This invention relates generally to the medical imaging field, and more specifically to a new and useful method and system for imaging a volume of tissue with tissue boundary detection.
Early detection and treatment of breast cancer and other kinds of cancer typically result in a higher survival rate. Despite a widely accepted standard of mammography screenings for breast cancer detection, there are many reasons that cancer is often not detected early. One reason is low participation in breast screening, as a result of limited access to equipment and fear of radiation and discomfort. Another reason is limited performance of mammography, particularly among women with dense breast tissue, who are at the highest risk for developing breast cancer. As a result, many cancers are missed at their earliest stages when they are the most treatable. Furthermore, mammography results in a high rate of “false alarms”, leading to unnecessary biopsies that are collectively expensive and result in emotional duress in patients.
Other imaging technologies in development are unlikely to create a paradigm shift toward early detection of cancer. For example, magnetic resonance (MR) imaging can improve on some of these limitations by virtue of its volumetric, radiation-free imaging capability, but requires long exam times and use of contrast agents. Furthermore, MR has long been prohibitively expensive for routine use. Conventional sonography is not a practical alternative because of its operator dependence and the long time needed to scan the whole breast. In other words, lack of a low-cost, efficient, radiation-free, and accessible tissue imaging alternative to mammography is a barrier to dramatically impacting mortality and morbidity through improved screening.
Thus, there is a need in the medical imaging field to create a new and useful method and system for imaging a volume of tissue that addresses the need to combine the low-cost advantage of mammography with superior imaging performance. This invention provides such a useful method and system.
The following description of preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.
1. Method
As shown in
In implementing a portion of an embodiment of the method 100, the transducer array preferably includes a plurality of ultrasound emitters that emit acoustic signals toward the scan region and a plurality of ultrasound receivers that detect the emitted acoustic signals after the acoustic signals interact with objects in their respective signal paths. The plurality of ultrasound emitters and the plurality of ultrasound receivers can define a plurality of emitter-receiver pairs, each emitter-receiver pair corresponding to a signal path intersecting the medium and/or the volume of tissue. Preferably, the method 100 generates an image rendering of the volume of tissue, based upon a selective reconstruction process that can, for example, be based upon acoustic attenuation, acoustic reflection, acoustic speed, and/or any suitable acoustic parameter derived from the interaction between emitted acoustic signals and the volume of tissue. In alternative embodiments, the method 100 can use any suitable acoustic parameter derived from emitted and reflected acoustic signals to distinguish the boundaries between two differing non-mixing substantially homogenous fluids, differing substantially homogenous elastic media, or combinations of the two.
The method 100 preferably also provides a rapid, easy-to-use, ultrasound imaging process that effectively identifies a tissue boundary of the volume of tissue and enables differentiation between an image pixel location within the tissue boundary and an image pixel location outside of the tissue boundary. Such a differentiation can also be described as defining a binary “mask” which represents whether a given pixel is inside or outside of the tissue. For example, the mask preferably enables faster image rendering times, and therefore shorter scans and patient exams without sacrificing image quality, since only pixels known to be within the tissue boundary are required to be reconstructed to create an image rendering of the tissue. Furthermore, a determination that no pixels of a given imaging plane are within the tissue boundary, based upon processing of the binary mask, can be used as an indicator to detect the end of a scan (e.g., when imaging a volume of breast tissue in a posterior-anterior direction from the chest wall to the nipple). In one variation, the method 100 can be used to image breast tissue, and in other variations, the method 100 can additionally or alternatively be used to image any suitable kind of tissue surrounded by a medium and an imaging transducer.
Block S110 recites receiving a baseline dataset from an ultrasound emitter array and an ultrasound receiver array, representative of a first set of signals interacting with a medium without the volume of tissue present in the medium. Block S110 functions to receive baseline data representative of the acoustic parameters of the medium alone within the scan region of the transducer. Preferably, the medium is a fluid medium (e.g., water), however, the medium can alternatively be a non-fluid medium (e.g., gas, polymer in a gel phase, solid). Furthermore, the medium is preferably homogenous, such that the baseline dataset can include any particular two-dimensional scan region within the medium and can be considered representative of any other two-dimensional scan region within the medium; however, the baseline dataset can alternatively comprise respective data for each two-dimensional scan region in the scan volume accessible by the transducer (e.g., when using a non-homogenous medium). Additionally, Block S110 preferably includes receiving data directly from the transducer, which preferably includes a plurality of ultrasound emitters and a plurality of ultrasound receivers that define a scan region (e.g., a two-dimensional imaging plane) surrounded by a perimeter defined by the transducer. However, the transducer can alternatively have any suitable shape and surround a scan region including any suitable acoustic coupling medium. In other variations, Block S110 can additionally or alternatively include receiving data from a computer-readable medium or storage, such as a server, cloud storage, hard drive, flash memory, optical device (CD or DVD), or other suitable device capable of receiving, storing, and/or otherwise transferring acoustic baseline data. For example, in one variation, baseline data can be obtained during calibration of the emitter-receiver pairs, and can be stored on and/or transmitted from a storage module for further processing in other method blocks.
Preferably, the baseline dataset in Block S110 includes power ratio data (representing attenuation of the ultrasound signal traveling through the medium) and time-of-flight data (representing a speed at which the ultrasound signal travels through the fluid medium) between each ultrasound emitter in the ultrasound emitter array and each ultrasound receiver in the ultrasound receiver array. The baseline dataset is thus preferably organized into a power ratio matrix and a time-of-flight matrix for one or more two-dimensional scan regions of the transducer. Each matrix preferably has dimensions n by m, where n=number of emitters in the transducer array and m=number of receivers in the transducer array, thereby defining n by m emitter-receiver pairs configured to surround the volume of tissue; the parameters n and m can be equal or unequal to each other. In other words, for each slice of the transducer scan volume that will reconstructed for tissue imaging, Block S110 preferably receives, or enables generation of, a corresponding power ratio matrix and time-of-flight matrix. The matrices for one slice of the transducer scan volume can be duplicated for every slice (e.g., if the fluid medium is homogenous), and/or matrices for each of multiple slices of the transducer scan volume can be independently derived. In other variations, the baseline dataset can additionally or alternatively include any other acoustic signal parameter and can be arranged for processing in any other suitable manner.
In an example of Block S110, the transducer array is a circular or ellipsoidal ring array submerged in a tank of water (i.e., the medium) and configured to sequentially move along an axis perpendicular to a plane defined by the transducer in discrete steps, scanning a two-dimensional scan region at each discrete step. The fluid medium in the example is homogenous within the tank of water, such that the baseline dataset can include any particular two-dimensional scan region within the fluid medium and can be considered representative of any other two-dimensional scan region within the fluid medium. The transducer array in the example comprises 2048 ultrasound emitter elements and 2048 ultrasound receiver elements, spaced evenly about the scan region and configured to generate power ratio and time of flight data, such that a 2048×2048 power ratio matrix and a 2048×2048 time of flight matrix can be generated for each imaging plane.
Block S120 recites receiving a reconstruction dataset from the ultrasound emitter array and the ultrasound receiver array, representative of a second set of signals interacting with the medium and the volume of tissue present in the medium. Block S120 functions to receive acoustic data comprising information from which boundary information of the volume of tissue and acousto-mechanical characteristics of the volume of tissue can be derived. In particular, the reconstruction dataset preferably characterizes interactions between the acoustic signals emitted by the ultrasound emitters and the volume of tissue within the medium, including information such as scattering, reflection, refraction, diffusion, and transmission of the acoustic signal off and through the tissue. Preferably, the reconstruction dataset is generated and/or received in a manner similar to that for the baseline dataset in Block S110, with the only difference being the presence of the volume of tissue within the medium. Thus, the reconstruction dataset is also preferably organized into a power ratio matrix and a time-of-flight matrix (each having dimensions n by m) for one or more two-dimensional scan regions of the transducer. However, the reconstruction dataset can comprise any suitable type of data and can be generated and/or received in any suitable manner that allows a tissue boundary to be determined from the baseline and the reconstruction datasets.
Similar to receiving the baseline dataset in Block S110, Block S120 can include receiving the reconstruction dataset directly from the transducer array, or can include receiving data from a computer-readable medium or storage, such as a server, cloud storage, hard drive, flash memory, optical device (CD or DVD), or other suitable device capable of receiving, storing, and/or otherwise transferring data. In one example for imaging a volume of breast tissue, the reconstruction dataset is gathered during a scan of a patient lying prone on his or her stomach on a scanner table having an aperture. The table in the example contours to the body of the patient, thereby increasing scanning access to the axilla regions of the breast and increasing patient comfort. The aperture in the table further allows the breast to extend through the table and be submerged in an imaging tank filled with water or another suitable acoustic coupling medium that propagates acoustic waves. As shown in
Block S130 recites determining a set of direct emitter-receiver pairs from the baseline and the reconstruction datasets, wherein each direct emitter-receiver pair defines a direct trajectory that does not pass through the volume of tissue. The direct emitter-receiver pairs are preferably selected from the set of n by m emitter-receiver pairs defined in Blocks S110 and S120, such that S130 distinguishes between emitter-receiver pairs defining trajectories passing through the volume of tissue and emitter-receiver pairs defining trajectories not passing through the volume of tissue. Block S130 thus functions to map which emitter-receiver pairs form signal paths or trajectories that are uninterrupted by the scanned volume of tissue, within each imaging plane. For a variation in which the medium is water, acoustic signals passing between the direct emitter-receiver pairs are direct trajectory “water shots” passing through, and only through, water, as shown in
As shown in
Block S132 recites for each emitter-receiver pair, generating a power ratio similarity metric between the power ratio for the emitter-receiver pair in the baseline dataset and the power ratio for the emitter-receiver pair in the reconstruction dataset; Block S134 recites for each emitter-receiver pair, generating a time-of-flight similarity metric between the time-of-flight for the emitter-receiver pair in the baseline dataset and the time-of-flight for the emitter-receiver pair in the reconstruction dataset. Blocks S132 and S134 collectively function to determine whether the signal path or trajectory between the emitter and receiver of each emitter-receiver pair is uninterrupted by tissue. For each emitter-receiver pair, Block S132 preferably determines a difference between the power ratio of the baseline dataset (corresponding to a signal known to have a trajectory through the medium only) and the power ratio of the reconstruction dataset (corresponding to a signal with a trajectory either through the medium only or through both the volume of tissue and the medium), such that the difference is a similarity metric that can be used to determine the trajectory defined by the emitter-receiver pair. The difference in power ratios can then be compared to a first threshold in Block S136 to determine if the power ratio of the baseline dataset is substantially similar to the power ratio for the reconstruction dataset (i.e., the power ratios of the baseline dataset and the reconstruction dataset, corresponding to a given emitter-receiver pair, are similar within a given tolerance). Similarly, for each emitter-receiver pair, Block S134 preferably determines a difference between the time-of-flight for the emitter-receiver pair in the baseline dataset and the time-of-flight for the emitter-receiver pair in the reconstruction dataset. The difference in time-of-flights can then be compared to a second threshold in Block S136 to determine if the time-of-flight of the baseline dataset is substantially similar to the time-of-flight for the reconstruction dataset (i.e., the time of flights of the baseline dataset and the reconstruction dataset, corresponding to a given emitter-receiver pair, are similar within a given tolerance). The similarity metrics in Blocks S132 and S134 can comprise differences (e.g., arithmetic differences, percentage differences) and/or any other suitable metric that can be compared to thresholds in Block S136.
Block S136 recites adding an emitter-receiver pair to the set of direct emitter-receiver pairs if the power ratio similarity metric for the emitter-receiver pair satisfies a first threshold and the time-of-flight similarity metric for the emitter-receiver pair satisfies a second threshold. Block S136 functions to generate the set of direct emitter-receiver pairs, wherein a direct emitter-receiver pair is defined as an emitter-receiver pair having a signal path or direct trajectory that passes only through the fluid medium. In a preferred embodiment, a particular emitter-receiver pair is considered to be a direct emitter-receiver pair if both its power ratio and time-of-flight for the baseline and reconstruction datasets are determined (through Blocks S132 and S134) to have similarity metrics that satisfy respective thresholds. For example, power ratio differences can be compared to a first threshold, and time-of-flight differences can be compared to a second threshold, in order to decide if a given emitter-receiver pair is a direct emitter-receiver pair. However, Block S136 can include adding the emitter-receiver pair to the set of direct emitter-receiver pairs if any suitable combination of parameters is considered to be substantially similar or equal between the baseline and the reconstruction datasets. In one variation, the dataset of direct emitter-receiver pairs based upon information from block S130 is organized into a binary logic matrix forming a truth table that is n by m in size. Each element of the matrix, corresponding to an emitter-receiver pair, represents whether the signal between the emitter-receiver pair corresponding to that element is a direct, uninterrupted signal path (“water shot”). However, the data can be organized in any suitable manner.
In some variations or examples, Block S130 of determining a set of direct emitter-receiver pairs can include only a portion of Blocks S132, S134, and/or S136, in the interest of further reducing processing time. In one example, a direct emitter-receiver satisfies both Condition A of similar power ratios and Condition B of similar time-of-flight between the baseline dataset and reconstruction dataset as determined from the similarity metrics and the first and second thresholds. In this example, if a particular emitter-receiver pair is already known to not satisfy Condition A, then that particular emitter-receiver pair cannot be considered a direct emitter-receiver pair, regardless of whether it satisfies Condition B. Therefore, if Block S132 and a portion of Block S136 determine that a particular emitter-receiver pair does not satisfy Condition A, then Block S134 and a portion of Block S136, for checking Condition B, do not have to be performed. In another variation, a determination that Condition B is not satisfied can be used to skip performance of a check for Condition A, in order to reduce processing time. In other variations, the method 100 can altogether omit generating multiple similarity metrics and comparing the multiple similarity metrics to thresholds, such that the set of direct emitter-receiver pairs is determined based upon generation of a single similarity metric and the comparing the single similarity metric to a threshold in order to identify an emitter-receiver pair as a direct emitter-receiver pair. In still other variations, the method 100 can comprise generating more than two similarity metrics for different acoustic parameters, comparing the more than two similarity metrics to respective thresholds, and identifying an emitter-receiver pair as a direct emitter-receiver pair only if all similarity metrics satisfy their respective threshold conditions.
Block S140 recites determining, from the set of direct emitter-receiver pairs, a set of tangential emitter-receiver pairs, each defining a bounding vector comprising a tangent point along the tissue boundary. Block S140 functions to define a set of tangential vectors, each drawn between respective emitter-receiver pairs, wherein each tangential vector defines a tangent point along the tissue boundary. As shown in
As shown in
In other variations, Blocks S140 and S142 can comprise iteratively cycling through the emitters and/or the receivers of the transducer array in any suitable manner to determine the set of tangential emitter-receiver pairs. Additionally, in some configurations of the transducer array, multiple tangential emitter-receiver pairs can share a common emitter or a common receiver. Furthermore, Blocks S140 and S142 can be adapted to further define tangential emitter-receiver pairs for concave tissue boundaries, based upon comparisons in power ratio and/or time-of-flight data between the baseline and the reconstruction datasets, or any other suitable comparison of any other suitable metric.
As shown in
As shown in
In other variations, Block S140 can additionally or alternatively comprise defining the tissue boundary from a set of tangent points defined by the set of tangential emitter-receiver pairs, and defining global locations of the set of tangent points in order to determine whether a pixel location is within the tissue boundary in Step S150. In an example of these variations, a curve can be fitted to the global coordinates of the set of tangent points, and a pixel location can be determined to be within the tissue boundary if the coordinates of the pixel location are within every point along the curve fitted through the tangent points. Blocks S140 and S150 can, however, comprise any other suitable method of determining the tissue boundary and determining whether a pixel location is within the tissue boundary.
As shown in
2. System
As shown in
The system 200 is preferably used to image a volume of tissue, such as breast tissue, for screening and/or diagnosis of cancer within the volume of tissue. In other applications, the system 200 can be used to characterize regions of interest in the tissue (e.g., to characterize suspicious masses as a tumor, a fibroadenoma, a cyst, another benign mass, or any suitable classification) or for monitoring status of the tissue such as throughout a cancer treatment. However, the system 200 can be used in any suitable application for imaging any suitable kind of tissue with ultrasound tomography.
The system 200 for imaging a volume of tissue with tissue boundary detection can provide a rapid, easy-to-use, ultrasound imaging modality that effectively identifies a tissue boundary of the scanned volume of tissue in multiple imaging planes, and enables differentiation between an image pixel location within the volume of tissue and an image pixel location outside of the volume of tissue. Such a differentiation can also be described as defining a binary “mask” which represents whether a given pixel is inside or outside of the volume of tissue. For example, the mask preferably enables faster image rendering times, and therefore shorter scans and patient exams without sacrificing image quality, since only pixels known to be within the tissue boundary are required to be reconstructed to create an image rendering of the tissue.
As shown in
As shown in
As shown in
Also shown in
The processor 230 functions to determine a tissue boundary characterizing the volume of tissue, and to generate an image rendering of the volume of tissue based upon a baseline dataset and a reconstruction dataset gathered by the emitter-receiver pairs of the transducer array 210. In particular, the processor 230 is preferably configured to receive a baseline dataset gathered by the emitter-receiver pairs 213 of the ultrasound emitter array 212 and the ultrasound receiver array 214, that is representative of a first set of signals interacting with a medium without the volume of tissue present in the medium. The processor 230 is also further configured to receive a reconstruction dataset gathered by the emitter-receiver pairs 213 of the ultrasound emitter array 212 and the ultrasound receiver array 214, that is representative of a second set of signals interacting with the fluid medium and tissue in the fluid medium. The processor 230 preferably utilizes the baseline and the reconstruction datasets to determine a set of tangential emitter-receiver pairs, each defining a bounding vector comprising a tangent point along the tissue boundary, and to generate an image rendering of the scan region based upon selective reconstruction of pixels within the tissue boundary.
In one embodiment of the system 200, as shown in
The system 200 can, however, comprise any other suitable elements for generating and receiving baseline and reconstruction datasets, controlling acquisition and generation of the datasets, and processing the datasets in order to determine tissue boundaries and render images by selectively reconstructing pixels within the tissue boundaries.
Variations of the preferred system 200 and method 100 include any combination or permutation of the described components and processes. Furthermore, various processes of the preferred method can be embodied and/or implemented at least in part as a machine configured to receive a computer-readable medium storing computer-readable instructions. The instructions are preferably executed by computer-executable components preferably integrated with a suitable ultrasound scanning system and one or more portions of the controller 220 and/or processor 230. The computer-readable medium can be stored on any suitable computer readable media such as RAMs, ROMs, flash memory, EEPROMs, optical devices (CD or DVD), hard drives, floppy drives, or any suitable device. The computer-executable component is preferably a general or application specific processor, but any suitable dedicated hardware device or hardware/firmware combination device can additionally or alternatively execute the instructions.
The FIGURES illustrate the architecture, functionality and operation of possible implementations of systems, methods and computer program products according to preferred embodiments, example configurations, and variations thereof. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block can occur out of the order noted in the FIGURES. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/694,999 filed 30 Aug. 2012, which is incorporated in its entirety herein by this reference.
Number | Name | Date | Kind |
---|---|---|---|
3154067 | Stenstrom et al. | Oct 1964 | A |
3771355 | Sachs | Nov 1973 | A |
3881466 | Wilcox | May 1975 | A |
3886489 | Jones | May 1975 | A |
3925610 | French et al. | Dec 1975 | A |
4028934 | Sollish | Jun 1977 | A |
4059010 | Sachs | Nov 1977 | A |
4075883 | Glover | Feb 1978 | A |
4105018 | Greenleaf et al. | Aug 1978 | A |
4144877 | Frei et al. | Mar 1979 | A |
4222274 | Johnson | Sep 1980 | A |
4250894 | Frei et al. | Feb 1981 | A |
4317369 | Johnson | Mar 1982 | A |
4328707 | Clement et al. | May 1982 | A |
4363326 | Kopel | Dec 1982 | A |
4412288 | Herman | Oct 1983 | A |
4431008 | Wanner et al. | Feb 1984 | A |
4433690 | Green et al. | Feb 1984 | A |
4481948 | Sole | Nov 1984 | A |
4509368 | Whiting et al. | Apr 1985 | A |
4515165 | Carroll | May 1985 | A |
4541436 | Hassler et al. | Sep 1985 | A |
4542744 | Barnes et al. | Sep 1985 | A |
4562540 | Devaney | Dec 1985 | A |
4564019 | Miwa | Jan 1986 | A |
4606342 | Zamba et al. | Aug 1986 | A |
4646756 | Watmough et al. | Mar 1987 | A |
4662222 | Johnson | May 1987 | A |
4671256 | Lemelson | Jun 1987 | A |
4733562 | Saugeon | Mar 1988 | A |
4855911 | Lele et al. | Aug 1989 | A |
4858124 | Lizzi et al. | Aug 1989 | A |
4917096 | Englehart et al. | Apr 1990 | A |
4932414 | Coleman et al. | Jun 1990 | A |
4941474 | Pratt, Jr. | Jul 1990 | A |
5003979 | Merickel et al. | Apr 1991 | A |
5025792 | Hon et al. | Jun 1991 | A |
5029476 | Metala et al. | Jul 1991 | A |
RE33672 | Miwa | Aug 1991 | E |
5095909 | Nakayama et al. | Mar 1992 | A |
5103129 | Slayton et al. | Apr 1992 | A |
5143069 | Kwon et al. | Sep 1992 | A |
5158071 | Umemura et al. | Oct 1992 | A |
5158536 | Sekins et al. | Oct 1992 | A |
5178147 | Ophir et al. | Jan 1993 | A |
5179455 | Garlick | Jan 1993 | A |
5212571 | Garlick et al. | May 1993 | A |
5255683 | Monaghan | Oct 1993 | A |
5260871 | Goldberg | Nov 1993 | A |
5267566 | Choucair et al. | Dec 1993 | A |
5268876 | Rachlin | Dec 1993 | A |
5269309 | Fort et al. | Dec 1993 | A |
5280788 | Janes et al. | Jan 1994 | A |
5296910 | Cole | Mar 1994 | A |
5297553 | Sliwa et al. | Mar 1994 | A |
5304173 | Kittrell et al. | Apr 1994 | A |
5305752 | Spivey et al. | Apr 1994 | A |
5318028 | Mitchell et al. | Jun 1994 | A |
5329817 | Garlick et al. | Jul 1994 | A |
5339282 | Kuhn et al. | Aug 1994 | A |
5349954 | Tiemann et al. | Sep 1994 | A |
5372138 | Crowley et al. | Dec 1994 | A |
5398691 | Martin et al. | Mar 1995 | A |
5413108 | Alfano | May 1995 | A |
5415164 | Faupel et al. | May 1995 | A |
5421338 | Crowley et al. | Jun 1995 | A |
5433202 | Mitchell et al. | Jul 1995 | A |
5463548 | Asada et al. | Oct 1995 | A |
5465722 | Fort et al. | Nov 1995 | A |
5474072 | Shmulewitz | Dec 1995 | A |
5479927 | Shmulewitz | Jan 1996 | A |
5485839 | Aida et al. | Jan 1996 | A |
5487387 | Trahey et al. | Jan 1996 | A |
5492126 | Hennige et al. | Feb 1996 | A |
5501655 | Rolt et al. | Mar 1996 | A |
5513639 | Satomi et al. | May 1996 | A |
5524630 | Crowley | Jun 1996 | A |
5546945 | Soldner | Aug 1996 | A |
5548658 | Ring et al. | Aug 1996 | A |
5553618 | Suzuki et al. | Sep 1996 | A |
5558092 | Unger et al. | Sep 1996 | A |
5573497 | Chapelon | Nov 1996 | A |
5582173 | Li | Dec 1996 | A |
5588032 | Johnson et al. | Dec 1996 | A |
5590653 | Aida et al. | Jan 1997 | A |
5590657 | Cain et al. | Jan 1997 | A |
5596992 | Haaland et al. | Jan 1997 | A |
5606971 | Sarvazyan | Mar 1997 | A |
5609152 | Pellegrino et al. | Mar 1997 | A |
5620479 | Diederich | Apr 1997 | A |
5640956 | Getzinger et al. | Jun 1997 | A |
5643179 | Fujimoto | Jul 1997 | A |
5660185 | Shmulewitz et al. | Aug 1997 | A |
5664573 | Shmulewitz | Sep 1997 | A |
5673698 | Okada et al. | Oct 1997 | A |
5678565 | Sarvazyan | Oct 1997 | A |
5715825 | Crowley | Feb 1998 | A |
5722411 | Suzuki et al. | Mar 1998 | A |
5743863 | Chapelon | Apr 1998 | A |
5749364 | Sliwa, Jr. et al. | May 1998 | A |
5759162 | Oppelt et al. | Jun 1998 | A |
5762066 | Law et al. | Jun 1998 | A |
5766129 | Mochizuki | Jun 1998 | A |
5785663 | Sarvazyan | Jul 1998 | A |
5787049 | Bates | Jul 1998 | A |
5797849 | Vesely et al. | Aug 1998 | A |
5800350 | Coppleson et al. | Sep 1998 | A |
5810731 | Sarvazyan et al. | Sep 1998 | A |
5817025 | Alekseev et al. | Oct 1998 | A |
5830133 | Osten et al. | Nov 1998 | A |
5833614 | Dodd et al. | Nov 1998 | A |
5833627 | Shmulewitz et al. | Nov 1998 | A |
5833633 | Sarvazyan | Nov 1998 | A |
5833634 | Laird et al. | Nov 1998 | A |
5836882 | Frazin | Nov 1998 | A |
5836894 | Sarvazyan | Nov 1998 | A |
5846202 | Ramamurthy et al. | Dec 1998 | A |
5851182 | Sahadevan | Dec 1998 | A |
5855554 | Schneider et al. | Jan 1999 | A |
5865167 | Godik | Feb 1999 | A |
5865743 | Godik | Feb 1999 | A |
5891619 | Zakim et al. | Apr 1999 | A |
5945674 | Dukor | Aug 1999 | A |
6002958 | Godik | Dec 1999 | A |
6005916 | Johnson et al. | Dec 1999 | A |
6014473 | Hossack et al. | Jan 2000 | A |
6023632 | Wilk | Feb 2000 | A |
6050943 | Slayton et al. | Apr 2000 | A |
6056690 | Roberts | May 2000 | A |
6078677 | Dolleman et al. | Jun 2000 | A |
6083166 | Holdaway et al. | Jul 2000 | A |
6102857 | Kruger | Aug 2000 | A |
6109270 | Mah et al. | Aug 2000 | A |
6117080 | Schwartz | Sep 2000 | A |
6135960 | Holmberg | Oct 2000 | A |
6146897 | Cohenford et al. | Nov 2000 | A |
6149441 | Pellegrino et al. | Nov 2000 | A |
6165734 | Garini et al. | Dec 2000 | A |
6190334 | Lasky et al. | Feb 2001 | B1 |
6242472 | Sekins et al. | Jun 2001 | B1 |
6245017 | Hashimoto et al. | Jun 2001 | B1 |
6256090 | Chen et al. | Jul 2001 | B1 |
6289235 | Webber et al. | Sep 2001 | B1 |
6292682 | Kruger | Sep 2001 | B1 |
6296489 | Blass et al. | Oct 2001 | B1 |
6317617 | Gilhuijs et al. | Nov 2001 | B1 |
6351660 | Burke et al. | Feb 2002 | B1 |
6368275 | Sliwa et al. | Apr 2002 | B1 |
6385474 | Rather et al. | May 2002 | B1 |
6413219 | Avila et al. | Jul 2002 | B1 |
6425869 | Rafter et al. | Jul 2002 | B1 |
6428477 | Mason | Aug 2002 | B1 |
6450960 | Rather et al. | Sep 2002 | B1 |
6451013 | Bays et al. | Sep 2002 | B1 |
6475150 | Haddad | Nov 2002 | B2 |
6478739 | Hong | Nov 2002 | B1 |
6490469 | Candy | Dec 2002 | B2 |
6511427 | Sliwa, Jr. et al. | Jan 2003 | B1 |
6527759 | Tachibana et al. | Mar 2003 | B1 |
6540678 | Rather et al. | Apr 2003 | B2 |
6559178 | Zamoyski | May 2003 | B1 |
6574499 | Dines et al. | Jun 2003 | B1 |
6587540 | Johnson et al. | Jul 2003 | B1 |
6612988 | Maor et al. | Sep 2003 | B2 |
6636584 | Johnson et al. | Oct 2003 | B2 |
6645202 | Pless et al. | Nov 2003 | B1 |
6672165 | Rather et al. | Jan 2004 | B2 |
6716412 | Unger | Apr 2004 | B2 |
6728567 | Rather et al. | Apr 2004 | B2 |
6776760 | Marmarelis | Aug 2004 | B2 |
6785570 | Nir | Aug 2004 | B2 |
6810278 | Webber et al. | Oct 2004 | B2 |
6837854 | Moore et al. | Jan 2005 | B2 |
6883194 | Corbeil et al. | Apr 2005 | B2 |
6926672 | Moore et al. | Aug 2005 | B2 |
6939301 | Abdelhak | Sep 2005 | B2 |
6984210 | Chambers et al. | Jan 2006 | B2 |
7025725 | Dione et al. | Apr 2006 | B2 |
7179449 | Lanza et al. | Feb 2007 | B2 |
7285092 | Duric et al. | Oct 2007 | B2 |
7346203 | Turek et al. | Mar 2008 | B2 |
7497830 | Li | Mar 2009 | B2 |
7530951 | Fehre et al. | May 2009 | B2 |
7556602 | Wang et al. | Jul 2009 | B2 |
7570742 | Johnson et al. | Aug 2009 | B2 |
20010029334 | Graumann et al. | Oct 2001 | A1 |
20010037075 | Candy | Nov 2001 | A1 |
20010051774 | Littrup et al. | Dec 2001 | A1 |
20020065466 | Rather et al. | May 2002 | A1 |
20020099290 | Haddad | Jul 2002 | A1 |
20020120196 | Dubberstein et al. | Aug 2002 | A1 |
20020131551 | Johnson et al. | Sep 2002 | A1 |
20030138053 | Candy et al. | Jul 2003 | A1 |
20040030227 | Littrup et al. | Feb 2004 | A1 |
20040059265 | Candy et al. | Mar 2004 | A1 |
20040152986 | Fidel et al. | Aug 2004 | A1 |
20040167396 | Chambers et al. | Aug 2004 | A1 |
20040181154 | Peterson et al. | Sep 2004 | A1 |
20050165309 | Varghese et al. | Jul 2005 | A1 |
20050196025 | Schofield | Sep 2005 | A1 |
20050260745 | Domansky et al. | Nov 2005 | A1 |
20060009693 | Hanover et al. | Jan 2006 | A1 |
20060020205 | Kamiyama | Jan 2006 | A1 |
20060064014 | Falco et al. | Mar 2006 | A1 |
20060084859 | Johnson et al. | Apr 2006 | A1 |
20060085049 | Cory et al. | Apr 2006 | A1 |
20060287596 | Johnson et al. | Dec 2006 | A1 |
20060293597 | Johnson et al. | Dec 2006 | A1 |
20070015949 | Kaiser | Jan 2007 | A1 |
20070167823 | Lee et al. | Jul 2007 | A1 |
20080045864 | Candy et al. | Feb 2008 | A1 |
20080218743 | Stetten et al. | Sep 2008 | A1 |
20080229832 | Huang et al. | Sep 2008 | A1 |
20080269812 | Gerber et al. | Oct 2008 | A1 |
20080275344 | Glide-Hurst et al. | Nov 2008 | A1 |
20080281205 | Naghavi et al. | Nov 2008 | A1 |
20080294027 | Frinking et al. | Nov 2008 | A1 |
20080294043 | Johnson et al. | Nov 2008 | A1 |
20080319318 | Johnson et al. | Dec 2008 | A1 |
20090035218 | Ross et al. | Feb 2009 | A1 |
20090076379 | Hamill et al. | Mar 2009 | A1 |
20090129556 | Ahn | May 2009 | A1 |
20090143674 | Nields et al. | Jun 2009 | A1 |
20100331699 | Yu et al. | Dec 2010 | A1 |
20110152685 | Misono | Jun 2011 | A1 |
20130267850 | Berman | Oct 2013 | A1 |
20140316269 | Zhang et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
3443295 | May 1996 | AU |
2324602 | Sep 1999 | CA |
0097917 | Jan 1984 | EP |
284055 | Sep 1988 | EP |
317049 | May 1989 | EP |
320444 | Jun 1989 | EP |
351610 | Jan 1990 | EP |
538241 | Apr 1993 | EP |
0609922 | Aug 1994 | EP |
614651 | Sep 1994 | EP |
642762 | Mar 1995 | EP |
661029 | Jul 1995 | EP |
774276 | May 1997 | EP |
1063920 | Jan 2001 | EP |
2040642 | Aug 1980 | GB |
2005253827 | Sep 2005 | JP |
2007181679 | Jul 2007 | JP |
2009034521 | Feb 2009 | JP |
9947046 | Sep 1999 | WO |
9947046 | Sep 1999 | WO |
0228350 | Apr 2002 | WO |
0230288 | Apr 2002 | WO |
2004061743 | Jul 2004 | WO |
2005057467 | Jun 2005 | WO |
2007023408 | Mar 2007 | WO |
Entry |
---|
Azhari et al., “Volumetric Imaging with Ultrasonic Spiral CT,” Radiol 212 (1999) 270-275. |
Barlow et al., “Prospective Breast Cancer Risk Prediction Model for Women Undergoing Screening Mammogrpahy,” J. Nat'l Cancer Institute 98(17): 1204-1214 (2006). |
Boone et al., “Dedicated Breast CT: Radiation Dose and Image Quality Evaluation,” Med Phys 221(3): 657-667 (2001). |
Boston et al., “Estimation of the Content of Fat and Parenchyma in Breast Tissue Using MRI T1 Histograms and Phantoms,” MRI 23: 591-599 (2005). |
Boyd, “Quantitative Classification of Mammographic Densities and Breast Cancer Risk: Results from the Canadian National Breast Screening Study,” J Nat'l Cancer Institute 87(9): 670-675 (1995). |
Byng et al., The Quantitative Analysis of Mammographic Densities,: Phys Med Biol 39 (1994) 1629-1638. |
Cadzow, “Signal enhancement—A composite property mapping algorithm,” IEEE Transactions on Acoustics, Speech and Signal Processing 36(1) (1988) 49-62. |
Centerline, PortalVision section, Summer 2002 edition, published by Varian Medical Systems. |
Chang et al., “Breast Density Analysis in 3-D Whole Breast Ultrasound Images,” IEEE Proc 28th IEEE EMBS Annual International Conference (2006) 2795-2798. |
Chang et al., Kirchhoff migration of ultrasonic images, Materials evaluation, V59, N3, 413-417, 2001. |
Chelfouh et al., “Characterization of Urinary Calculi: in Vitro Study of ‘Twinking Artifact’ revealed by Color-Flow Sonography,” AJR Am. J. Roentgenol. 171( 4) (1998) 1055-60. |
Chen et al., “Projecting Absolute Invasive Breast Cancer Risk in White Women with a Model that Includes Mammographic Density,” J. Nat'l Cancer Institute 98(17) (2006) 1215-1226. |
Diederich et al., “The design of ultrasound applicators for interstitial hyperthermia,” Ultrasonics Symposium, Proc IEEE 1993 Baltimore, MD, USA Oct. 31-Nov. 3, 1993, New York, NY, USA, 1215-1219. |
Drineas et al., “Distance matrix reconstruction from incomplete distance information for sensor network localization,” 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, Sep. 2006, pp. 536-544. |
Duric et al. “Computed Ultrasound Risk Evaluation,” Barbara Ann Karmanos Cancer Institute. pp. 1-23. 2008. |
Duric et al., “Detection of Breast Cancer with Ultrasound Tomography: First Results with the Computed Ultrasound Risk Evaluation (CURE) Prototype,” Med Phys 34(2) (2007). |
Dussik, “The Ultrasonic Field as a Medical Tool,” Amer J Phys Med 33(1) (1954) 5-20. |
Fjield et al., “A Parametric Study of the Concentric-Ring Transducer Design for MRI Guided Ultrasound Surgery,” J. Acoust. Soc. America 100 (2) Pt. 1 (1996). |
Gervias et al., “Renal Cell Carcinoma: Clinical Experience and Technical Success with Radio-frequency Ablation of 42 Tumors,” Radiology 226 (2003) 417-424. |
Glide et al., “Novel Approach to Evaluating Breast Density Utilizing Ultrasound Tomography,” Med Phys 34(2) (2007) 744-753. |
Glide, “A Novel Approach to Evaluating Breast Density Using Ultrasound Tomography,” Dissertation Graduate School of Wayne State University (2007). |
Glide-Hurst et al., “A Novel Ultrasonic Method for Measuring Breast Density and Breast Cancer Risk,” Med Imaging 2008, Proc SPIE vol. 6920, 69200Q. |
Glide-Hurst, “A New Method for Quantitative Analysis of Mammographic Density,” Med Phys 34(11) (2007) 4491-4498. |
Greenleaf et al., “Artificial Cavitation Nuclei Significantly Enhance Acoustically Incuded Cell Transfection,” Ultrasound Med & Biol 24 (1998) 587-595. |
Greenleaf, “Computerized Tomography with Ultrasound,” Proc IEEE 71(3) (1983) 330-337. |
Hayashi, “A New Method of Measuring in Vivo Sound Speed in the Reflection Mode,” J Clin Ultrasound 16(2) (1988) 87-93. |
Jellins et al., “Velocity Compensation in Water-Coupled Breast Echography,” Ultrasonics 11(5) (1973) 223-6. |
Kaizer et al., “Ultrasonographically Defined Parenchymal Pattenrs of the Breast: Relationship to Mammographic Patterns and Other Risk Factors for Breast Cancer,” Brit J Radiology 61(722) (1988) 118-24. |
Karssemeijer, “Automated Classification of Parenchymal Patterns in Mammograms,” Phys Med Biol 43 (1998) 365-378. |
Kerlikowske et al., “Longitudinal Measurement of Clinical Mammographic Breast Density to Improve Estimation of Breast Cancer Risk,” J. Nat'l Cancer Institute 99(5) (2007) 386-395. |
Klimes, Grid Travel-time Tracing: Second-order Method for the First Arrivals in Smooth Media, PAGEOPH, vol. 148, Nos. 3/4,1996. |
Knapp et al., “The generalized correlation method for estimation of time delay,” IEEE Transactions on Acoustics, Speech and Signal Processing 24(4) (1976) 320-327. |
Kossoff et al., “Average Velocity of Ultrasound in the Human Female Breast,” J Acoust Soc America 53(6) (1973) 1730-6. |
Li et al., “Clinical Breast Imaging Using Sound-Speed Reconstructions of Ultrasound Tomography Data,” Med Imaging 2008, Proc SPIE vol. 6920, 6920009. |
Li et al., Breast Imaging Using Transmission Ultrasound: Reconstructing Tissue Parameters of Sound Speed and Attenuation,2008 International Conference on BioMedical Engineering and Informatics, IEEE computer society, 708-712. |
Li et al., Comparison of ultrasound attenuation tomography methods for breast imaging, Medical Imaging 2008: UltrasonicImaging and Signal Processing, Proc. of SPIE vol. 6920, 692015-(1-9), 2008. |
Li et al., Refraction corrected transmission ultrasound computed tomography for application in breast imaging, Med. Phys. 37(5), May 2010, 2233-2246. |
Louvar et al., “Correlation of Color Doppler Flow in the Prostate with Tissue Microvascularity,” Cancer 1:83(1) (1998) 135-40. |
Marias, “Automatic Labelling and BI-RADS Characterisation of Mammogram Densities,” Proc 2005 IEEE, Sep. 1-4, 2005, pp. 6394-6398. |
Mast, “Empirical Relationships Between Acoustic Parameters in Human Soft Tissues,” Acoust Research Letters Online, Nov. 16, 2000, pp. 37-42. |
Masugata et al., “Relationship Between Myocardial Tissue Density Measured by Microgravimetry and Sound Speed Measured by Acoustic Microscopy,” Ultrasound in Med & Biol 25(9) (1999) 1459-1463. |
Metz, “Basic principles of ROC analysis”; Semin Nucl Med. Oct. 8, 1978 (4):283-98. |
Metz, “Receiver Operating Characteristic Analysis: A Tool for the Quantitative Evaluation of Observer Performance and Imaging Systems”; J Am Coli Radiol 2006; 3: 413-422. |
Metz, “ROC methodology in radiologic imaging”; Invest Radiol. Sep, 21 1986 (9):720-33. |
Miller et al., “Sonoporation of Cultured Cells in the Rotating Tube Exposure System,” Ultrasound Med & Biol 25 (1999) 143-149. |
Noble et al., “Spleen Hemostasis Using High-Intensity Ultrasound: Survival and Healing,” J. Trauma Injury, Infection, and Critical Care 53(6) (2002) 1115-1120. |
Ophir et al., “Elastography: Ultrasonic Estimation and Imaging of the Elastic Properties of Tissues,” Proc Instn Mech Engrs 213(Part H) (1999) 203-233. |
Palomares et al., “Mammographic Density Correlation with Gail Model Breast Cancer Risk Estimates and Component Risk Factors,” Cancer Epidemiol Biomarkers Prev 15(7) (2006) 1324-1330. |
Robinson et al., “Quantitative Sonography,” Ultrasound in Med & Biol 12(7): 555-65 (1986). |
Teubner et al., “Comparative Studies of Various Echomammography,” Ultraschall in Der Medizin 3(3) (1982) 109-18, G. Thieme Verlag, Stuttgart/New York. |
Chan et al., An Agglomeration Multigrid Method for Unstructured Grids, Contemporary Mathematics, vol. 218, 1998. |
McCormick et al., Multigrid solution of a linearized, regularized least-squares problem in electrical impedance tomography, Inverse Problems 9, 1993, 697-713. |
Oh et al., Multigrid Tomographic Inversion With Variable Resolution Data and Image Spaces, IEEE Transactions on Image Proessing, vol. 15, No. 9, Sep. 2006. |
Quan et al., Sound-speed tomography using first-arrival transmission ultrasound for a ring array, Medical Imaging 2007: Ultrasonic Imaging and Signal Processing, Proc. of SPIE vol. 6513. |
Zhang et al., A comparison of material classification techniques for ultrasound inverse imaging, J. Acoust. Soc. Am. 111 (1), Pt. 1, Jan. 2002. |
Andre et al., “A New Consideration of Diffraction Computed Tomography for Breast Imaging: Studies in Phantoms and Patients,” Acoustical Imaging, 21, 379 (1995). |
Candy et al., “Signal Processing: The Model-Based Approach,” pp. 178-213 (McGraw Hill, 1986). |
Greenleaf et al., “Multidimensional Visualization of Ultrasonic Images,” J Acoust Soc Amer 95 (1994) 2902. |
Greenleaf et al., “Introduction to Computer Ultrasound Tomography,” Computer Aided Tomography and Ultrasonics in Medicine, (1970) North-Holland 125-136. |
Harmuth, “Sequency Theory: Foundations and Applications, Advances in Electronics and Electron Physics,” (Academic Press, 1977) 18-95. |
Haykin, “Neural Networks—A Comprehensive Foundation,” Prentice Hall (1998) 236-284. |
Hebden et al., “Acoustically Modulated Electrical Impedance Tomography,” Proc SPIE 1231 (1990) 7-14. |
Jellins, “Breast Tissue Characterization” Tissue Characterization with Ultrasound 2 (1986) CRC Press 95-122. |
Mitchell, An Introduction to Genetic Algorithms, pp. 8-11, 35-78, 155-179 (MIT Press, 1996). |
Nelson et al., “Interactive Acquisition, Analysis and Visualization of Sonographic Volume Data,” International J Imaging Sys and Tech 8(26) (1997) 26-37. |
Sehgal et al., “Visualization of Breast Calcification by Acoustic Resonance Imaging,” Radiology Supplement, 84th Scientific Assembly and Annual Meeting, Nov. 29-Dec. 4, 1998 presented in McCormick Place, Chicago, Illinois, vol. 209, listing: 1150 (1998). |
Shi et al., “Effects of Pressure Changes on Harmonic and Subharmonic Response of US Contrast Microbubbles,” 84th Scientific Assembly and Annual Meeting, Nov. 29-Dec. 4, 1998, presented in McCormick Place, Chicago, Illinois, vol. 209, listing: 1154 (1998). |
Glide-Hurst et al., “Volumetric breast density evaluation from ultrasound tomography images”, Medical Physics, vol. 35, 2008, pp. 3988-3997. |
Li et al., “In Vivo Breast Sound-Speed Imaging with Ultrasound Tomography”, Ultrasound in Med & Bioi., vol. 35, No. 10, 2009, pp. 1615-1628. |
Banihashemi, B. et al., “Ultrasound Imaging of Apoptosis in Tumor Response: Novel Preclinical Monitoring of Photodynamic Therapy Effects.” Cancer Research, vol. 68, No. 20, Oct. 15, 2008, pp. 8590-8596. |
Singh, Seema et al. “Color Doppler Ultrasound as an Objective Assessment Tool for Chemotherapeutic Response in Advanced Breast Cancer.” Breast Cancer, 2005, vol. 12, No. 1, 2005, pp. 45-51. |
Yaman, C. et al., “Three-Dimensional Ultrasound to Assess the Response to Treatment in Gynecological Malignancies.” Gynecologic Oncology, Academic Press, vol. 97, No. 2, May 1, 2005, pp. 665-668. |
Vaezy et al., “Real-Time Visualization of High-Intensity Focused Ultrasound Treatment Using Ultrasound Imaging,” Ultrasound in Med & Biol 27(1) (2001) 33-42. |
Walach et al., Local Tissue Attenuation Images Based on Pulsed-Echo Ultrasound Scans, IEEE Transactions onBiomedical Engineering, vol. 36. No. 2, Feb. 1989. |
Wei et al., “Correlation Between Mammographic Density and Volumetric Fibroglandular Tissue Estimated on Breast MR Images,” Med Phys 31(4) (2004) 933-942. |
Weiwad et al., “Direct Measurement of Sound Velocity in Various Specimens of Breast Tissue,” Invest Radiol 35(12) (2000) 721-6. |
Wolfe, “Risk for Breast Cancer Development Determined by Mammographic Parenchymal Pattern,” Cancer 37(5) (1976) 2486-2493. |
Xu, et al. “A Study of 3-Way Image Fusion for Characterizing Acoustic Properties of Breast Tissue.” Medical Imaging 2008: Ultrasonic Imaging and Signal Processing. Feb. 16, 2008. |
Yaffe, “Breast Cancer Risk and Measured Mammographic Density,” Eur J Cancer Prevention 7(1) (1998) S47-55. |
Yankelevitz et al., “Small Pulmonary Nodules: Volumetrically Determined Growth Rates Based on CT Evaluation,” Radiology 217 (2000) 251-256. |
Number | Date | Country | |
---|---|---|---|
20140066772 A1 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
61694999 | Aug 2012 | US |