The invention relates generally to inhibit corrosion on items that are exposed to outdoor weather conditions, and particularly relates to the deterrence of corrosion on newly manufactured or assembled items that are being offered for sale and have not been used.
New automobiles typically include elements that may oxidize if unused, but are left uncoated or untreated for a variety of reasons. For example, disc brake rotors should not be painted or coated as such coating materials may adversely effect the use of the brakes. After an automobile is sold, the frequent use of the automobile is sufficient to prevent rust from developing.
It is an object of the invention to provide a protective material that may easily be applied to items to inhibit corrosion such as by oxidation.
It is also an object of the invention to provide a protective material that may be easily removed from items without adverse effects on the operation of the item.
A system and method are disclosed for applying a corrosion inhibiting material to an article. The method includes the steps of depositing a layer of corrosion inhibiting material onto a carrier film, applying the corrosion inhibiting material to the article, and separating the carrier film from the at least a portion of the corrosion inhibiting material. In a preferred embodiment, the corrosion inhibiting material is applied to rotors of disc brakes in new automotive vehicles.
The following detailed description of the illustrated embodiments may be further understood with reference to the accompanying drawings in which:
The drawings are for illustrative purposes only and are not to scale.
The invention provides for the application of a thin film of corrosion inhibiting material to a receiving substrate, such as a brake rotor of a vehicle. The thin corrosion inhibiting material may be applied by thin film transfer, and may be removed simply by using the brakes of the vehicle a relatively small number of times.
As shown in
A layer 16 of adhesive material is then applied to the corrosion inhibiting material 12 by, for example, coating. The adhesive material may be deposited to 0.1-4.0 ml, and may be pressure sensitive adhesive, for example having a Lewis base such as a long chain amine, e.g., dodecyl amine, at 0.05% to 5.0%. If the adhesive is pressure sensitive, the composite may further include a silicone release liner, and if the adhesive is heat activated, no release agent may be needed.
As shown in
The thickness of the corrosion inhibiting material should be chosen to permit a relatively small number of uses of the brakes without the corrosion inhibiting material from being worn off of the brake rotors. The material, on the other hand, should also not be too thick that it inhibits safe use of the brakes.
The carrier 14 may also include a non-stick surface on the side opposite the corrosion inhibiting material. The non-stick surface may include a silicone coating such as polysiloxane. This silicone coating may serve as a release liner for the adhesive if the protective composite includes an extended web of material that is rolled upon itself prior to application of portions of the composite to a receiving surface.
The corrosion inhibiting material may also be specifically selected for specific applications, such as simply to keep water off the surface of the receiving substrate, to reduce the electrochemical effect that occurs in a galvanic reaction through use of a conductor, to prevent oxidation by changing surface chemistry, or to change the pH to inhibit electrochemical responses, for example from an acidic environment to an alkali environment. In further embodiments, two or more anti-corrosive agents may be used as the corrosion inhibiting material.
For example, a protective composite in accordance with a further embodiment of the invention includes a corrosion inhibiting material that includes 0.05 to 15% (by weight), of a volatile corrosion inhibitor such as DAUBERT VCI sold by Daubert Coated Products, Inc. of Westchester, Ill. Such materials provide corrosion protection by permitting condensed vapor to migrate to the metal surface excluding water. Although these materials work best when the metal is contained, the materials actually provide some protection to the surfaces of the metal that are not directly covered by the corrosion inhibiting material, including side edges, non-perfect alignment of the protective composite, or scratches in the corrosion inhibiting material. This is achieved by adding a conductive polymer to the adhesive. When in contact with the metal, the conductive polymer lowers the redox potential of the metal. A protective oxide layer is formed on the receiving surface, reducing the rate of corrosion by up to 400 times. The effect of conductive polymers allows for protection to extend beyond the area directly covered so that the receiving substrate is protected even if the coating is not continuous, for example, due to scratches.
As shown in
Those skilled in the art will appreciate that modifications and variations may be made to the above disclosed embodiments without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4071391 | Haberstroh et al. | Jan 1978 | A |
4716062 | Klein | Dec 1987 | A |
5234259 | Nishimuro et al. | Aug 1993 | A |
5277479 | Koyama et al. | Jan 1994 | A |
5736470 | Schneberger et al. | Apr 1998 | A |
5880692 | Stevens et al. | Mar 1999 | A |
5932299 | Katoot | Aug 1999 | A |
6124044 | Swidler | Sep 2000 | A |
6268032 | Mertens et al. | Jul 2001 | B1 |