Method and system for increasing flash rate in a document reproduction system

Information

  • Patent Grant
  • 6532350
  • Patent Number
    6,532,350
  • Date Filed
    Friday, September 29, 2000
    24 years ago
  • Date Issued
    Tuesday, March 11, 2003
    22 years ago
Abstract
A system and method for increasing the rate at which the printing of images and documents can take place, is provided. The document or image to be reproduced is positioned at an image capture location. To capture the image, the desired image is illuminated by lamps and ultimately transferred onto paper. The illumination device is driven by multiple energy sources that can be synchronized to charge and fire in an alternating manner to drive the illumination device at the desired rate.
Description




FIELD OF THE INVENTION




This present invention relates to a device and method for speeding up the printing and reproduction of documents.




BACKGROUND OF THE INVENTION




Today, high-speed reproduction devices such as copier-duplicator machines are capable of reproducing documents at over 100 pages per minute. The increased speed of the document reproduction process completes jobs faster to allow higher throughput, and productivity, and ultimately contributing to greater productivity and profitability for an operator as jobs are more handled more quickly and efficiently.




Limitations to the speed at which document reproduction can be increased, however, have been encountered. For example, a high-speed document reproduction process typically utilizes a flash lamp device such as Xenon lamps to illuminate the image to be reproduced. The flash device must illuminate the image at a rate according to the desired rate of reproduction. For example, a reproduction rate of 120 pages per minute requires a frame of the image be shot every 500 milliseconds. Accordingly, the flash device is synchronized to be actuated at the same 500-millisecond rate to properly illuminate the image for each shot.




Typically, these high illumination flash devices require substantial electrical energy to fire and provide the desired illumination often necessitating hundreds of joules of electrical energy to be generated. In fact, the energy of each flash is roughly equal to







1
2



CV
2











in watt-seconds (or joules), where C is the capacitance of an energy storage capacitor and V is the voltage across the energy storage capacitor. Thus, to generate enough energy to properly drive the flash device, a capacitor is preferably charged up to it a large voltage V generally requiring a significant amount of time to charge. As the document reproduction rate increases, however, the rate the flash device operates increases proportionally and accordingly the time available in between successive flashes for the power supply to generate the necessary power is reduced. If the reproduction rate and the corresponding flash rate become too great, the capacitor may not be able to generate the required energy in the available time before the flash is to fire. Consequently, the flash device will not have enough energy to adequately illuminate the image.




The embodiments described herein allow for increasing the rate of reproduction devices.




SUMMARY OF THE INVENTION




Addressing the problems with high-speed reproduction devices described above, the present embodiments provide the ability to increase the rate at which the printing of images and documents can take place. The exemplary embodiments disclose a system and method capable of extending the capacity of high-speed reproduction machines.




According to an aspect of the present invention, an illumination device is driven by two or more plurality energy sources. From a flash command synchronized to the document reproduction rate, a number of control signals may be generated to charge and actuate the energy sources with the proper timing and synchronization to drive the illumination device at the desired rate. In the exemplary embodiment, circuitry is provided to generate the necessary signals to control the energy sources from a single flash command.




According to another aspect of the invention, the energy sources are charged such that the charging of at least one energy source overlaps the charging of another energy source. Preferably, the energy sources can be synchronized to charge and fire in an alternating manner to drive the illumination device. The charge command is synchronized to the flash command to initiate charging of the energy sources at the appropriate timing to allow the energy sources sufficient time to charge to the voltage level necessary to properly fire the illumination device. In the exemplary embodiment, the charge command necessarily initiates the charging of at least one energy source while another energy source is already being charged.




The present invention provides a number of advantages and applications as will be more apparent to those skilled in the art. Utilizing the disclosed embodiments, the present invention allows document reproduction capacity and productivity to be increased. The exemplary embodiments utilize a plurality of energy sources charging simultaneously to increase the rate in which a flash illumination device can be fired.











The foregoing and other objects, features and advantages of the present embodiments will be apparent from the following more particular description of exemplary embodiments of the system and the method as illustrated in the accompanying drawings.




BRIEF DESCRIPTION OF THE DRAWINGS




Preferred embodiments of the present inventions are described with reference to the following drawings, wherein:





FIG. 1

is a block diagram illustrating the reproduction process of the present embodiment;





FIG. 2

is a block diagram illustrating the control process of the reproduction process;





FIGS. 3A-3D

are diagrams illustrating the relative synchronization of the splice detector and the loop of film;





FIGS. 4A-4C

are diagrams illustrating the relative timing sequences of control signals according to an exemplary embodiment;





FIG. 5

shows a schematic of a circuit diagram of an exemplary embodiment of the interface logic of

FIG. 2

; and





FIG. 6

shows an exemplary embodiment of the flash power supplies driven by the circuit diagram of FIG.


5


.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS





FIG. 1

shows a high-level system diagram illustrating an exemplary process of a system for high-speed image or document reproduction. The described system and processes can be applied to a number of different applications for document and image reproduction or printing including electrophotography and microfilming. This invention is applicable to any process requiring a flash illumination. It should be understood that the embodiments described herein are not limited to any particular image reproduction process. Rather, to the contrary, the disclosed embodiments can be utilized in any number of reproduction and printing processes to increase system throughput and capacity.




In the exemplary embodiment, the reproduction process operates generally as shown in FIG.


1


. The desired document or image to be reproduced is positioned at image capture location


22


. The document may be manually placed at the image capture location


22


but is more typically handled by a high-speed document feeder as is well known in the art. To capture the image, the desired image is illuminated by high-powered flash lamps shown in this example as Xenon discharge lamps


24


A and


24


B. The illuminated image is typically transferred via a system of mirrors and optics


26


that can optically focus, enlarge or minimize, and ultimately transfer the image to the film loop


28


. The film loop


28


is typically a strip of film with two ends that is formed into a continuous film loop by splicing the two ends together. The film loop


28


can also include multiple strips of film that have been spliced together to form a loop. The film loop


28


often has a multiple number of frames of film per loop or revolution. The film loop


28


is rotated such that a different image can be exposed on successive frames of film.




The splice detector


32


generally detects a known position or the start of the film loop


28


to act as a reference to initiate and monitor the reproduction process. In this embodiment, the splice detector


32


detects the splice where the ends of the film loop


28


are attached together to create a continuous loop of film


28


. The film splice may form a seam that can be detected by a mechanically operated detector or can have perforations nearby such that it is easily detected by an optically operated detector. Because the film splice can be readily detected, it is a convenient reference location to initiate and monitor the reproduction process. In the preferred embodiment, an optical splice detector is used. The detector produces a low voltage (e.g., 0 V) when film is present and a high voltage (e.g., 5 V) when a splice perforation is detected. Preferably, upon detecting the splice in the film loop


28


, the splice detector


32


provides a signal


33


that is processed to determine when to start the reproduction process and synchronize the flash of the Xenon lamps


24


A,


24


B to the frames on the film loop


28


. In this exemplary embodiment, the film loop


28


is shown as containing


6


frames for clarity and ease of explanation. It should be understood, however, the embodiments described herein can be readily scaled to operate with systems consisting of any number of frames. In addition, the present embodiments can be extended to other systems including those not even utilizing a film or photoconductor as a reproduction means.




After the film loop


28


is exposed, it is toned at toning station


30


that deposits electrically charged toner in an imagewise manner onto the photoconductor. Paper supply


34


handles and provides the paper or other receiver that the reproduced image is to be placed onto. Transfer and Detack


36


provide an electric field that moves the toner from the photoconductor onto a receiver, typically paper. Erase


38


emits a light that erases the electrostatic image on the photoconductor so that it can be recharged and reused. Fuser


40


heats the toner and the receiver so that the toner is attached permanently to the receiver. Output


42


delivers the receiver to an output hopper or finishing device for pick-up by the operator. Cleaner


44


cleans residual toner from the photoconductor. Primary charger


46


deposits an electrostatic charge onto the photoconductor so that it can be exposed imagewise to repeat the cycle.




The logic and control unit


50


monitors and controls the components utilized in the document reproduction process. In this embodiment, the relevant control and logic unit


50


inputs and outputs include the output


33


of the splice detector


32


and the signal to drive the flash devices


24


A,


24


B, respectively. It should be understood that the control and logic unit


50


may include a number of other input and outputs that are not necessary to understand the present embodiments and have been omitted for clarity and ease of explanation.





FIG. 2

shows in more detail the logic and control unit


50


that typically controls the overall reproduction process. Also shown in

FIG. 2

are interface board


52


and flash power supplies


60


,


62


that may be incorporated with the logic and control unit


50


as shown in

FIG. 1

or preferably implemented as separate components as described with reference to FIG.


2


. Of particular interest in this embodiment, the logic and control unit


50


provides a number of control signals to an interface board


52


driving the flash power supplies


60


,


62


.




Generally, the logic and control unit


50


provides flash command


72


, charge command


70


, and main drive


54


control signals to the interface board


52


. In this embodiment, the output


33


of the splice detector


32


is also supplied to the interface board


52


. The interface board


52


processes the flash command


72


, charge command


70


, main drive


54


and output


33


of the splice detector


32


to generate the necessary enablement signals


56


,


58


to the flash power supplies


60


,


62


that ultimately drive the Xenon lamps


24


A,


24


B.




Preferably, included in each of the enablement signals


56


,


58


is a dual flash command, a dual charge command, and a control voltage signal, respectively. It should be understood, however, that the dual flash command, dual charge command, and the control voltage signal could also be combined to form at least one signal. The flash power supplies


60


,


62


might then receive at least one signal or control word thus enabling the flash power supplies


60


,


62


to drive the Xenon lamps


24


A,


24


B. For example, the signal could be the result of the dual flash command, the charge command that could be a function, such as the inverse or delay of the dual flash command, and the control voltage signal could be the amplitude of the signal.




Flash power supplies


60


,


62


provide the energy necessary to drive the Xenon lamps


24


A,


24


B to illuminate the image. Upon enablement provided to the flash power supplies


60


,


62


via the enablement signals


56


,


58


, the flash power supplies


60


,


62


discharge energy to drive the Xenon lamps


24


A,


24


B as described in more detail below. Preferably, flash power supplies


60


,


62


drive the Xenon lamps


24


A,


24


B through diodes


64


,


66


. In this example, diodes


64


,


66


provide protection to the output of the flash power supplies


60


,


62


. Thus, when the flash power supply


60


supplies energy to the Xenon lamps


24


A,


24


B the diode


66


remains off, which protects the internal circuitry of the other flash power supply


62


. The same is true when the flash power supply


62


supplies energy to the Xenon lamps


24


A,


24


B the diode


64


remains off, which protects the internal circuitry of the other flash power supply


60


. The reverse voltage or breakdown voltage of the diodes


64


,


66


must be greater than the peak voltage of typical (e.g., 6000 V maximum) output by the flash supplies


60


,


62


.




According to the flash command


72


, the Xenon lamps


24


A,


24


B are fired to illuminate the image to be reproduced. The flash command


72


initiates the triggering of the Xenon lamps


24


A,


24


B through the discharge of flash power supplies


60


,


62


into the Xenon lamps


24


A,


24


B. Preferably the flash command


72


via the enablement signals


56


,


58


, triggers the flash power supplies


60


,


62


to fire the Xenon lamps


24


A,


24


B at the rate appropriate to the desired document reproduction rate and with the appropriate timing to synchronize the firing of the lamps


24


A,


24


B with the image reproduction process. Synchronization of the flash command


72


is preferably accomplished through use of a splice detector


32


as described in more detail below. Preferably, the flash command


72


is a 5, 12, or 24 V +/−0.5 VDC to ground pulse with a nominal duration of 60 milliseconds. Preferably, the flash command


72


and its return are also optically isolated from the internal circuitry.




The main drive


54


signal resets the circuit to an initial state. In this embodiment, the main drive signal is low (e.g., 0 V) when the main drive motor is advancing the photoconductor. The main drive signal is high (e.g., 24 V) when the photoconductor is stationary.




The splice detector signal


33


is received by the interface board


52


to synchronize the flash command


72


pulse to the first frame on the film loop


28


. Preferably, the reproduction process is started at the beginning of the film loop


28


or a known point in the film loop


28


such as the first frame after the splice. Upon startup of the reproduction process, the splice or perforations situated around the splice are counted and tracked in this embodiment to insure the film loop


28


has completed at least a full revolution before the flash is enabled and the reproduction process is initiated. This wait period may vary, however, to give the flash supplies sufficient time to charge before the first image is exposed. To insure that a full revolution of the film loop


28


has been completed, the interface circuit


52


counts at least two splice detection signals, before the flash command


72


and reproduction process is initiated. Upon counting the second splice detection or detecting the perforations, the loop of film


28


has gone through a revolution and the reproduction process can be initiated.





FIGS. 3A-3D

show the original flash command


72


, the splice detector signal


33


, the synchronized dual flash command and the synchronization with the film loop


28


. The original flash command


72


in

FIG. 3A

provides the timing at the desired reproduction rate to the interface board (


52


). The original flash command


72


is shown as a positive voltage with respect to ground.




In

FIG. 3B

, the splice detector output


33


indicates the detection of the splice or perforations


29


A,


29


B,


29


C in the film loop


28


. Note that the splice or perforations


29


A,


29


B, and


29


C can refer to the same splice or up to three different splices in the film loop


28


. Upon the first detection of the splice


29


A in the film loop


28


, the film is not exposed and the reproduction process has not yet initiated. After the film loop


28


has completed a full revolution, then splice


29


B is detected by the splice detector. The flash command


72


and consequently the dual flash commands can then be synchronized to the subsequent splice detection to begin the reproduction process.




As shown in

FIG. 3C

, the combination of the dual flash commands is not invoked until after the splice detector


32


has detected that the film loop


28


has completed at least one full revolution. After the splice detector


32


detects the splice in the embodiment, the dual flash commands initiate the reproduction process. Preferably, the Xenon flash lamps


24


A,


24


B are fired on the leading edge of the dual flash commands, but in other embodiments may also fire on the trailing edge of the dual flash commands.





FIG. 3D

illustrates an exemplary embodiment showing the continuous film loop


28


laid out from left to right. As previously described, the splices


29


A,


29


B,


29


C in the film connects the ends of the film to form the film into a loop. As before, splices


29


A,


29


B, and


29


C can refer to the same splice or up to three separate splices. The splices


29


A,


29


B,


29


C in the film may be detected as a convenient reference point to synchronize the film to the reproduction process or the perforations


30


in the film may also be detected and used for synchronization. As shown in

FIG. 3D

, splice


29


A is detected for the first time, however, the system does not expose the film loop


28


on the first revolution. Upon the detection of the splice


29


B, the frames on the film loop


28


are exposed.




In addition to the dual flash commands, the dual charge commands initiate charging of the flash power supplies


60


,


62


to charge the storage capacitor to the proper voltage prior to the flash command for the respective flash command. In this embodiment, the dual charge commands initiates charging of the output of the flash power supplies


60


,


62


composed of high voltage storage capacitors. Preferably, the storage capacitance of the discharge circuit is 12 microfarads +/−5% and the capacitor is negative to ground.




In the exemplary embodiment the flash power supplies


60


,


62


are charged to an electrical voltage exceeding an absolute value of 5000 volts. The dual charge command typically has a periodic rate according to the flash command


72


and preferably is initiated to give the storage capacitors enough time to charge to the necessary voltage to fire the Xenon lamps


24


A,


24


B. As well known in the art, the time required to charge the capacitor to a desired voltage varies with the desired voltage, circuit parameters and the size of the capacitor according to the time constant relation τ=RC where R represents the resistance and C the capacitance. In this embodiment, the charge command typically starts with a 5 to 20 milliseconds delay after the start of the previous flash command pulse as shown and described with reference to

FIGS. 4A-4C

. The charge command typically ranges from 24V +/−0.5 VDC to ground pulse with a nominal duration of 15 milliseconds and is typically electrically isolated from the internal circuitry.




In addition, the flash power supplies


60


,


62


may also be supplied an external control voltage or analog voltage that determines the output energy level provided by the flash power supplies


60


,


62


. The control voltage determines the output energy level of the flash power supply


60


,


62


. In this embodiment, the control voltage typically ranges between +3.27 VDC to +10.0 VDC. The flash power supplies


60


,


62


will provide the appropriate energy level proportional to the control voltage. The control voltage input stage typically consists of a differential amplifier between the control voltage and its return. Preferably, the control voltage line shield is typically grounded to the power supply chassis and the control voltage return line is not grounded in the flash power supply to avoid ground loops. In other embodiments, the control voltage could also be a digital control word or message.




According to the exemplary embodiment, each of the flash power supplies


60


,


62


will receive dual flash commands cycling at one-half the rate of the flash command


72


. The flash command


72


is essentially input to a divide-by-two oneshot implemented on the interface board


52


that triggers the Xenon lamps


24


A,


24


B. To maintain the rate of the flash command


72


two divide-by-two oneshots are utilized to provide two dual flash commands that are half-rate signals of the flash command


72


that are 180 degrees out of phase with each other. Accordingly, each flash power supply


60


,


62


also receives dual charge commands that cycle at one-half the rate of the charge command


74


as described in more detail in

FIGS. 4A-4C

.




Shown in

FIGS. 4A-4C

are charts showing the relative timing relationships between the different signals controlling the reproduction process in the exemplary embodiment. The primary control signals are the flash command


72


and charge command


70


signals. In addition there may also be a number of derivative signals such as the dual flash commands


73


,


74


and dual charge commands


76


,


78


previously mentioned above that are based on the primary signals.





FIG. 4A

shows a timing chart illustrating the timing and relative phase relationship between the flash command


72


and the charge command


70


. The flash command


72


cycles according to the desired rate of reproduction for the copier system. In this exemplary embodiment, the document reproduction rate is preferably increased to a high-speed rate at over 100 pages per minute. The charge command


70


typically lags a period of time after the flash command


72


to initiate charging of a high storage capacitor on the output stage of the flash power supplies


60


,


62


.




Referring now again to

FIG. 4A

, shown is the flash command


72


cycling at the rate corresponding to the document reproduction rate and with the appropriate timing to synchronize the document reproduction. As described above, the flash command


72


is shown as a 24 V +/−0.5 VDC to ground pulse with a nominal duration in the order of 60 milliseconds. For example, at a reproduction rate of 120 pages per minute, the flash command cycles at 2 cycles per second or every 500 milliseconds.




Referring to the lower portion of

FIG. 4A

, the charge command


70


initiates charging of high voltage storage capacitors on the output of the flash power supplies


60


,


62


. The charge command


70


typically has a rate according to the flash command


72


and preferably starts with a 5 to 20 milliseconds delay after the start of the flash command


72


. The arrows show the timing relationship between the flash command


72


to the charge command


70


with the charge command starting the recharging of the output capacitors after the previous flash. The charge command


70


is shown as a 24V 0.5 VDC to ground pulse with a nominal duration of 15 milliseconds and is typically electrically isolated from the internal circuitry.




Referring now to

FIG. 4B

, shown first is one of the dual flash commands


73


that is sent to one of the flash power supplies


60


. As shown in

FIG. 4B and 4A

, the dual flash command


73


is at one-half the cycle rate of the flash command


72


. The dual flash command


73


is one of the actual signals that trigger the firing of the Xenon lamps


24


A,


24


B through the discharge of the high-storage capacitors. The output voltage


108


of the capacitor is shown in the lower portion of FIG.


4


B and the arrows show the relationship between the dual flash command


73


and the output voltage


108


of the capacitor. That is, in this embodiment, the leading edge of the dual flash command


73


signals the discharge of the high storage capacitors that ultimately drives the Xenon lamps


24


A,


24


B.




As can be seen in

FIG. 4B

, the capacitor output voltage


108


is charged at a large negative voltage prior to the dual flash command


73


. Upon the dual flash command


73


, the capacitor voltage


108


is discharged into the flash lamps


24


A,


24


B and goes to zero volts. The dual flash command


73


has a corresponding dual charge command


76


that is at the same rate as the dual flash command


73


and lags the dual flash command


73


by a short period of time such as 5 to 20 milliseconds. The dual charge command


76


initiates charging of the output capacitor. The capacitor voltage charges until the next flash charge command


76


causes the discharge of the capacitor into the flash lamps


24


A,


24


B. The following cycle of the dual charge command initiates charging of the power supply again. The cycle repeats at one-half of the desired reproduction rate.





FIG. 4C

shows the alternate dual flash command


74


at one-half the rate of the primary flash command


72


and 180 degrees out of phase with the dual flash command


73


. The alternate dual flash command


74


alternates with the first dual flash command


73


to fire the flash lamps


24


A,


24


B. The alternate dual flash command


74


is directed to the separate second flash power supply


62


that alternates the cycle of charging and firing with the first flash power supply


60


. The alternating dual flash command


74


has a corresponding dual charge command


78


that alternates with the same frequency as the alternate dual flash command


74


but lags the command by 5-20 milliseconds. It should be understood that the dual flash command


73


and alternate dual flash command


74


can be interchanged and have been arbitrarily chosen for this example.




Referring now to

FIG. 5

, shown is a circuit diagram illustrating a particular exemplary embodiment of the interface circuitry


52


(

FIG. 2

) generating flash commands


73


,


74


and driving the flash power supplies


60


,


62


. The flash command


72


providing the timing and synchronization for synchronizing the flash lamps


24


A,


24


B is provided to the interface board


56


to generate the additional control signals discussed herein. The charge commands


76


,


78


are generated from the charge command


70


output by the logic and control unit


50


by a circuit similar to the example of FIG.


5


.




A mode switch


77


input to the interface board


56


determines whether the system is operating in a normal mode or a dual flash mode for higher speed reproduction. In the normal mode, the flash command


72


is simply passed onto the flash power supply


62


to drive the Xenon lamps and the details discussed above with reference to the dual flash and dual charge commands and

FIGS. 3C

to


3


D are inapplicable. With the mode switch


77


set to the dual mode position, however, the flash command


72


is sent to what is essentially a divide-by-two oneshot to generate the dual flash command signals


73


,


74


as described above with reference to

FIGS. 3C-3D

. To maintain the rate of the flash command


72


two divide-by-two oneshots are utilized to provide two half-rate signals 180 degrees out of phase as described above.




In the exemplary circuit embodiment, the flash command


72


is input into the clock input of D flip-flop


80


via Schmidt trigger


82


. In this embodiment, several D flip flops are used for their functionality, ease of use and convenient packaging, however, it should be understood that other logic, gate arrays or custom ASICs can also be used to provide the same functions. The D flip-flop


80


is configured to transfer information to its output on the positive going edge of the clock pulse input. The flash command


72


thus clocks the D flip-flop


80


which has its complementary Q output


84


tied to its D input


86


to provide a toggle condition on the Q output


88


as flash pulses


72


are input into the circuit.




The Q output


88


is sent to the inputs of a pair monostable multivibrators


90


,


92


capable of producing a stable output pulse. Preferably, the Q output


88


is sent to the A input


94


of a first multivibrator device


90


where the first multivibrator device


90


has its B input


96


tied from its complementary Q output


98


and the B input


96


is set to trigger on the rising edge. The resulting Q output


98


of the multivibrator device


90


is at one half rate of the A input


94


. The Q output


88


of the D flip-flop


80


is also sent to the B input


132


of the second multivibrator device


92


. The A input


130


is tied to the Q output


134


of the second multivibrator device


92


and is set to trigger on the falling edge. The resulting Q output


134


of the multivibrator device


92


is thus at one half rate of the B input


132


. The Q output


134


of the multivibrator device


92


is preferably out of phase with the Q output


136


of the multivibrator device


90


.




The resistive


94


and capacitive


95


bridges for each of the device


90


,


92


are external devices normally used to determine the width of the output pulse output by the multivibrator devices


90


,


92


. In this embodiment, the resistor


94


and the capacitor


95


are chosen at 20 K ohms and 1.0 uFarads respectively to provide a pulse of the appropriate width.




This circuit configuration allows the flash command


72


to be effectively multiplied or in this case reduced to provide two half-rate dual flash command signals to drive the flash power supplies


60


,


62


in an alternating fashion. The dual flash commands are input to output transistors


138


,


140


to drive the flash energy sources


60


,


62


. Dual flash commands are each individually cycling at one-half the rate of the flash command


72


with the dual flash commands out of phase with respect to each other. It should be understood that the described embodiment is merely exemplary and that numerous other embodiments to achieve the equivalent function is available including implementing the functions in software or firmware.




The flash power supplies


60


,


62


are shown schematically in FIG.


6


. The Dual Flash Commands


73


,


74


enable the flash discharge of the Xenon lamps


24


A,


24


B through optically isolated diodes


142


,


144


. Optical diodes


142


,


144


turn on transistor


146


,


148


to actuate the output stage


150


,


152


of the power supplies


60


,


62


. The output stage may include, for example, a storage capacitor of about


12


microfarads. In the preferred embodiment, the polarity of the output stages


150


,


152


are negative with respect to ground voltage.




Preferably, series triggering is utilized to initiate the discharge of the flash lamps


24


A,


24


B. The trigger transfer secondary winding is preferably connected in series between the high voltage positive output and ground. The trigger characteristics include an open circuit voltage of +18 KV: +10 KV, −3 KV, a pulse duration (approximately ⅓) of 1.0 microseconds (minimum) and a rise time (approximately 10% to 90%) of 1.5 microseconds (maximum). The discharge waveform of the storage capacitor into the flash lamp is preferably non-oscillatory. Preferably, the lamp current duration measured between the ⅓ peak amplitude points is in the order of 50 microseconds at 320 joules and a maximum duration of 90 microseconds over the nine-to-one output joule ratio of the supply. The total DC resistance of the discharge circuit is around 0.27 ohms maximum.




The disclosed embodiments provide many advantages. Utilizing the disclosed embodiments, the present invention allows document reproduction capacity and productivity to be increased. The exemplary embodiments utilize a plurality of energy sources charging simultaneously to increase the rate in which a flash illumination device can be fired. Additionally, the exemplary embodiments increase the rate of document reproduction while maintaining the same power levels as existing reproduction equipment. Thus, the exemplary embodiments can provide a faster reproduction rate safely.




It should be understood that the programs, processes, methods and systems described herein are not related or limited to any particular type of hardware such as TTL logic or computer software or both unless indicated otherwise. Various types of general purpose or specialized processors, such as micro-controllers may be used with or perform operations in accordance with the teachings described herein.




In view of the wide variety of embodiments to which the principles of the present invention can be applied, it should be understood that the illustrated embodiments are exemplary only, and should not be taken as limiting the scope of the present invention. For example, more or fewer elements may be used in the block diagrams and signals may include analog, digital, or both. While various elements of the preferred embodiments have been described as being implemented in hardware, in other embodiments in software implementations may alternatively be used, and vice-versa.




The claims should not be read as limited to the described order or elements unless stated to that effect. Therefore, all embodiments that come within the scope and spirit of the following claims and equivalents thereto are claimed as the invention.



Claims
  • 1. A system providing an illumination device, comprising:a primary flash signal providing a signal at a primary rate; a dividing circuit receiving the primary flash signal and providing a plurality of reduced rate flash signals, wherein at least two of the plurality of reduced rate flash signals are out of phase with respect to each other; and a plurality of power supplies driving the illumination device, the power supplies receiving the reduced rate flash signals, wherein the reduced rate flash signals discharge the power supplies into the illumination device.
  • 2. The system of claim 1 wherein the power supplies alternate to drive the illumination device.
  • 3. The system of claim 1 wherein the reduced rate flash signals comprise two signals 180 degrees out of phase.
  • 4. The system of claim 1 wherein the reduced rate flash signals comprise three signals 120 degrees out of phase.
  • 5. The system of claim 1 wherein the flash signal at the primary rate corresponds to a desired document reproduction rate.
  • 6. The system of claim 1 wherein the flash signal comprises a square wave oscillating at the primary rate.
  • 7. The system of claim 1 wherein the dividing circuit comprises one-shot multistable multivibrators.
  • 8. The system of claim 1 wherein the dividing circuit comprises D flip flops.
  • 9. The system of claim 1 further comprising a charge command received by the power supply, wherein the charge command initiates charging of the power supply.
  • 10. The system of claim 9 wherein the charge command initiates charging of the power supply prior to the flash command.
  • 11. The system of claim 9 wherein the charge command lags the flash command and cycles at the same frequency.
  • 12. The system of claim 1 wherein the power supplies are optically isolated.
  • 13. The system of claim 1 wherein the power supplies comprise a high energy capacitor on an output.
  • 14. The system of claim 1 further comprising a splice detector, the splice detector initiating the flash command to provide synchronization of the flash command signal.
  • 15. The system of claim 14 wherein the splice detector enables a wait period to be provide before the flash commands are initiated.
  • 16. The system of claim 15 wherein the wait period corresponds to a revolution in a loop of film.
  • 17. The system of claim 14 wherein the splice detector comprises an optical detection means.
  • 18. The system of claim 14 wherein the splice detector detects a starting point on a loop of film to initiate the flash command.
  • 19. The system of claim 18 wherein the starting point is a splice in a loop of film.
  • 20. A document reproduction system providing a flash illumination device to illuminate a image to be reproduced, comprising:a splice detector initiating a primary flash signal, wherein the primary flash signal is cycling at a primary rate; a dividing circuit receiving the primary flash signal and providing a plurality of reduced rate flash signals; charge command signals lagging the reduced rate flash signal; and a plurality of power supplies driving the illumination device, the power supplies receiving the reduced rate flash signals, wherein the charge commands initiate charging of the power supplies and the reduced rate flash signals cause the power supplies to discharge into the illumination device.
  • 21. The system of claim 20 further comprising:a photoconductor for the image to be stored thereon; and a receiver for placing the image onto.
  • 22. The system of claim 21 wherein the receiver comprises paper.
  • 23. A method of generating signals to drive an illumination device from an initial flash command, comprising:dividing the initial flash command to form a plurality of flash signals at a lower frequency than the initial flash command, wherein the plurality of flash signals are out of phase with respect to each other; and generating a plurality of charge command signals, the plurality of charge commands corresponding to the plurality of flash command, wherein the charge commands lead the flash commands to initiate charging of a power supply.
  • 24. The method of claim 23 further comprising:initiating the charging of the power supply concurrently with the charging of a second power supply.
  • 25. The method of claim 24 further comprising:firing the power supply to initiate firing of the illumination device while the second power supply is charging.
  • 26. The method of claim 25 comprising:alternating the firing and charging of the power supply and the second power supply to drive the illumination device, wherein one of the power supplies is being charged while the other power supply is being charged.
US Referenced Citations (7)
Number Name Date Kind
4367038 Hisabayoshi et al. Jan 1983 A
4386840 Garthwaite et al. Jun 1983 A
4862225 Heiller et al. Aug 1989 A
4899087 Hammond et al. Feb 1990 A
4939546 Kasahara et al. Jul 1990 A
5902994 Lisson et al. May 1999 A
6097162 Welch, Jr. et al. Aug 2000 A
Foreign Referenced Citations (1)
Number Date Country
58-2148 Jan 1983 JP