The present invention relates generally to a camera and, more particularly, to the stabilization of an image during the exposure time of the camera.
The problem of image stabilization dates back to the beginning of photography, and the problem is related to the fact that an image sensor needs a sufficient exposure time to form a reasonably good image. Any motion of the camera during the exposure time causes a shift of the image projected on the image sensor, resulting in a degradation of the formed image. The motion related degradation is called motion blur. Using one or both hands to hold a camera while taking picture, it is almost impossible to avoid an unwanted camera motion during a reasonably long exposure time. Motion blur is particularly easy to occur when the camera is set at a high zoom ratio when even a small motion could significantly degrades the quality of the acquired image.
Optical image stabilization generally involves laterally shifting the image projected on the image sensor in compensation for the camera motion. Shifting of the image can be achieved by one of the following four general techniques:
Lens shift—this optical image stabilization method involves moving one or more lens elements of the optical system in a direction substantially perpendicular to the optical axis of the system;
Image sensor shift—this optical image stabilization method involves moving the image sensor in a direction substantially perpendicular to the optical axis of the optical system;
Liquid prism—this method involves changing a layer of liquid sealed between two parallel plates into a wedge in order to change the optical axis of the system by refraction; and
Camera module tilt—this method keeps all the components in the optical system unchanged while tilting the entire module so as to shift the optical axis in relation to a scene.
In any one of the above-mentioned image stabilization techniques, an actuator mechanism is required to effect the change in the optical axis or the shift of the image sensor. Actuator mechanisms are generally complex, which means that they are expensive and large in size.
The present invention provides a new method and device for shifting one or more lens elements or the image sensor in an XY-plane, wherein the actuators are arranged differently from the above-described method.
The present invention uses an optical image stabilizer to compensate for an unwanted movement of an imaging system, such as a camera. Two separate bending actuators are used to shift a lens element or the image sensor in different directions in a plane so as to shift a projected image on the image sensor based on the movement of the imaging system. The plane is substantially perpendicular to the optical axis of the imaging system, and longitudinal axis of each bending actuator is substantially parallel to the plane. In one embodiment of the present invention, one end of each bending actuator is fixedly disposed on the image system and the other end is used to shift the lens element or the image sensor. In another embodiment of the present invention, both ends of each bending actuator are fixed, while the middle section is allowed to move for shifting the lens element or the image sensor.
Thus, the present invention provides a method and system for optical image stabilization for use in an imaging system having a plurality of imaging components arranged in relationship to an optical axis, the imaging components comprising an image sensor and at least a lens element for projecting an image on the image sensor, wherein the projected image can be shifted relative to the image sensor in a direction substantially perpendicular to the optical axis. The imaging system comprises:
a first bending actuator operatively connected to at least one of the imaging components for moving the imaging component in a first direction, the first bending actuator having a length defining a first actuator axis;
a second bending actuator operatively connecting said at least one imaging component for moving the imaging component in a second direction, the second bending actuator having a length defining a second actuator axis, wherein the image plane and each of the first and second actuator axes form an angle smaller than 45 degrees. a driving system, in response to the movement of the imaging system, for causing at least part of the first actuator to move in a direction different from the first actuator axis so as to shift said at least one imaging component in a plane substantially perpendicular to the optical axis, and for causing at least part of the second actuator to move in a direction different from the second actuator axis so as to shift said at least one imaging component in a plane substantially perpendicular to the optical axis. The imaging component can be a lens component or the image sensor.
Each of the bending actuator can be mounted on the imaging system in a number of ways. The actuator can be fixedly mounted on one of its ends so as to allow the other end to bend. The actuator can be fixedly mounted on both ends so as to allow the middle section to move. Alternatively, the actuator can be fixedly mounted on a middle section so that one or both ends can be used to move an imaging component.
The present invention will become apparent upon reading the description taken in conjunction with
a shows a bending actuator for shifting a carrier along the X-axis, according to the present invention.
b shows a bending actuator for shifting a carrier along the Y-axis, according to the present invention.
a to 7c show the carrier being shifted to the upper left, center and lower right position.
a and 10b show a carrier with a different amount arrangement.
In an imaging system having an image sensor and a lens to project an image on the image sensor, the present invention uses one or more bending actuators to shift the image projected on the image sensor for image stabilization purposes. The actuators can be used to shift the lens or the image sensor or both in one or more directions substantially parallel to the image plane. The actuators are mechanically engaged with a carrier carrying the imaging component to be shifted.
When an on-axis actuator is activated, it contracts or expands in a direction that shortens or lengthens the thickness or the length of the actuator. For example, if the actuator is a long piece of piezoelectric material having a longitudinal axis along its length, then the displacement of the actuator when activated is also along the longitudinal axis, as shown in
When it is used to move a lens element or the image sensor in a camera, a bending actuator can be disposed such that the longitudinal axis of the actuator is perpendicular to the shifting direction of an imaging component of the imaging system but substantially parallel to the plane in which the imaging component is shifted.
According to one of the embodiments of the present invention, the lens is fixedly mounted on the carrier to be moved by a pair of bending actuators, as shown in
The shifting of the lens 60 in the various directions is depicted in
The actuator arrangement as shown in
The lens plate and the carrier plate can be constructed differently. As shown in
Furthermore, the bending actuators can be used in a different setting. As shown in
Moreover, the lens carrier can be designed differently as shown in
It should be noted that the bending actuator, according to the present invention, can be a piezoelectric monomorph actuator, a piezoelectric bimorph actuator, a piezoelectric multi-layer actuator, an ion conductive polymer actuator or the like. Furthermore, it is known in the art that an actuator needs a driving system for activating the actuator.
Furthermore, when one or more of the imaging components are shifted for image stabilization purposes, other components are also needed. For example, the image stabilizer for the imaging system also has a movement detector to determine the movement to be compensated for, at least one position sensors to determine the current position of the imaging components, a signal processor to compute the shifting amount in different directions for compensating for the camera movement based on the positions of the components and the camera movement, and an actuator control to activate the actuators in order to shift the image components by a desired amount. A block diagram illustrating such an image stabilizer is shown in
The lens of the imaging system may comprise two or more lens elements and the actuators may be used to move one or more lens elements.
It should be noted that, in
It should be understood for a person skilled in the art that the lens plate 20 as depicted in
Thus, although the invention has been described with respect to one or more embodiments thereof, it will be understood by those skilled in the art that the foregoing and various other changes, omissions and deviations in the form and detail thereof may be made without departing from the scope of this invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2006/000153 | 1/27/2006 | WO | 00 | 9/1/2009 |
Number | Date | Country | |
---|---|---|---|
60741233 | Nov 2005 | US |