The present disclosure relates to imaging devices that utilize printheads to form images on media, and, in particular, to the alignment of such printheads in printers.
Ink jet printing involves ejecting ink droplets from orifices in a printhead onto an image receiving surface to form an ink image. Inkjet printers commonly utilize either direct printing or offset printing architecture. In a typical direct printing system, ink is ejected from the inkjets in the printhead directly onto the final substrate. In an offset printing system, the printhead jets the ink onto an intermediate transfer surface, such as a liquid layer on a drum. The final substrate is then brought into contact with the intermediate transfer surface and the ink image is transferred to the substrate before being fused or fixed to the substrate.
Alignment among multiple printheads may be expressed as the position of one printhead relative to the image receiving surface, such as a media substrate or intermediate transfer surface, or another printhead within a coordinate system of multiple axes. For purposes of discussion, the terms “cross-process direction” and “X-axis direction” refer to a direction or axis perpendicular to the direction of travel of an image receiving surface past a printhead. The terms “process direction” and “Y-axis direction” refer to a direction or axis parallel to the direction of an the image receiving surface, the term “Z-axis” refers to an axis perpendicular to the X-Y axis plane.
One particular type of alignment parameter is printhead roll. As used herein, printhead roll refers to clockwise or counterclockwise rotation of a printhead about an axis normal to the image receiving surface, i.e., Z-axis. Printhead roll may result from mechanical vibrations and other sources of disturbances on the machine components that may alter printhead positions and/or angles with respect to the image receiving surface. As a result of roll, the rows of nozzles may be arranged diagonally with respect to the process direction movement of the image receiving surface. This roll may cause horizontal lines, image edges, and the like to be skewed relative to the image receiving surface.
Various methods are known to measure printhead roll and to calibrate the printhead to reduce or eliminate the effects of printhead roll on images generated by the printhead. The known methods include printing selected marks or test patterns onto the image receiving member from the printhead to identify printhead roll. In some imaging systems, the image receiving member moves in the cross-process direction while the printhead generates the test pattern. Even comparatively small movements in the image receiving member can result in errors in printed test patterns that reduce the effectiveness of known methods for detecting printhead roll. Thus, improvements to printhead measurement and calibration procedures for detecting printhead roll are desirable.
A method of aligning a printhead has been developed. The method includes operating a plurality of inkjets in a printhead to eject ink drops to form a plurality of marks on an image receiving member, each inkjet in the plurality of inkjets operating substantially simultaneously, generating image data of the plurality of marks on the image receiving member, identifying with reference to the generated image data a plurality of cross-process direction distances in a cross-process direction between a first mark formed by one inkjet in the plurality of inkjets and each mark formed by one of the other inkjets in the plurality of inkjets, and identifying a magnitude of a difference between an angular orientation of the printhead and the cross-process direction with reference to the plurality of identified cross-process direction distances.
In another embodiment, a printer that is configured to identify printhead roll is provided. The printer includes a printhead having a plurality of inkjets arranged in plurality of rows, each row extending in a cross-process direction and the plurality of rows extending in a process direction, each inkjet being configured to eject ink drops, an image receiving member configured to move in the process direction relative to the printhead, an optical sensor configured to generate image data corresponding to light reflected from the image receiving member at a plurality of locations in the cross-process direction, and a controller operatively connected to the printhead and optical sensor. The controller is configured to operate a first plurality of inkjets selected from the plurality of inkjets in the printhead to form a plurality of marks on the image receiving member, the controller operates each inkjet in the first plurality of inkjets substantially simultaneously, identify with reference to image data generated by the optical sensor of the plurality of marks on the image receiving member a plurality of cross-process direction distances between a first mark formed by one inkjet in the first plurality of inkjets on the image receiving member and a plurality of marks formed by the other inkjets in the first plurality of inkjets on the image receiving member, and identify a magnitude of a difference between an angular orientation of the printhead and the cross-process direction with reference to the plurality of identified cross-process direction distances.
In another embodiment, a method for detecting printhead roll has been developed. The method includes operating a first plurality of inkjets in a single printhead substantially simultaneously to eject ink drops onto an image receiving member, each inkjet in the first plurality of inkjets forming a plurality of dashes on the image receiving member, generating image data of the plurality of dashes formed by each of the first plurality of inkjets on the image receiving member with an optical sensor, identifying with reference to the image data an average distance in a cross-process direction between a first plurality of dashes formed by one of the plurality of inkjets and each plurality of dashes formed by one of the other inkjets in the plurality of inkjets, and identifying a magnitude of a difference between an angular orientation of the single printhead and the cross-process direction with reference to the plurality of identified cross-process direction distances.
The foregoing aspects and other features of a printer that detects and compensates for roll in one or more printheads in the printer are explained in the following description, taken in connection with the accompanying drawings.
For a general understanding of the present embodiments, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to designate like elements. As used herein, the terms “printer” generally refer to an apparatus that applies an ink image to print media and may encompass any apparatus, such as a digital copier, bookmaking machine, facsimile machine, multi-function machine, etc., which performs a print outputting function for any purpose. As used in this document, “ink” refers to a colorant that is liquid when applied to an image receiving member. For example, ink may be aqueous ink, ink emulsions, melted phase change ink, and gel ink that has been heated to a temperature that enables the ink to be liquid for application or ejection onto an image receiving member and then return to a gelatinous state. “Print media” can be a physical sheet of paper, plastic, or other suitable physical substrate suitable for receiving ink images, whether precut or web fed. A printer may include a variety of other components, such as finishers, paper feeders, and the like, and may be embodied as a copier, printer, or a multifunction machine. An ink image generally may include information in electronic form, which is to be rendered on print media by a marking engine and may include text, graphics, pictures, and the like.
The term “printhead” as used herein refers to a component in the printer that is configured to eject ink drops onto the image receiving member. A typical printhead includes a plurality of inkjets, also referred to as ink ejectors, that are configured to eject ink drops of one or more ink colors onto the image receiving member. The inkjets are arranged in an array of one or more rows and columns. In some embodiments, the inkjets are arranged in staggered diagonal rows across a face of the printhead. Various printer embodiments include one or more printheads that form ink images on the image receiving member.
The inkjets arranged along each diagonal are separated from each other by a predetermined distance in the process direction and another predetermined distance in the cross-process direction. For example, each pair of inkjets 104A are separated by a process direction distance 112, and a cross-process direction distance 116. The structure of the printhead 100 and density of the inkjets in the printhead determine the cross-process and process direction distances between the inkjets. In the embodiment of the printhead 100, all of the inkjets are formed with uniform separation in the process direction and cross-process direction between the inkjets.
In
The magnitude of the printhead roll depicted in
In printer 200, each print module 202, 204, 206, 208, 210, and 212 in this embodiment provides an ink of a different color. In all other respects, the print modules 202-212 are substantially identical. Print module 202 includes two print sub-modules 240 and 242. Print sub-module 240 includes two print units 244 and 246. The print units 244 and 246 each include an array of printheads that may be arranged in a staggered configuration across the width of both the first section of web media and second section of web media. Each of the printheads includes a plurality of inkjets in a configuration similar to the printhead 200 depicted in
Print sub-module 242 is configured in a substantially identical manner to sub-module 240, but the printheads in sub-module 242 are offset by one-half the distance between the inkjets in the cross-process direction from the printheads in sub-module 240. The arrangement of sub-modules 240 and 242 enables a doubling of linear resolution for images formed on the media web 214. For example, if each of the sub-modules 240 and 242 ejects ink drops at a resolution of 300 drops per inch, the combination of sub-modules 240 and 242 ejects ink drops at a resolution of 600 drops per inch.
The printer 200 includes an optical sensor 238 that generates image data corresponding to light reflected from the media web 214 after the media web 214 has passed through the print zone. The optical sensor 238 is configured to detect, for example, the location, intensity, and/or location of ink drops jetted onto the receiving member by the inkjets of the printhead assembly. The optical sensor 238 includes an array of optical detectors mounted to a bar or other longitudinal structure that extends across the width of the media web 214 in the cross-process direction.
In one embodiment in which the media web 214 is approximately twenty inches wide in the cross process direction and the print modules 202-212 print at a resolution of 600 dpi in the cross process direction, over 12,000 optical detectors are arrayed in a single row along the bar to generate a single scanline across the imaging member. The optical detectors are configured in association in one or more light sources that direct light towards the surface of the image receiving member. The optical detectors are arranged in the optical sensor 238 in a predetermined configuration in the cross-process direction. Consequently, the cross-process position of light reflected from the media web 214 can be identified with reference to the optical detector that detects the reflected light. For example, if two optical detectors in the optical sensor 238 detect light reflected from two different ink drops on the media web 214, then the predetermined distance that separates the optical detectors in the optical sensor 238 corresponds to the cross-process distance between the two ink drops on the media web 214.
The optical detectors receive the light generated by the light sources after the light is reflected from the image receiving member. The magnitude of the electrical signal generated by an optical detector in response to light being reflected by the bare surface of the image receiving member is larger than the magnitude of a signal generated in response to light reflected from a drop of ink on the image receiving member. This difference in the magnitude of the generated signal may be used to identify the positions of ink drops on an image receiving member, such as a paper sheet, media web, or print drum. The magnitudes of the electrical signals generated by the optical detectors are converted to digital values by an appropriate analog/digital converter. The digital values are denoted as image data in this document and a processing device, such as controller 228 executing programmed instructions, analyzes the image data to identify positional information about dashes formed by ink drops on the image receiving member.
During operation, the media web 214 moves through the media path in process direction 224. The media web 214 unrolls from a source roller 252 and passes through a brush cleaner 222 and a contact roller 226 prior to entering the print zone. The media web 214 moves through the print zone past the print modules 202-212 guided by a pre-heater roller 218, backer rollers, exemplified by backer roller 216, apex roller 219, and leveler roller 220. The media web 214 then passes through a heater 230 and a spreader 232 after passing through the print zone. The media web passes an exit guide roller 234 and then winds onto a take-up roller 254. The media path 224 depicted in
The media web 214 may experience oscillations in the cross-process direction as the media web moves through the printer 200. During a printing operation, the web 214 oscillates on the backer rollers 216 when moving past the print modules 202-212 in the print zone. In one configuration, the media web oscillates in the process direction with a frequency of approximately 8 Hz and a magnitude of 30 microns. The oscillations can reduce the accuracy of absolute positional measurements made with reference to the image data generated by the optical sensor 238 because the optical sensor 238 remains stationary while the media web 214 oscillates.
Controller 228 is configured to control various subsystems, components and functions of printer 200. The controller 228 is operatively connected to each of the printheads in the print modules 202-212 to control ejection of ink from each of the print modules 202-212. The controller 228 is also connected to optical sensor 238 and the controller 228 receives image data that the optical sensor 238 generates from light reflected from the media web 214.
In various embodiments, controller 228 is implemented with general or specialized programmable processors that execute programmed instructions. These components may be provided on a printed circuit card or provided as a circuit in an application specific integrated circuit (ASIC). Each of the circuits may be implemented with a separate processor or multiple circuits may be implemented on the same processor. Alternatively, the circuits may be implemented with discrete components or circuits provided in VLSI circuits. Also, the circuits described herein may be implemented with a combination of processors, ASICs, discrete components, or VLSI circuits.
Controller 228 is operatively coupled to the print modules 202-222 and controls the timing of ink drop ejection from the print modules 202-212 onto the media web 214. The controller 228 generates a plurality of electrical firing signals for the inkjets in each of the print modules 202-212. The controller 228 is configured to generate a predetermined sequence of firing signals for each of the printheads in the print modules 202-212 to generate test pattern ink marks on the media web 214. As used herein, the term “test pattern” refers to any set of ink marks formed with ink drops on an image receiving member that are used to calibrate one or more printer components. Various configurations of test patterns formed on the media web 214 enable the controller 228 to identify printhead roll of the printheads in the print modules 202-212.
The media web 214 moves in a process direction 224 past the printhead 300 as the printhead 300 forms the test pattern. The marks 304A-304B and 308A-308B are formed by ink drops ejected from selected inkjets in the printhead 300. Each set of marks includes a plurality of dashes where each dash is formed by a single inkjet ejecting ink drops in rapid succession onto the media web 114. The marks 204A, 208A, 204B, and 208B are formed by inkjets 104A, 108A, 104B, and 108B, respectively, in the printhead 300. In the example of
In
In the marks 304A, the first set of dashes 306A and the last set of dashes 306B are offset from each other in the cross-process direction 316 due to oscillation of the media web 214. However, the same cross-process distance 124 separates two corresponding dashes in each set of dashes 306A and 306B. The measured cross-process distance of the dashes corresponds to the cross-process distance between the inkjets in the printhead 300. Using one dash in each set of dashes as a reference, the cross-process distance that separates the reference dash from each of the other dashes is affected by the roll of the printhead 300, but not by the cross-process direction oscillation of the media web 214.
Process 400 generates image data from the test pattern formed on the image receiving member (block 408). In the printer 200, the optical sensor 238 generates image data corresponding to each of the dashes in the test pattern 304A. The controller 228 receives the image data from the optical sensor 238 and identifies the absolute cross-process position of each dash in the test pattern 304A (block 412). Each dash includes a plurality of ink drops, and the absolute cross-process position of each dash is an average of the cross-process directions of each drop to reduce the effects of transient inkjet errors in the image data.
As described above, the absolute cross-process position of the dashes on the image receiving member is subject to change due to the oscillation of the image receiving member. Process 400 identifies an average cross-process direction distance that separates each set of marks in the test pattern using the marks generated by a single ink ejector as a reference (block 416). In
Process 400 identifies errors between the identified cross-process distance separating marks in the test pattern and a predetermined expected cross-process distance between ink ejectors in the printhead when the printhead is aligned with the cross-process direction (block 420).
Process 400 identifies a slope of a linear relationship between the identified cross-process errors between marks on the image receiving member and the predetermined process direction distances between inkjets in the printhead (block 422).
Process 400 continues for any additional sets of inkjets in the printhead (block 424). In the example of printer 200, the printhead 300 ejects a total of four test pattern groups 304A, 308A, 304B, and 308B corresponding to the selected inkjet groups 104A, 108A, 104B, and 108B, respectively. The cross-process direction error data and corresponding linear relationships generated for each of the test pattern groups is sufficient to generate a measurement of the roll of the printhead 300. Process 400 averages the identified slopes of the linear relationships between cross-process errors and process direction positions of the corresponding inkjet nozzles generated for each test pattern group to provide a more accurate averaged printhead roll measurement (block 428). The printer 200 ejects four test pattern groups in example of
Process 400 identifies the magnitude and angular direction of the printhead roll from the average slope of the linear relationships generated for the measured errors in each printhead (block 432). The magnitude of the roll error angle θ is identified with the equation θ=arctan(m) where m is the identified average slope of the relationship between the measured cross-process direction error between two inkjets and the nominal process direction separation between the inkjets. Intuitively, the slope of the error line can be thought of as an angle of deviation from the diagonal slope of the inkjet groups 104A, 104B, 108A, and 108B depicted in
Process 400 identifies the direction of the rotation based on the direction of the average measured errors, which also corresponds the sign of the average slope. In the example of
Process 400 rotates the printhead to compensate for the identified angle and direction of the printhead roll (block 436).
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems, applications or methods. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art, which are also intended to be encompassed by the following claims.