), the method captures a plurality of source images of an object.
As shown in
As discussed above, an autofocus mechanism 206 associated with the image capture device 112 can attempt to bring the subject artwork 400 into proper focus as the image capture device 112 sweeps the object 400.
Referring back to
The position data can be assigned to individual pixels based on information received from the image capture system. For instance, the positioning device 230 (shown in
Further still, position information can be based on information from an image sensor of the image capture device. For instance, each pixel in a source image can be associated with a pixel sensor in a pixel sensor array of the image sensor 204 (shown in
At (308), the method analyzes the plurality of source images 410 captured by the image capture system 110 to identify segments of the source images that are suitable for use in determining depth information. However, it should also be appreciated that image analysis can take place as each individual source image is captured rather than after a plurality of source images are captured. In a particular implementation, the image processing system 120 performs image analysis techniques on the source images 410 to identify portions of the source images that satisfy an image quality metric. The method performs image analysis on the images to identify portions of the images that are properly in focus and portions of the composite image that are not properly in focus.
For instance, the image processing system 120 (
The sharpness of particular portions of an image can be assessed by analyzing the frequency components of the image. For instance, the sharpness of a particular portion of an image can be analyzed by determining the ratio of high frequency components of a portion of the image to the low frequency components of the image. Portions of the image having a relatively high ratio of high frequency components to low frequency components can have a sharp appearance. In contrast, portions of the image having a relatively low ratio of high frequency components to low frequency components can result in the image having a duller, more out-of-focus appearance. These portions of the image indicate the image was not in focus and, thus, in a different plane from the depth of field associated with that particular image.
Based on the image analysis, the method can control the capture of additional source images to recapture images of regions of the object that did not satisfy the image quality metric. For instance, the image processing system 120 (shown in
In one implementation, the method controls the capture of additional source images by using a coverage map. For instance, referring back to
The coverage map can be any compilation of data that identifies locations of suitable and/or unsuitable portions of the composite image for generating depth information. For instance, the coverage map can simply be a data compilation or table identifying pixel coordinates for pixels or groups of pixels for which depth information is known. The data compilation could also identify pixel coordinates for pixels or groups of pixels that do not satisfy the requisite image quality metric.
In one example, the coverage map can include a plot of the locations of both suitable portions and unsuitable portions of the composite image in a two-dimensional or three-dimensional space corresponding to the object.
Referring to
The depth map can be any compilation of data that identifies object depth information. For instance, the depth map can simply be a data compilation or table identifying depth information for sections of the object for which depth information is known. The data compilation could also identify sections for which depth information is now known. Depth information can be relative to other sections of the object or can be actual depth.
If one or more portions of the composite image that do not satisfy the image quality metric are identified, the method identifies the locations of these regions from the coverage map (314). For instance, the image processor 120 (shown in
Once these coordinates are known, the method can generate control commands to recapture source images of the object associated with one or more portions of the composite image that do not satisfy the image quality metric (318) and for which depth information cannot be determined In one example, the coordinates of all portions of the composite image that do not satisfy the image quality metric can be compiled into a global list or compilation. The global list or compilation can be analyzed by the image processing system 120 (shown in
In one particular example, the control commands can be used to control an image capture system having a plurality of image capture devices. In particular, control commands for all image capture devices can be generated based on the locations of out-of-focus portions in the composite image. In this manner, the composite image and/or associated coverage map acts as a global resource for generating control commands for each of the plurality of image capture devices.
The additional source images captured pursuant to the control commands can be processed in a similar manner to the steps of the method 300 outlined above. The image processing system 120 (shown in
While the present subject matter has been described in detail with respect to specific exemplary embodiments and methods thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing may readily produce alterations to, variations of, and equivalents to such embodiments. Accordingly, the scope of the present disclosure is by way of example rather than by way of limitation, and the subject disclosure does not preclude inclusion of such modifications, variations and/or additions to the present subject matter as would be readily apparent to one of ordinary skill in the art.
Number | Name | Date | Kind |
---|---|---|---|
4053934 | Kornreich et al. | Oct 1977 | A |
5293415 | Hartley et al. | Mar 1994 | A |
7170559 | Takada | Jan 2007 | B2 |
7646932 | Peterson | Jan 2010 | B1 |
7860343 | Tico et al. | Dec 2010 | B2 |
8436860 | Milliron et al. | May 2013 | B1 |
20010019664 | Pilu | Sep 2001 | A1 |
20030179418 | Wengender et al. | Sep 2003 | A1 |
20040032980 | Harman | Feb 2004 | A1 |
20070164202 | Wurz et al. | Jul 2007 | A1 |
20090003698 | Milward et al. | Jan 2009 | A1 |
20100034457 | Berliner et al. | Feb 2010 | A1 |
20100085383 | Cohen et al. | Apr 2010 | A1 |
20100172549 | Weiss | Jul 2010 | A1 |
20100245684 | Xiao et al. | Sep 2010 | A1 |
20110134224 | McClatchie | Jun 2011 | A1 |
20120162374 | Markas et al. | Jun 2012 | A1 |
Entry |
---|
Kovacs et al., “Focus Area Extraction by Blind Deconvolution for Defining Regions of Interest”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, No. 6, Jun. 2007, pp. 1080-1085. |
Shaked et al., “Sharpness Measure: Towards Automatic Image Enhancement”, In Proceedings of ICIP (1). 2005, 937-940. |
International Search Report—2 pages. |
Castano et al., “Omnifocused 3D Display Using the Nonfrontal Imaging Camera,” Computer Vision for Virtual Reality Based Human Communications,1998 IEEE and ATR Workshop, Bombay, India, Jan. 3, 1998, pp. 28-34. |
Krishan et al. “Range Estimation From Focus Using a Non-Frontal Imaging Camera,” International Journal of Computer Vision, vol. 20, No. 3, Kluwer Academic Publishers, Norwell, US, Dec. 1, 1996, pp. 169-185. |
Ikeoka et al., “Real-Time Depth Estimation with Wide Detectable Range Using Horizontal Planes of Sharp Focus Proceedings,” International Conference on Advanced Concepts for Intelligent Vision Systems, Springer Berlin Heidelberg, Aug. 22, 2011, pp. 669-680. |
Jarvis, “A Perspective on Range Finding Techniques for Computer Vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-5, No. 2, Mar. 1, 1983, pp. 122-139. |
Number | Date | Country | |
---|---|---|---|
20130242086 A1 | Sep 2013 | US |