Method and system for improved-efficiency air-conditioning

Information

  • Patent Grant
  • 10730003
  • Patent Number
    10,730,003
  • Date Filed
    Thursday, September 27, 2018
    5 years ago
  • Date Issued
    Tuesday, August 4, 2020
    3 years ago
Abstract
Systems and methods for circulating air in an enclosed environment are disclosed. In some embodiments, the system includes an inlet to receive air from outside of the enclosed environment and an air handling unit coupled to the inlet and also configured to receive circulated air from the enclosed environment. The air handling unit can be configured to affect a temperature of at least one of the received outside air and the received circulated air. Based on the received outside air and the received circulated air, the air handling unit can be further configured to generate air for supplying to the enclosed environment.
Description
TECHNICAL FIELD

The present application generally relates to air circulation systems and in particular to removal of various substances from and/or cleaning of air circulation systems.


BACKGROUND

Heating, Ventilation and Air-Conditioning (“HVAC”) are standard in virtually every modern building. Indeed, HVAC is often one of the largest parts of the entire energy budget of most buildings. This is particularly the case in extreme climates, both hot and cold. One of the goals of HVAC systems is to provide comfortable and healthy environment for building occupants, in terms of temperature, humidity, composition and cleanliness of air.


Central HVAC systems in buildings typically include one or more central air handling unit(s) and an air distribution system, where supply air is directed to various parts of a building through a network of ducts, and return air flows from these spaces, through other ducts or a plenum, back to the air handling unit(s). In the air handling unit, the air is cooled and/or heated, as well as filtered and often dehumidified and/or humidified, as needed. Thus, HVAC systems constantly circulate air through the building while continually adjusting its temperature and humidity to maintain comfortable environment.


However, in order to maintain good air quality, not all the air is recirculated. Some of the air leaks out through doors, windows, etc. and some fraction of the circulating air is intentionally exhausted outside the building. This is referred to as exhaust air. The exhaust air is replaced by an intake of outside air, also known as makeup air, to make up for the exhaust air being taken out. This is also referred to as “fresh air” or ventilation. This replacement of air is done because occupants of the building and the equipment consume oxygen and emit carbon dioxide (CO2) as well as a variety of other contaminants that gradually compromise quality and safety of the air. Such replacement of the air maintains fresh air quality.


Oxygen represents approximately 21% of atmospheric air and that is normally the desired level of indoor air as well. On the other hand CO2 is present only in very low levels in the outside air, typically at a level of approximately 400 parts per million (“ppm”). Once elevated levels of CO2 or reduced levels of oxygen are created, a fairly significant amount of outside air is needed to bring their respective concentrations close to the desired level. Indeed, to fully restore oxygen and CO2 concentration virtually all the air may need to be replaced.


The outside air represents an additional, and depending on the outside climate conditions often a significant, thermal load on the air handling unit. In the case of a hot and humid climate, for example, the outside air injected into the HVAC system can require additional energy for cooling and dehumidifying the outside air and can represent a significant fraction of the entire thermal load and energy usage of the HVAC system.


The amount of exhaust air and outside air can be adjusted to meet the air quality standards. Certain minimum amounts of levels of oxygen, CO2 and other contaminants, a variety of organic gases collectively referred to as volatile organic compounds or VOCs, are often set to maintain air quality. In the USA, the American Society of Heating, Refrigeration and Air-conditioning Engineers (“ASHRAE”) issues guidelines, including the ASHRAE Standard 62, for the amount of outside air ventilation recommended for a given space and number of occupants. However, the greater the rate of air replacement, the more energy is consumed by the HVAC system.


SUMMARY

In some embodiments, the amount of supply air used by an HVAC system, and hence the amount of energy used for heating and cooling, while maintaining desirable air quality and composition, can be reduced by removing unwanted substances such as gases, including carbon dioxide (CO2), contaminants, particles, etc. using scrubbers or other devices that can separate these gases from the circulating air. Optionally, the quality of air can be further improved with injection of concentrated oxygen. In some embodiments, a fraction of the circulating air can be diverted though the scrubbers to achieve the desired result. While in a normal HVAC system frequent extensive replacement of the building air is performed, scrubbing of CO2 and other unwanted gases and vapors, can achieve the same goal, but with much lower thermal load on the HVAC system, thereby providing significant energy saving for the building and reducing demands on the entire electrical grid.


In some embodiments, the HVAC system can include an oxygen injection system that can inject oxygen-enriched air into the circulated air.


In some embodiments, a control system for use with an HVAC system can include a gas scrubbing system for removal of an unwanted substance gas from circulated air. The control system can include a sensor for determining an amount of the unwanted substance(s), particle(s), gas(es), etc. in the circulated air. A minimum level of outside air replacement can be maintained, and a controller can modify a rate of exhaust of circulating air and intake of outside air so as to adjust overall air replacement according to the measured amount of unwanted substance(s), particle(s), gas(es), etc. in the circulated air. The control system also can include an oxygen sensor for determining an amount of oxygen in circulated air. The controller can further modify the rate of oxygen injection.


In some embodiments, the system can be a modular system that can be connected to an HVAC system that can circulate air in an enclosed environment. The modular system can include a module for scrubbing configured to reduce a level of an unwanted substance in the circulating air.


In some embodiments, the current subject matter relates to a system for circulating air in an enclosed environment. The system can include an inlet configured to receive an outside air from outside of the enclosed environment and an air handling unit coupled to the inlet to receive the outside air through the inlet and configured to receive a circulated air from the enclosed environment. The air handling unit can be configured to affect a temperature of at least one of the received outside air and the received circulated air. Based on the received outside air and the received circulated air, the air handling unit can be further configured to generate air for supplying to the enclosed environment. The current subject matter system can also include an air circulation system configured to circulate the generated air from the air handling unit to the enclosed environment and back to the air handling unit and a scrubbing system coupled to at least one of the air handling unit and the air circulation system and configured to reduce presence of at least one substance in the air supplied to the enclosed environment.


In some embodiments, the current subject matter relates to a process for circulating air in an enclosed environment. An outside air from outside of the enclosed environment and a circulated air from the enclosed environment are received. At least one of the received outside air and the received circulated air are conditioned so as to supply at least one of the received outside air and the received circulated air at a desired temperature to the enclosed environment. The conditioned air is circulated into and from the enclosed environment. At least some of the received circulated air from the enclosed environment is scrubbed to reduce presence of at least one substance in the circulated air. The scrubbed air is recirculated. At least a portion of the circulated air is exhausted from the enclosed environment.


In some embodiments, the current subject matter relates to a control system for use with an HVAC system having a gas scrubbing system for removal of an unwanted gas from circulated air. The control system can include a sensor for determining an amount of the unwanted gas in the circulated air and a controller configured to modify a rate of exhaust of circulated air or intake of outside air so as to adjust an overall air replacement according to the measured amount of unwanted gas in the circulated air.


The details of one or more variations of the subject matter described herein are set forth in the accompanying drawings and the description below. Other features and advantages of the subject matter described herein will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The current subject matter is described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. Additionally, where applicable, the left-most digit(s) of a reference number identifies the drawing in which the reference number first appears. In the figures:



FIG. 1 is a block diagram illustrating an HVAC system;



FIG. 2A is a block diagram illustrating an exemplary HVAC system incorporating substance scrubbing and oxygen injection components, according to some embodiments of the current subject matter;



FIG. 2B is a block diagram illustrating another exemplary HVAC system, according to some embodiments of the current subject matter;



FIG. 2C is a block diagram illustrating yet another exemplary HVAC system, according to some embodiments of the current subject matter;



FIG. 3 is a block diagram illustrating an exemplary HVAC system that can include a configuration of valves and lines allowing the scrubber to switch from an adsorption mode to a purge mode, according to some embodiments of the current subject matter;



FIG. 4 is a block diagram illustrating an exemplary HVAC system that can include an oxygen injection system, according to some embodiments of the current subject matter;



FIG. 5 illustrates an exemplary control flow for a controller for an HVAC system, according to some embodiments of the current subject matter; and



FIG. 6 is a flow chart illustrating an exemplary method according to some embodiments of the current subject matter.





DETAILED DESCRIPTION


FIG. 1 is a block diagram illustrating a circulating central HVAC system 100. The system 100 can be configured to provide air circulation to an occupied space 102 to which it is connected. The system 100 further includes an air handling unit (“AHU”) 106, which has both heating and cooling elements that modify temperature of the circulating air as it flows and comes in contact with these elements. The system 100 can further include air intake duct(s) 108 connected to the AHU 106 via circulation lines 104 that allow intake of outside air (“OA”) into the system 100 and specifically AHU 106. The system 100 can also include exhaust duct(s) 112 that receive return air (“RA”) via lines 110 and expunge it as an exhaust air (“EA”) into the outside atmosphere (or any other environment).


In operation, the fans or blowers that can be disposed in the AHU 106 force the flow of the conditioned supply air (“SA”) through ducts that distribute the conditioned air throughout the various parts of the occupied space 102 (which can be an enclosed environment). For ease of illustration, the following description refers to a building as an example of an enclosed environment 102. The building 102 can have different zones for which rates of air flow can be different. Return air can flow back to the air handling unit 106 via lines 114 and can be filtered to remove particles, bacteria, substances, various fumes, and/or a combination thereof. Some of the return air can be exhausted outside the building 102 as exhaust air. The air can be exhausted through valves that control the amount of exhaust air being released. At the same time, fresh outside air can be pulled in to replace the exhaust air and maintain a correct overall volume and pressure of air in the building 102. Typically 10-15% of airflow can be released as exhaust and replaced, but this number can vary widely. In some environments, such as bathrooms and kitchens, the HVAC system can be configured to exhaust and replace 100% of the air flow. The constant replacement of exhaust air with outside air can be intended to maintain good air quality, and in particular, replenish oxygen consumed by the building occupants and remove substances, particles, gases (e.g., carbon dioxide), fumes other compounds, and/or a combination thereof generated by occupants, equipment and/or materials located inside the enclosed environment 102.


In some embodiments, the enclosed environment 102 can be an office building, a commercial building, a bank, a residential building, a house, a school, a factory, a hospital, a store, a mall, an indoor entertainment venue, a storage facility, a laboratory, a vehicle, an aircraft, a ship, a bus, a theatre, a partially and/or fully enclosed arena, an education facility, a library and/or other partially and/or fully enclosed structure and/or facility which can be at times occupied by equipment, materials, live occupants (e.g., humans, animals, synthetic organisms, etc.), etc., and/or any combination thereof.



FIGS. 2A, 2B and 2C are block diagrams schematically illustrating various ways to incorporate air scrubbers in the HVAC system 100 shown in FIG. 1 to allow reduction of exhaust air and outside air. FIG. 2A illustrates an HVAC system 202 that can be configured to incorporate a scrubber (“CS”) 204 in line 114 that connects the intake line 104 and thereby the AHU 106 and the return air line 110. The return air travelling along the line 110 can be split into a fraction that is diverted to the CS 204 and another fraction diverted to the exhaust duct 112 for expunging into the atmosphere.



FIG. 2B illustrates another exemplary way of incorporating a scrubber into an HVAC system. As shown in FIG. 2B, an HVAC system 206 can include a scrubber 208 that is connected to the line 114 (as opposed to being placed in the line 114, as shown in FIG. 2A). The return air travelling along the line 110 can be split into two fractions: one going to the exhaust duct 112 and the other going to the line 114. The fraction of the return air that travels along the line 114 can be further split into a fraction that bypasses the CS 208 and the one that travels into the CS 208 for scrubbing. Once the CS 208 scrubs or “cleans” that fraction, it is re-entered into the line 114 for supplying to the AHU 106, as shown by the arrows in FIG. 2B.



FIG. 2C illustrates yet another exemplary way of incorporating a scrubber into an HVAC system. In this case, system 210 can include a scrubber 212 in the line 104 placed between the AHU 106 and the occupied space 106. Hence, any air that is travelling through the AHU 106 can be scrubbed or “cleaned” by CS 212 immediately before it enters the occupied space 102. Other ways of incorporating a scrubber into an HVAC system are possible.


In some embodiments, only a fraction of the circulating air stream can be diverted to the scrubber, which can intercept the flow of the diverted air. The scrubber can subsequently allow scrubbed air to continue to flow back into the general circulation with substances, compounds, particles, fumes, gases (e.g., CO2), etc. partially and/or fully captured, filtered, and/or removed from the scrubbed air. As shown in FIGS. 2A-C, the scrubber can be implemented in many different ways.


In some embodiments, to absorb substances, compounds, particles, fumes, gases, etc. the scrubber 204, 208, 212 can use adsorbent materials, molecular sieves, porous materials, sponge-like materials, electrically and/or electro-magnetically charged liners or objects, any other chemical, biological attractants, and/or any combination thereof. Such materials can be placed in a container, stacked in columns, disposed as a sheet or a lining the inside of one or more lines of the system shown in the FIGS. 1-5. For example, several porous materials have been shown to be effective adsorbents of CO2, notably a number of synthetic zeolites, but also porous alumina, and metal organic frameworks. These are readily available from a variety of commercial sources, such as W.R. Grace SYLOBEAD® C-Grade 13X, Intera Global Corporation's mSorb®, and generic producers such as Pingxiang XINTAO Chemical Packing Co., Ltd. In China, GHCL Ltd., in India, and many others. Zeolite beds have been developed to extract CO2 from a gas stream for various industrial applications (e.g., U.S. Pat. No. 3,619,130 to Ventriglio et al.; U.S. Pat. No. 3,808,773 to Reyhing et al.; U.S. Pat. No. 3,751,848 to Collins; U.S. Pat. No. 3,885,928 to Shermen et al.; U.S. Pat. No. 4,249,915 to Sirkar et al.; U.S. Pat. No. 5,137,548 to Grenier et al.). For the purposes of adsorption of CO2 such technologies can be adopted for use by the current subject matter HVAC systems and can be more forgiving in terms of the allowed residual CO2 in the outflow. In some embodiments, addition of other adsorbents, including multiple zeolites, porous alumina (e.g., U.S. Pat. No. 4,433,981 to Slaugh et al.; U.S. Pat. No. 4,711,645 to Kumar et al.) or activated charcoal (e.g., U.S. Pat. No. 1,522,480 to Allen; U.S. Pat. No. 1,836,301 to Bechthold) can improve air quality or energy efficiency by removing other gases, volatile organic compounds and humidity or by allowing lower-temperature release of adsorbents.


More recent developments in the field of solid adsorption or CO2 include metal organic frameworks (U.S. Pat. No. 6,930,193 to Yaghi et al.; U.S. Pat. No. 7,662,746 to Yaghi et al.) and amine-impregnated clays (U.S. Pat. No. 6,908,497 to Siriwardane). These adsorbents can be suitable for use in the current subject matter systems described herein. The current subject matter system can be implemented with any past, currently-available, and future adsorbents designed to scrub or “clean” air. In some embodiments, the combination of several different adsorbents in the same unit or as separate units may offer the better performance.



FIG. 3 illustrates an exemplary scrubber system 300 that can be incorporated into systems shown in FIGS. 1 and 2A-C, according to some embodiments of the current subject matter. The system 300 includes a scrubber 310, a circulating supply air valve 302 (“Valve 1”), a back-to-circulation valve 304 (“Valve 2”), a purge inlet valve 308 (“Valve 3”), and a purge exhaust valve 306 (“Valve 4”). The scrubber 310 can be configured to operate in two cycles: an adsorption cycle and a regeneration cycle, as discussed below. During the adsorption cycle, Valves 1 and 2 are open and can allow entry of, adsorption of substances, particles, fumes, gases, etc. from, and subsequent exit of the circulating air. During this cycle, Valves 3 and 4 are closed. Whereas, during the regeneration cycle, Valves 1 and 2 are closed, while Valves 3 and 4 are open. Valves 1 and 2 can couple the scrubber 310 to the circulating lines, whereas Valves 3 and 4 can couple the scrubber 310 to the purging lines, as shown in FIG. 3.


As such substances, particles, fumes, gases, hazardous vapors (e.g., radioactive vapors) etc. (hereinafter, “substances”) captured from the circulating air accumulate in the scrubber 310, the substances can be removed from the scrubber 310 at a predetermined rate. Removal of substances can be referred to as a “regeneration” or a “regeneration cycle”. Such substances can be released into the atmosphere or otherwise collected, disposed of, sequestered, and/or any combination thereof. Regeneration can be achieved by a combination of heating, purging, pressure change, electrical energy, and/or any combination thereof. In some embodiments, the release of substances can be achieved by a combination of heating and purging with air or other purge gas. Thus, an adsorption-desorption cycle can sometimes be referred to as a temperature-swing adsorption.


As stated above, during the regeneration cycle, the scrubber 310 can be isolated from the HVAC system circulation by Valves 1 and 2, shown in FIG. 3, and instead, can be connected to the incoming and outgoing purging lines using Valves 3 and 4. While Valves 1 and 2 are closed and Valves 3 and 4 are open during the regeneration cycle, purge gas, air, and/or any other purge substance can be configured to flow through the scrubber 310 while it is isolated from the air circulation system. The scrubber 310 can run the adsorption and regeneration cycles at periodically, at predetermined times, and/or as necessary (for example, upon detection of adsorption of a particular substance or a specific amount of a substance). The scrubber 310 can be also configured to run each cycle for a predetermined period of time. Alternatively, the length of time that each cycle can be performed depends on the substance adsorbed/purged, time that it takes to adsorb/purge a substance or a particular amount of the substance, interior conditions, exterior conditions, type of the occupied space 102, energy usage, environmental regulations, commercial factors, and/or any other factors, and/or a combination of factors. If the scrubber regeneration interrupts the continual scrubbing process for an unacceptably long period of time, multiple scrubbers (not shown in FIG. 3) can be used to avoid such interruption, so that when one scrubber is undergoing regeneration, another scrubber can be engaged in one of the cycles. Short interruptions in operation of the scrubber will likely not pose a problem with air circulation, as long as the aggregate amount of substances, CO2, VOCs, etc. removed over extended periods of several hours is sufficient. Similar multiple-system back up can be implemented for other components of the system, such as an oxygen concentrator(s).


In some embodiments, the scrubber adsorbent bed design can include an appropriate choice of adsorbent material, its amount, its spatial distribution, an air flow pattern and its overall capacity can be compatible with various airflow design requirements. In designing the scrubber, system size and cost versus throughput, frequency of regeneration and energy requirements for regeneration can be also considered. The amount of substances, CO2, VOCs, etc. that can be collected and released in each temperature swing adsorption cycle can depend on the amount of active and accessible adsorbent material, and for certain adsorbents can depend on the temperature gap between the adsorption and purge cycle. Thus, to achieve a certain rate of gas capture one can use less material and operate with more frequent purge cycles. The cycles as well as their frequency can also depend on natural kinetic rates of adsorption and desorption for a particular material, flow rate and temperature that constrain the cycle time for a given amount of material. To minimize energy required, i.e., the energy that can be required to heat the purge gas, a lower purge gas temperature can be used, which can reduce the amount of material desorbed per cycle. In an application that is primarily driven by energy savings, one can start with the temperature and volume of purge gas that can be generated using an excess heat of the HVAC system and use that available purge temperature to design the thermal range of the temperature swing cycle, which in turn will determine the kinetics of the adsorbent design the dimensions of the bed.


In some embodiments, an HVAC system having temperature swing adsorption with solid adsorbents can provide simplicity, durability, scalability to different sizes, and a relatively low operating cost. There are many other ways to remove substances, CO2, VOCs, as well as other unwanted gases, fumes, and/or vapors. In some embodiments, substance, CO2, VOC, etc. scrubbing can be achieved by reactions with alkaline hydroxide bases. In some embodiments, substance, CO2, VOC, tec. scrubbing can be achieved using aqueous amine gas solutions, such as monoethanolamine or other amines that are well known. In some embodiments, scrubbing can be achieved by a chemical cycle in which sodium carbonate combines with carbon dioxide and water to form sodium bicarbonate (e.g., U.S. Pat. No. 3,511,595 to Fuchs). Other techniques for removal of substances, CO2, VOCs, etc. can include selective membranes, for example, PRISM membranes from Air Products, Inc, or CYNARA membranes from Cameron International Corp. Since the scrubber can be a separate module in this systems, other scrubbing technologies (past, currently available, or future) can be used in such system without having to change its other components.


In some embodiments, to regenerate the scrubber, at least some of the above techniques can use heat for regeneration. Some of that heat can be obtained by harvesting waste heat produced by other systems nearby, including the compressor and the air handling unit of the HVAC system, as well as solar energy. This can further improve the overall economics of the system. In some embodiments, the purging of the adsorbent bed utilizes warm air from the cooling unit to purge the bed during regeneration. In some embodiments, solar energy can be collected on a rooftop unit and/or a separately located unit and used to heat the purge gas. Solar heating and harvesting compressor heat and other wasted heat can be used in combination with one another to minimize the energy usage of the system as a whole. Independent or additional heating can be performed to achieve a particular purge gas temperature in which case a heating coil, a furnace or a gas burner can be incorporated to the system before the entry point of the purge gas.


Referring back to FIG. 2A, the scrubber (CS) 204 can be configured to intercept all of the return air flow, which might not be necessary or practical. This is illustrated in FIG. 2B, where only some of the return air can be diverted to the scrubber 208 while the rest of the air can bypass the scrubber 208 and can flow directly to the air handling unit 106. In some embodiments, it is not essential that all of the air pass through the scrubber, as long over time a sufficient fraction of the unwanted substances, gases, etc. are captured and removed from the circulating air stream. In an embodiment shown in FIG. 2C, the scrubber 212 can be positioned downstream from the air handling unit 106, which has the advantage of colder air entering the scrubber and cooling it. Many scrubbing technologies and adsorbents can perform better with lower temperatures. From an air quality standpoint, any location of the scrubber can work, as long as there is over time adequate amount of contact between the circulating air and the scrubber somewhere along the flow path of the air before or after the air handling unit. In some embodiments, the scrubber(s) can be distributed in the occupied space 102.


In some embodiments, the scrubber can collect CO2 and potentially other substances that can be disposed of in various ways. The collected substances can be released to the atmosphere, collected in containers for handling and disposing at another location, flowed through pipelines to another location or facility to be stored, processed and/or utilized, or otherwise disposed of in any other fashion. For example, CO2 is beneficial for greenhouses and could be directed to such greenhouses by pipes or by containers. Alternatively, these byproduct gases can be sequestered indefinitely simply to avoid releasing them into the atmosphere. There can be a higher cost to such disposition of these gases and, in some situations, it might not necessarily be economically justifiable to do so.



FIG. 4 is a block diagram illustrating an HVAC system 400, according to some embodiments of the current subject matter. The system 400 includes an air handling unit 402 configured to supply air circulation to an occupied space 102 via line 104, where return air is transported via line 110. The system 400 also includes a scrubber 404 that is disposed in the line 114 connecting the supply air line 104 and the return air 110. The scrubber 404 can be disposed in any other fashion (as illustrated in FIGS. 2A-2C) and can be configured to perform air scrubbing discussed above. The system 400 further includes an oxygen concentrator 406. The oxygen concentrator 406 can take its own outside air supply (“OA2”), as shown by the arrows, and can create a flow of concentrated oxygen (“O”) into the supply air line 104. The concentrated oxygen can be directed through an additional intake valve in to the air handling unit 402, upstream from the heating/cooling elements. The oxygen concentrator 406 can dispose of nitrogen (“N”), as indicated by the arrow in FIG. 4, and potentially other by-products back to the atmosphere (or any other location, container, etc.). The amount of oxygen added to the circulating air can depend on flow rate and the oxygen concentration. In some embodiments, the latter can be substantially greater than 90% (e.g., as is the case in most commercially available concentrators). However, a lower concentration can be also used to achieve the desired results with a slightly higher flow rate.


The oxygen concentrator 406 can be implemented in a number of ways. In some embodiments, the technique for oxygen concentration can include a known Pressure Swing Adsorption (“PSA”) technique, Vacuum Swing Adsorption (“VSA”) technique, and/or any other technique and/or any combination thereof. Systems employing these techniques can come in different sizes and output capacities, as stand-alone systems for providing concentrated oxygen directly from air, as well as in any other forms. Example VSA oxygen generating systems include at least one of the following: the PRISM VSA oxygen generation systems by Air Products Inc.; the OXYSWING product line by Innovative Gas Systems, Inc.; the ADSOSS line of oxygen generators by Linde; the VPSA oxygen generating system from Praxair Inc. These PSA/VSA systems can utilize highly porous adsorptive solids, usually a synthetic zeolite bed, in one or more container, typically shaped as a cylindrical column, and can use pumps and compressors to change the pressure of gases in these containers. The technique can rely on differential adsorption of oxygen and nitrogen onto the adsorbent. Thus, it can take an inflow of normal air (or other gas mixtures) and generate two separate outputs: an oxygen-concentrated air and oxygen-depleted air. One of the advantages of PSA/VSA systems is that these systems can continually generate oxygen for extended periods without much maintenance.


Other ways to separate or concentrate oxygen are also available. Cryogenic separation can be an effective way for large volumes and high purity, where the different condensation/boiling temperatures of different gases are used to separate oxygen from air. Selective membranes and selective diffusion media can also separate oxygen from air. Concentrated oxygen can also be generated from electrolysis of water, where electrical current through water generates oxygen gas on one electrode and hydrogen gas at the other. While these are energy intensive processes, pure hydrogen or nitrogen created as by products and can be collected and utilized for other applications.


In some embodiments, the presence of both the scrubber 402 and the oxygen concentrator 406 does not eliminate exhaust air and outside air. In some embodiments, exhaust air and outside air can be kept at a controlled level, which can be lower than in a conventional HVAC system but at a level that can be warranted or desired in order to assure that there is no gradual deterioration in air quality despite the benefits of the oxygen concentrator and the scrubbers.


In embodiments where the oxygen concentrator 406 is not used, the scrubber 404 can be configured to provide a majority of benefits related to circulation of quality air. This can be useful in scrubbing of carbon dioxide. While oxygen consumption and CO2 emission go hand in hand and occur in almost identical molecular quantities, which can imply that a drop in oxygen concentration can be commensurate with a rise in CO2 levels, as long as makeup air in the HVAC system is not eliminated altogether, even without a scrubber and an oxygen source, the oxygen and CO2 levels can stabilize at certain asymptotical concentrations that together sum up approximately to 21%, the same as that of outside air. The asymptotic level of oxygen, X, is given by

X=X0−Bo/M  (1)

where X0 is the concentration of oxygen in outside-air, Bo is the net amount of oxygen consumed (in CFM, liters/second or any other units) by the occupants and M is the amount of outside air injected (in same units, CFM, liter/second, etc respectively). Similarly, CO2 level, Y, can be calculated by

Y=Y0+Bc/M  (2)

where Y0 is the concentration of CO2 in outside-air and Bc is the net amount of CO2 produced by the occupants of the occupied space. Thus, as long as Bc≈Bo, at least approximately, then X+Y≈X0+Y0. However, adding a scrubber that extracts CO2 at a rate, Sc, (in same units, CFM, liter/second, etc. respectively) can result in

Y=Y0+(Bc−Sc)/M  (3)


Analogously, the impact of an oxygen generator injecting at a net rate of Go (in same units, CFM, liter/second, etc., respectively) can change the asymptotic value of X to

X=X0−(Bo−Go)/M  (4)


Example

For illustration purposes only, to understand why oxygen replenishment is less critical, the following example is provided: if outside air is at the normal 21% oxygen, and occupants of the occupied space consume oxygen at a rate of 2 CFM (cubic feet per minute) and exhale CO2 at a similar rate, and if makeup air is at a relatively low 100 CFM, with no scrubbing or oxygen injection, then oxygen can gradually approach 19%, while CO2 can approach 2%. There can also be elevated levels of other VOCs alongside the CO2. Whereas a 19% concentration of oxygen can be acceptable, a 2% concentration of CO2 is not. Further, the VOC levels most likely will be unacceptably high as well. Thus, adding a scrubber with Sc=2CFM capacity alone could bring CO2 levels down to normal. Oxygen can still be depleted approximately to 19%, unless supplemental oxygen is injected, but even so air quality might be acceptable at this level even without an oxygen source, and can require less hardware and less operating costs.



FIG. 5 illustrates an exemplary HVAC system 500 that includes an air handling unit 504, a central control system (“CC”) 502, a scrubber 506, and a plurality of sensors (“Y”) 531, 533, 535 that can be installed in the occupied space 102. Connections of the AHU 504 and CS 506 as well as the supply air and return air lines similar to the ones shown and discussed in connection with FIGS. 1-4 above. The central control system 502 can be coupled to the components in the system 500 via various connections (e.g., electrically, wirelessly, wired, wireline, etc.) and can be configured to control them via issuance of various commands. The central control system 502 can include a processor, a memory, a monitor, and or any other components. It can control/operate components automatically, manually, or semi-automatically. The central control system 502 can be coupled to sensors 531, 533, 534 via connections 514, to the scrubber 506 via connections 516, and to the ducts 108, 112 via connections 512. The system 502 can be also configured to control AHU, an oxygen concentrator (not shown), and/or any other components.


The sensors 531, 533, 535 can be installed in various locations in the occupied space 102 and can be configured to provide a feedback to the system 502 system. Sensors (Y) can be distributed through the occupied space and detect levels of one or more substances, gases (such as CO2 and/or oxygen, and other gases), fumes, vapors, VOCs, etc., and/or any combination thereof. Sensors for CO2 are commercially available, examples of which include C7232 sensor from Honeywell Corp., TELAIRE sensors from General Electric, etc. Upon detection of and/or a particular concentration such substances, gases, etc., the sensor(s) (Y) can be configured to generate a data signal that can be transmitted to the central control system 502 for processing. After processing the data signal(s), system 502 can generate appropriate commands to components within the system 500 (e.g., turn on a regeneration cycle of the scrubber 506; perform adsorption cycle at a predetermined time or when concentration of a substance reaches a certain level).


As stated above central control system (CC) 502 can be human operated, automated and/or computerized and can detect a signal from the sensors (Y). Based on these and the various parameters and settings of the system 500, the CC 502 can control and/or modify at least one of the following, in order to achieve targeted conditions: OC power (on/off), OC settings, OC valves (OC is not shown in FIG. 5), CS settings, CS regeneration trigger, outside air flow rate, exhaust air flow rate, and any other functions. The system 502 can have fail safe measures to prevent unwanted elevation of oxygen, and the ability to shut down either or both oxygen concentrator and scrubber if needed and compensate by increasing outside air and exhaust air levels to those of a conventional HVAC.


The control system 502 can permit the amount of scrubbing or injection of oxygen to be adjustable, whether directly or indirectly, whether electronically or manually. Adjustments can be achieved by changing the power or settings applied to the various compressors, pumps, motors, heaters, actuators or valves associated with the scrubbers and the oxygen concentrators. The adjustments to the amount of scrubbing or oxygen injection can be automatically done in response to a measurement of air quality or air composition in one or more locations. The adjustments to the amount of scrubbing or oxygen injection can also be automatically done based on building occupancy, time of day, day of the week, date, season or outside climate.


In some embodiments, the scrubber 506 can be set to run at a constant operating mode. The capacity and efficiency of the scrubber 506 in that mode can be selected based on the occupied space and the amount of activity in the occupied space, so as to maintain desirable levels of CO2 (and/or other substances). In some embodiments, the control system 502 can control a rate of exhaust air and outside air. The baseline can be a preset minimum. If the capacity and efficiency of the scrubber is insufficient to handle the CO2 load, then the rate of exhaust air and outside air can be adjusted automatically to a higher level. The oxygen flow can be separately controlled to maintain a target level of oxygen in the occupied space. Both the control of the exhaust air valves and the oxygen inflow can be subject to a feedback loop, with a proportional-integral-differential (“PID”) algorithm with upper and lower set points. The coupling of the oxygen concentrator to the air flow manifold can be done using any tube of duct fitting, with or without a control valve and/or a flow meter.


In some embodiments, the system can be designed in a modular way so that it can be retrofitted on a pre-existing or pre-designed HVAC system. This can be beneficial in buildings that already have HVAC systems, as the integration of the system can have relatively lower costs. The oxygen concentrator and scrubber, with a control system, can be installed and connected to a conventional HVAC system without having to replace the ductwork or the central air handling unit.


In some embodiments, the current subject matter relates to a system for circulating air in an enclosed environment. The system can include an inlet configured to receive an outside air from outside of the enclosed environment and an air handling unit coupled to the inlet to receive the outside air through the inlet and configured to receive a circulated air from the enclosed environment. The air handling unit can be configured to affect a temperature of at least one of the received outside air and the received circulated air. Based on the received outside air and the received circulated air, the air handling unit can be further configured to generate air for supplying to the enclosed environment. The current subject matter system can also include an air circulation system configured to circulate the generated air from the air handling unit to the enclosed environment and back to the air handling unit and a scrubbing system coupled to at least one of the air handling unit and the air circulation system and configured to reduce presence of at least one substance in the air supplied to the enclosed environment.


In some embodiments, the current subject matter can also include one or more of the following optional features. The scrubbing system can be configured to intercept at least a portion of the received circulated air prior to the circulated air reaching the air handling unit. The scrubbing system can intercept at least a portion of the circulated air after the circulated air is processed by the air handling unit. In some embodiments, between approximately 1% to approximately 50% of the circulated air can be diverted to the scrubbing system and a remainder of the circulated air can bypass the scrubbing system. In some embodiments, between approximately 3% to approximately 25% of the circulated air can be diverted to the scrubbing system and a remainder of the circulated air can bypass the scrubbing system. In some embodiments, between approximately 5% to approximately 15% of the circulated air can be diverted to the scrubbing system and a remainder of the circulated air can bypass the scrubbing system. In some embodiments, at least one substance in the air is carbon dioxide. In some embodiments, at least one substance in the air can include at least one of the following: volatile organic compounds, carbon monoxide, nitrous oxides and sulfur oxides.


The current subject matter system can include a control system coupled to at least one sensor, where at least one sensor is disposed in at least one of the following: the enclosed environment and the air circulation system. At least one sensor can determine a composition of the circulated air and provide the determination of the composition of the circulated air to the control system. Based on the determination of the composition of the circulated air, the control system can control at least one of the following: the scrubbing system and the air inlet system, and can be further configured to maintain a desired composition of the circulated air. An airflow through the inlet is such that the desired air quality can be maintained with a lower amount of outside air than would be possible without the scrubbing system.


The scrubbing system can include at least one adsorbent, wherein a concentration of the at least one substance is reduced by adsorption of the at least one substance onto the adsorbent. At least one adsorbent can include at least one of the following: a molecular sieve, a synthetic zeolite, an activated charcoal, porous alumina, silica gel, a clay-based material, and a metal organic framework. The scrubbing system can include at least one additional adsorbent. At least one additional adsorbent can be mixed with the at least one adsorbent in the scrubbing system. The scrubbing system can include a plurality of beds, wherein each bed in the plurality of beds is configured to intercept a flow of circulated air, and at least two of beds in the plurality of beds have different adsorbents. The scrubbing system can also include a system for controlling a reversible chemical reaction that includes carbon dioxide. The reversible chemical reaction can be a sodium carbonate and sodium bicarbonate cycle. Also, the reversible chemical reaction can be between an amine compound and carbon dioxide. The scrubbing system can utilize one or more bases. The base can be an alkaline hydroxide. The scrubbing system can be a temperature swing adsorption system. The scrubbing system can further include a purge cycle during which a purge substance is applied to the scrubbing system to release the at least one substance from the scrubbing system. The purge substance can be gas. The purge substance can be heated by applying heat generated a component of a heating, ventilation and air-conditioning system incorporating the air circulation system.


The current subject matter system can include a heating system configured to heat the purge substance. The heating system can use solar energy. The scrubbing system can include an adsorbent and a cooling system configured to cool the adsorbent, wherein the cooling system uses a chilled fluid provided by the air handling unit. The scrubbing system can be coupled to the air circulation system such that at least one part of the circulated air is configured to flow through the scrubbing system and at least another part of the circulated air is configured to bypass the scrubbing system.


The current subject matter system can also include an oxygen injection system that injects oxygen or an oxygen-concentrated air into the circulated air. The current subject matter system can further include a control system coupled to at least one sensor disposed in the enclosed environment. At least one sensor can determine an oxygen level in the circulated air and provide the determination of the oxygen level in the circulated air to the control system. Based on the determination of the oxygen level in the circulated air, the control system can control the oxygen injection system so as to maintain a desired level of oxygen in the circulated air. The oxygen injection system can include at least one of the following: a pressure swing adsorption and a vacuum swing adsorption system.



FIG. 6 illustrates an exemplary process 600 for circulating air in an enclosed environment, according to some embodiments of the current subject matter. At 602, an outside air from outside of the enclosed environment and a circulated air from the enclosed environment are received. At 604, at least one of the received outside air and the received circulated air are conditioned so as to supply at least one of the received outside air and the received circulated air at a desired temperature to the enclosed environment. At 606, the conditioned air is circulated into and from the enclosed environment. At 608, at least some of the received circulated air from the enclosed environment is scrubbed to reduce presence of at least one substance in the circulated air. At 610, the scrubbed air is recirculated. At 612, at least a portion of the circulated air is exhausted from the enclosed environment.


In some embodiments, the current subject matter relates to a control system for use with an HVAC system having a gas scrubbing system for removal of an unwanted gas from circulated air. The control system can include a sensor for determining an amount of the unwanted gas in the circulated air and a controller configured to modify a rate of exhaust of circulated air or intake of outside air so as to adjust an overall air replacement according to the measured amount of unwanted gas in the circulated air.


Further features and advantages of the invention, as well as structure and operation of various embodiments of the current subject matter, are disclosed in detail below with references to the accompanying drawings.


Example embodiments of the methods and components of the current subject matter have been described herein. As noted elsewhere, these example embodiments have been described for illustrative purposes only, and are not limiting. Other embodiments are possible and are covered by the current subject matter. Such embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Thus, the breadth and scope of the current subject matter should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.

Claims
  • 1. A building indoor air circulation system comprising: an HVAC system configured to circulate indoor air and to heat or cool the circulated indoor air;a gas scrubbing system (GSS) including an adsorbent configured to: operate in an adsorption mode wherein the adsorbent adsorbs at least one gas constituent contained in the indoor air, andoperating in a regeneration modepurging lines in communication with the GSS and configured to flow a purge substance over and/or through the adsorbent, wherein: the adsorbent is heated either directly or via the purge substance so as to release at least a portion of the at least one gas constituent adsorbed by the adsorbent into the purge substance; andthe purge substance is exhausted upon the completion of the regeneration mode;a sensor configured to provide signals indicative of a measurement of an amount of the at least one gas constituent contained in the circulated indoor air;andductwork configured to direct circulated indoor air to and from at least the HVAC system;wherein:the HVAC system and ductwork is configured to divert at least a portion of the circulated indoor air to the GSS during the adsorption mode for adsorbing the at least one gas constituent from the circulated indoor air at least during a period of time that the sensor signals indicate that the measurement of the at least one gas constituent in the indoor air is greater than a threshold.
  • 2. The system of claim 1, wherein the at least one gas constituent comprises carbon dioxide.
  • 3. The system of claim 1, wherein the at least one gas constituent is selected from the group consisting of: volatile organic compounds, carbon monoxide, nitrous oxides and sulfur oxides.
  • 4. The system of claim 1, wherein the GSS comprises a plurality of adsorbent beds.
  • 5. The system of claim 1, wherein the GSS is configured to operate in a temperature swing adsorption cycle.
  • 6. The system of claim 1, wherein the purge substance is heated via heat from a component of the HVAC system.
  • 7. The system of claim 1, further comprising a heating system configured to heat the purge substance.
  • 8. The system of claim 7, wherein the heating system utilizes solar energy.
  • 9. The system of claim 1, wherein the GSS further comprises a cooling system configured to cool the adsorbent.
  • 10. The system of claim 9, wherein the cooling system includes a chilled fluid provided by the HVAC system.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/845,041, filed on Sep. 3, 2015, (now U.S. patent Ser. No. 10/086,324), which is a continuation of U.S. patent application Ser. No. 13/937,320, filed on Jul. 9, 2013, which is a continuation of U.S. patent application Ser. No. 13/440,356, filed on Apr. 5, 2012, (now U.S. Pat. No. 8,491,710), which is a continuation of U.S. patent application Ser. No. 13/109,833, filed on May 17, 2011, (now U.S. Pat. No. 8,157,892), which claims priority to and is a continuation-in-part of U.S. patent application Ser. No. 12/848,788, filed Aug. 2, 2010, and entitled “Method and System for Improved-Efficiency Air-Conditioning,” which claims priority to U.S. Provisional Patent Application No. 61/345,194, filed May 17, 2010, and U.S. Provisional Patent Application No. 61/351,968, filed Jun. 7, 2010. The disclosures of all of the above applications are incorporated herein by reference in their entireties.

US Referenced Citations (213)
Number Name Date Kind
1522480 Allen Jan 1925 A
1836301 Bechthold Dec 1931 A
2633928 Chamberlain Apr 1953 A
3042497 Johnson et al. Jul 1962 A
3107641 Haynes Oct 1963 A
3344050 Mayland et al. Sep 1967 A
3511595 Fuchs May 1970 A
3594983 Yearout Jul 1971 A
3619130 Ventriglio et al. Nov 1971 A
3702049 Morris, Jr. Nov 1972 A
3751848 Ahlstrand Aug 1973 A
3751878 Collins Aug 1973 A
3795090 Barnebey Mar 1974 A
3808773 Reyhing et al. May 1974 A
3885927 Sherman et al. May 1975 A
3885928 Wu May 1975 A
4182743 Rainer et al. Jan 1980 A
4228197 Means Oct 1980 A
4249915 Sirkar et al. Feb 1981 A
4292059 Kovach Sep 1981 A
4322394 Mezey et al. Mar 1982 A
4325921 Aiken et al. Apr 1982 A
4409006 Mattia Oct 1983 A
4433981 Slaugh et al. Feb 1984 A
4451435 Holter et al. May 1984 A
4472178 Kumar et al. Sep 1984 A
4530817 Hölter et al. Jul 1985 A
4551304 Holter et al. Nov 1985 A
4559066 Hunter et al. Dec 1985 A
4711645 Kumar et al. Dec 1987 A
4810266 Zinnen et al. Mar 1989 A
4816043 Harrison Mar 1989 A
4863494 Hayes Sep 1989 A
4892719 Gesser Jan 1990 A
4917862 Kraw et al. Apr 1990 A
4976749 Adamski et al. Dec 1990 A
4987952 Beal et al. Jan 1991 A
5046319 Jones Sep 1991 A
5087597 Leal Feb 1992 A
5109916 Thompson May 1992 A
5137548 Grenier et al. Aug 1992 A
5149343 Sowinski Sep 1992 A
5186903 Cornwell Feb 1993 A
5194158 Matson Mar 1993 A
5221520 Cornwell Jun 1993 A
5231063 Fukumoto et al. Jul 1993 A
5281254 Birbara et al. Jan 1994 A
5290345 Osendorf et al. Mar 1994 A
5292280 Janu et al. Mar 1994 A
5322473 Hofstra et al. Jun 1994 A
5352274 Blakley Oct 1994 A
5376614 Birbara Dec 1994 A
5389120 Sewell et al. Feb 1995 A
5407465 Schaub et al. Apr 1995 A
5443625 Schaffhausen Aug 1995 A
5464369 Federspiel Nov 1995 A
5471852 Meckler Dec 1995 A
5492683 Birbara et al. Feb 1996 A
5584916 Yamashita et al. Dec 1996 A
5614000 Kalbassi et al. Mar 1997 A
5646304 Acharya et al. Jul 1997 A
5672196 Acharya et al. Sep 1997 A
5675979 Shah Oct 1997 A
5702505 Izumi et al. Dec 1997 A
5707005 Kettler et al. Jan 1998 A
5827355 Wilson Oct 1998 A
5869323 Horn Feb 1999 A
5876488 Birbara et al. Mar 1999 A
5904896 High May 1999 A
5948355 Fujishima et al. Sep 1999 A
5964927 Graham et al. Oct 1999 A
5984198 Bennett et al. Nov 1999 A
6024781 Bülow et al. Feb 2000 A
6027550 Vickery Feb 2000 A
6102793 Hansen Aug 2000 A
6113674 Graham et al. Sep 2000 A
6120581 Markovs et al. Sep 2000 A
6123617 Johnson Sep 2000 A
6187596 Dallas et al. Feb 2001 B1
6254763 Izumi et al. Jul 2001 B1
6280691 Homeyer et al. Aug 2001 B1
6364938 Birbara et al. Apr 2002 B1
6375722 Henderson et al. Apr 2002 B1
6402809 Monereau et al. Jun 2002 B1
6428608 Shah et al. Aug 2002 B1
6432367 Munk Aug 2002 B1
6432376 Choudhary et al. Aug 2002 B1
6533847 Seguin et al. Mar 2003 B2
6547854 Gray et al. Apr 2003 B1
6605132 Fielding Aug 2003 B2
6623550 Dipak et al. Sep 2003 B2
6711470 Hartenstein et al. Mar 2004 B1
6726558 Meirav Apr 2004 B1
6773477 Lindsay Aug 2004 B2
6796896 Laiti Sep 2004 B2
6797246 Hopkins Sep 2004 B2
6866701 Meirav Mar 2005 B2
6908497 Sirwardane Jun 2005 B1
6916239 Siddaramanna et al. Jul 2005 B2
6916360 Seguin et al. Jul 2005 B2
6930193 Yaghi et al. Aug 2005 B2
6964692 Gittleman et al. Nov 2005 B2
6974496 Wegeng et al. Dec 2005 B2
7288136 Gray et al. Oct 2007 B1
7407533 Steins Aug 2008 B2
7407633 Potember et al. Aug 2008 B2
7449053 Hallam Nov 2008 B2
7472554 Vosburgh Jan 2009 B2
7645323 Massenbauer-Strafe et al. Jan 2010 B2
7662746 Yaghi et al. Feb 2010 B2
7666077 Thelen Feb 2010 B1
7802443 Wetzel Sep 2010 B2
7846237 Wright et al. Dec 2010 B2
7891573 Finkam et al. Feb 2011 B2
8157892 Meirav Apr 2012 B2
8210914 McMahan et al. Jul 2012 B2
8317890 Raether et al. Nov 2012 B2
8398753 Sergi et al. Mar 2013 B2
8491710 Meirav Jul 2013 B2
9316410 Meirav et al. Apr 2016 B2
9328936 Meirav et al. May 2016 B2
9399187 Meirav et al. Jul 2016 B2
9566545 Meirav et al. Feb 2017 B2
9802148 Meirav et al. Oct 2017 B2
9919257 Meirav et al. Mar 2018 B2
9939163 Meirav et al. Apr 2018 B2
9950290 Meirav et al. Apr 2018 B2
9976760 Meirav et al. May 2018 B2
9987584 Meirav et al. Jun 2018 B2
10046266 Meirav et al. Aug 2018 B2
10086324 Meirav Oct 2018 B2
10281168 Meirav et al. May 2019 B2
10525401 Meirav et al. Jan 2020 B2
20010021363 Poles et al. Sep 2001 A1
20010054415 Hanai et al. Dec 2001 A1
20020056373 Fielding May 2002 A1
20020078828 Kishkovich et al. Jun 2002 A1
20020083833 Nalette et al. Jul 2002 A1
20020147109 Branover et al. Oct 2002 A1
20020183201 Barnwell et al. Dec 2002 A1
20020193064 Michalakos et al. Dec 2002 A1
20030037672 Sircar Feb 2003 A1
20030097086 Gura May 2003 A1
20030188745 Deas et al. Oct 2003 A1
20040005252 Siess Jan 2004 A1
20040020361 Pellegrin Feb 2004 A1
20040069144 Wegeng et al. Apr 2004 A1
20040118287 Jaffe et al. Jun 2004 A1
20050133196 Gagnon et al. Jun 2005 A1
20050147530 Kang et al. Jul 2005 A1
20050191219 Uslenghi et al. Sep 2005 A1
20050262869 Tongu et al. Dec 2005 A1
20050284291 Alizadeh-Khiavi et al. Dec 2005 A1
20050288512 Butters et al. Dec 2005 A1
20060032241 Gontcharov et al. Feb 2006 A1
20060054023 Raetz et al. Mar 2006 A1
20060079172 Fleming et al. Apr 2006 A1
20060112708 Reaves Jun 2006 A1
20060148642 Ryu et al. Jul 2006 A1
20060225569 Schmidt et al. Oct 2006 A1
20060236867 Neary Oct 2006 A1
20060249019 Roychoudhury et al. Nov 2006 A1
20080119356 Ryu et al. Mar 2008 A1
20080078289 Sergi et al. Apr 2008 A1
20080127821 Noack et al. Jun 2008 A1
20080135060 Kuo et al. Jun 2008 A1
20080173035 Thayer et al. Jul 2008 A1
20080182506 Jackson Jul 2008 A1
20080210768 You Sep 2008 A1
20080216653 Paton-Ash et al. Sep 2008 A1
20080293976 Olah et al. Nov 2008 A1
20090000621 Haggblom Jan 2009 A1
20090044704 Shen et al. Feb 2009 A1
20090071062 Hedman Mar 2009 A1
20090120288 Lackner et al. May 2009 A1
20090188985 Scharing et al. Jul 2009 A1
20090220388 Monzyk et al. Sep 2009 A1
20090260372 Skinner et al. Oct 2009 A1
20100076605 Harrod et al. Mar 2010 A1
20100154636 Liu et al. Jun 2010 A1
20100224565 Dunne et al. Sep 2010 A1
20100254868 Obee et al. Oct 2010 A1
20100262298 Johnson et al. Oct 2010 A1
20100275775 Griffiths et al. Nov 2010 A1
20100278711 Find Nov 2010 A1
20110064607 Hedman Mar 2011 A1
20110079143 Marotta et al. Apr 2011 A1
20110146494 Desai et al. Jun 2011 A1
20110189075 Wright et al. Aug 2011 A1
20110277490 Meirav Nov 2011 A1
20120004092 Raatschen et al. Jan 2012 A1
20120012005 Burke Jan 2012 A1
20120052786 Clawsey Mar 2012 A1
20120076711 Gebald et al. Mar 2012 A1
20120168113 Karamanos Jul 2012 A1
20120272966 Ando et al. Nov 2012 A1
20120311926 Mittelmark Dec 2012 A1
20130052113 Molins et al. Feb 2013 A1
20130291732 Meirav Nov 2013 A1
20160363333 Meirav et al. Dec 2016 A1
20180147526 Meirav et al. May 2018 A1
20180187907 Meirav et al. Jul 2018 A1
20180207574 Meirav et al. Jul 2018 A1
20180236396 Meirav et al. Aug 2018 A1
20180264396 Meirav et al. Sep 2018 A1
20180339261 Meirav et al. Nov 2018 A1
20180339262 Perl-Olshvang et al. Nov 2018 A1
20190143258 Meirav et al. May 2019 A1
20190186762 Meirav et al. Jun 2019 A1
20190247782 Meirav et al. Aug 2019 A1
20190299154 Meirav et al. Oct 2019 A1
20190344211 Meirav et al. Nov 2019 A1
20190346161 Meirav et al. Nov 2019 A1
Foreign Referenced Citations (46)
Number Date Country
2 640 152 Apr 2010 CA
2141873 Sep 1993 CN
2612444 Apr 2004 CN
2729562 Sep 2005 CN
1872388 Dec 2006 CN
101001767 Jul 2007 CN
101072620 Nov 2007 CN
101199913 Jun 2008 CN
101444693 Jun 2009 CN
101500704 Aug 2009 CN
101564634 Oct 2009 CN
201363833 Dec 2009 CN
201618493 Nov 2010 CN
103119376 May 2013 CN
102006048716 Feb 2008 DE
0 475 493 Mar 1992 EP
2 465 596 Jun 2012 EP
56-158126 Dec 1981 JP
59-225232 Dec 1984 JP
60-194243 Oct 1985 JP
02-092373 Apr 1990 JP
03-207936 Sep 1991 JP
05-161843 Jun 1993 JP
06-031132 Feb 1994 JP
08-114335 May 1996 JP
09-085043 Mar 1997 JP
2000-291978 Oct 2000 JP
2001-170435 Jun 2001 JP
2001-232127 Aug 2001 JP
3207936 Sep 2001 JP
2005-090941 Apr 2005 JP
2006-275487 Oct 2006 JP
2009-150623 Jul 2009 JP
2009-202137 Sep 2009 JP
2010-149086 Jul 2010 JP
WO 8805693 Aug 1988 WO
WO 0208160 Jan 2002 WO
WO 0212796 Feb 2002 WO
WO 2006016345 Feb 2006 WO
WO 2007128584 Nov 2007 WO
WO 2008155543 Dec 2008 WO
WO 2009126607 Oct 2009 WO
WO 2010091831 Aug 2010 WO
WO 2010124388 Nov 2010 WO
WO 2011114168 Sep 2011 WO
WO 2011146478 Nov 2011 WO
Non-Patent Literature Citations (19)
Entry
Gesser, H.D., “The Reduction of Indoor Formaldehyde Gas and that Emanating from Urea Formaldehyde Foam Insulation,” Environmental International, 10:305-308 (1984).
Gray, M.L. et al., “Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide,” International Journal of Greenhouse Gas Control, 2:3-8 (2008).
Nuckols, M. L. et al., Technical Manual: Design Guidelines for Carbon Dioxide Scrubbers. Naval Coastal Systems Center, NCSC Tech Man 4110, Revision A, Jul. 1985, 10 pages.
Serna-Guerrero, R. et al., “Triamine-grafted pore-expanded mesoporous silica for CO2 capture: Effect of moisture and adsorbent regeneration strategies,” Adsorption, 16:567-575 (2010).
United States Environmental Protection Agency, “Carbon Adsorption for Control of VOC Emissions: Theory and Full Scale System Performance”, EPA-450/3-88-012, Jun. 1988, 84 pages.
United States Environmental Protection Agency, “EPA Ventilation and Air Quality in Offices, Fact Sheet” Air and Radiation (6609J), 402-F-94-003, Revised Jul. 1990, 4 pages.
ZORFLEX® ACC, 100% Activated Woven Carbon Cloth. Calgon Carbon Corporation, 2008, www.calgoncarbon.com, 2 pages.
Non-Final Office Action dated Dec. 1, 2011 for U.S. Appl. No. 13/109,833, 10 pages.
Non-Final Office Action dated Sep. 17, 2012 for U.S. Appl. No. 13/440,356, 5 pages.
Non-Final Office Action dated Mar. 3, 2015 for U.S. Appl. No. 13/937,320, 6 pages.
Non-Final Office Action dated Dec. 12, 2016 for U.S. Appl. No. 14/845,041, 7 pages.
Final Office Action dated Jun. 23, 2017 for U.S. Appl. No. 14/845,041, 7 pages.
Non-Final Office Action dated Nov. 9, 2017 for U.S. Appl. No. 14/845,041, 9 pages.
Final Office Action dated Mar. 5, 2018 for U.S. Appl. No. 14/845,041, 6 pages.
Chinese Application No. 201180035241.4: Office Action with Search Report, dated Nov. 19, 2014, with Engish translation, 13 total pages.
Indian Application No. 10177/DELNP/2012: Examination Report, dated Nov. 14, 2018, 5 pages.
Japanese Application No. 2013-511289: Notice of Reasons of Refusal, dated Aug. 12, 2013, with machine-generated English translation, 6 total pages.
International Search Report and Written Opinion dated Sep. 27, 2011 for International Application No. PCT/US2011/036801, 11 pages.
International Preliminary Report on Patentability, dated Nov. 29, 2012, for PCT/US2011/036801.
Related Publications (1)
Number Date Country
20190262761 A1 Aug 2019 US
Provisional Applications (2)
Number Date Country
61345194 May 2010 US
61351968 Jun 2010 US
Continuations (4)
Number Date Country
Parent 14845041 Sep 2015 US
Child 16144733 US
Parent 13937320 Jul 2013 US
Child 14845041 US
Parent 13440356 Apr 2012 US
Child 13937320 US
Parent 13109833 May 2011 US
Child 13440356 US
Continuation in Parts (1)
Number Date Country
Parent 12848788 Aug 2010 US
Child 13109833 US