The present invention relates generally to medical devices, and more particularly to implantable medical devices (IMDs).
The ability to detect patient posture has been demonstrated in the field of implantable medical devices (IMDs). Patient posture information has been used as an input to cardiac pacemakers, for example, to employ a different pacing rate depending on whether the patient is upright or lying down. Gravity switches, accelerometers, and pressure sensors are among the types of sensors that have been proposed as posture sensors.
Hemodynamic parameters of a patient, such as right ventricular pressure (RVP), left ventricular pressure (LVP), and estimated pulmonary arterial diastolic pressure (ePAD), may be recorded and monitored on an ambulatory basis to provide information to a physician to facilitate diagnosis and treatment. Abnormal patterns or changes in a patient's recorded hemodynamic parameters may indicate a pathophysiologic change, and may provide the basis for prescribing certain treatment regimens, such as drug or device therapies, for example.
Ambulatory hemodynamic monitoring may be performed by an implantable hemodynamic monitor (IHM), which may possess the ability to record and store a number of hemodynamic parameters, such as intracardiac blood pressures and related parameters. IHMs that record intracardiac electrogram (EGM) signals from electrodes placed in or about the heart, as well as other physiologic sensor derived signals, e.g., one or more of blood pressure, blood gases, temperature, electrical impedance of the heart and/or chest, and patient activity, have been proposed for use in IHMs. An IHM may, for example, be coupled to a lead having capacitive blood pressure and temperature sensors as well as EGM sense electrodes. Such implantable monitors, when implanted in patients suffering from cardiac arrhythmias or heart failure, may accumulate date-and time-stamped data that can be of use in determining the condition of the heart over an extended period of time, including while the patient is engaged in daily activities.
The results of ambulatory hemodynamic monitoring may be presented to a physician in a summarized numerical form, such as a series of daily median values and/or night-time minimum values, which may be provided for any or all of the monitored hemodynamic parameters. A physician may compare such summary data values to measured “baseline” values, taken during an earlier hospital or office visit, for example, to form the basis for therapy decisions, or to make changes to a current treatment. Physicians may expect to see summary data values that correlate with the data measured in the clinical setting, which typically includes only one “recumbent” posture (e.g., usually supine).
In certain embodiments of the invention, a method of interpreting hemodynamic data which incorporates patient posture information is disclosed which includes acquiring hemodynamic data, acquiring a posture signal, classifying the posture signal, categorizing hemodynamic data according to the posture classification, and interpreting hemodynamic data acquired in one posture classification differently from hemodynamic data acquired in other posture classifications. Certain embodiments may include normalizing hemodynamic data according to the classified patient posture, so that the effects of changes in posture are accounted for in the interpretation of data obtained in a number of different patient postures.
In certain embodiments of the invention, a method of interpreting hemodynamic data which incorporates patient posture information is disclosed which includes establishing baseline hemodynamic “profiles” for a number of different postures from which ambulatory hemodynamic data may be classified according to posture, and interpreting the acquired ambulatory hemodynamic data using the derived posture information.
The following detailed description should be read with reference to the drawings, in which like elements in different drawings are numbered identically. The drawings depict selected embodiments and are not intended to limit the scope of the invention. It will be understood that embodiments shown in the drawings and described below are merely for illustrative purposes, and are not intended to limit the scope of the invention as defined in the claims.
The ability to monitor and measure hemodynamic parameters, such as blood pressure, in an ambulatory patient has been demonstrated. Implantable hemodynamic monitors (IHMs), for example, are able to record intra-cardiac blood pressure parameters, as well as other parameters related to cardiac function. IHMs provide the ability to monitor and record hemodynamic data over relatively long periods of time, enabling the measurement of such data during the full range of daily activities of a patient. Such data may be useful to a physician, for example, in monitoring a patient's disease progression, or response to pharmacological therapy, for example.
In patients with ambulatory hemodynamic monitoring, changes in patient posture or body position can have measurable effects on measured hemodynamic data that may be unrelated to a pathophysiologic change. Posture-related effects on measured hemodynamic parameters may therefore present confusing data interpretation problems for the physician if not correlated with patient posture.
Changes in the posture of a patient have been observed to cause sudden shifts in the amplitude of measured hemodynamic data. In a recent sleep study, right ventricular pressure (RVP) typically increased about 5-15 mm Hg when patients changed posture from a supine position (i.e., lying flat on their backs) to either a right or left lateral decubitus position (i.e., lying on their right or left sides, respectively).
Various embodiments of the invention, described herein, incorporate the effects of changes in patient posture into the interpretation of hemodynamic data, which may help a physician differentiate such postural effects on acquired hemodynamic data from pathophysiologic changes.
In
In certain other embodiments, IMD 14 may be an implantable hemodynamic monitor (IHM), or an implantable cardioverter defibrillator (ICD), or a cardiac resynchronization therapy (CRT) device, or any other device that may be adapted to acquire ambulatory hemodynamic data from a patient. Other devices such as implantable drug delivery devices may also be adapted for use with certain embodiments of the invention.
With continued reference to
Typically, in pacing systems of the type illustrated in
In addition, some or all of the leads shown in
The leads and circuitry described above can be employed to record EGM signals, blood pressure signals, and impedance values, among other possible signals, over certain time intervals. The recorded data may be periodically telemetered out to a programmer operated by a physician or other healthcare worker in an uplink telemetry transmission during a telemetry session, for example.
The therapy delivery system 106 can be configured to include circuitry for delivering cardioversion/defibrillation shocks and/or cardiac pacing pulses delivered to the heart or card iomyostimulation to a skeletal muscle wrapped about the heart. Alternately, the therapy delivery system 106 can be configured as a drug pump for delivering drugs into the heart to alleviate heart failure or to operate an implantable heart assist device or pump implanted in patients awaiting a heart transplant operation.
The input signal processing circuit 108 includes at least one physiologic sensor signal processing channel for sensing and processing a sensor derived signal from a physiologic sensor located in relation to a heart chamber or elsewhere in the body.
The pair of pace/sense electrodes 140, 142 are located in operative relation to the heart 10 and coupled through lead conductors 144 and 146, respectively, to the inputs of a sense amplifier 148 located within the input signal processing circuit 108. The sense amplifier 148 is selectively enabled by the presence of a sense enable signal that is provided by control and timing system 102 (
The pressure sensor 160 may be coupled to a pressure sensor power supply and signal processor 162 within the input signal processing circuit 108 through a set of lead conductors 164. Lead conductors 164 convey power to the pressure sensor 160, and convey sampled blood pressure signals from the pressure sensor 160 to the pressure sensor power supply and signal processor 162. The pressure sensor power supply and signal processor 162 samples the blood pressure impinging upon a transducer surface of the sensor 160 located within the heart chamber when enabled by a pressure sense enable signal from the control and timing system 102. Absolute pressure (P), developed pressure (DP) and pressure rate of change (dP/dt) sample values can be developed by the pressure sensor power supply and signal processor 162 or by the control and timing system 102 for storage and processing.
A variety of hemodynamic parameters may be recorded, for example, including right ventricular (RV) systolic and diastolic pressures (RVSP and RVDP), estimated pulmonary artery diastolic pressure (ePAD), pressure changes with respect to time (dP/dt), heart rate, activity, and temperature. Some parameters may be derived from others, rather than being directly measured. For example, the ePAD parameter may be derived from RV pressures at the moment of pulmonary valve opening, and heart rate may be derived from information in an intracardiac electrogram (EGM) recording.
A set of impedance electrodes 170, 172, 174 and 176 may be coupled by a set of conductors 178 and formed as a lead that is coupled to the impedance power supply and signal processor 180. Impedance-based measurements of cardiac parameters such as stroke volume are known in the art, such as an impedance lead having plural pairs of spaced surface electrodes located within the heart 10. The spaced apart electrodes can also be disposed along impedance leads lodged in cardiac vessels, e.g., the coronary sinus and great vein or attached to the epicardium around the heart chamber. The impedance lead may be combined with the pace/sense and/or pressure sensor bearing lead.
The data stored by IMD 14 may include continuous monitoring of various parameters, for example recording intracardiac EGM data at sampling rates as fast as 256 Hz or faster. In certain embodiments of the invention, an IHM may alternately store summary forms of data that may allow storage of data representing longer periods of time. In one embodiment, hemodynamic pressure parameters may be summarized by storing a number of representative values that describe the hemodynamic parameter over a given storage interval. The mean, median, an upper percentile, and a lower percentile are examples of representative values that my be stored by an IHM to summarize data over an interval of time (e.g., the storage interval). In one embodiment of the invention, a storage interval may contain six minutes of data in a data buffer, which may be summarized by storing a median value, a 94th percentile value (i.e., the upper percentile), and a 6th percentile value (i.e., the lower percentile) for each hemodynamic pressure parameter being monitored. In this manner, the memory of the IHM may be able to provide weekly or monthly (or longer) views of the data stored. The data buffer, for example, may acquire data sampled at a 256 Hz sampling rate over a 6 minute storage interval, and the data buffer may be cleared out after the median, upper percentile, and lower percentile values during that 6 minute period are stored. It should be noted that certain parameters measured by the IHM may be summarized by storing fewer values, for example storing only a mean or median value of such parameters as activity level and temperature, according to certain embodiments of the invention.
Hemodynamic parameters that may be used in accordance with various embodiments of the invention include parameters that are directly measured, such as RVDP and RVSP, as well as parameters that may be derived from other pressure parameters, such as estimated pulmonary artery diastolic pressure (ePAD), rate of pressure change (dP/dt), etc.
In some embodiments, IMD 14 may incorporate information from posture sensor(s) 120 to thereby collect patient posture information. In such embodiments, IMD 14 may monitor one or more signals generated by posture sensor(s) 120 that vary as a function of patient posture, and may allow implantable medical device (IMD) 14 to identify or classify a number of postures based on the posture sensor signals. IMD 14 may, for example, periodically identify the posture of a patient, or transitions between postures made by a patient. For example, IMD 14 may identify whether the patient is upright or recumbent (e.g., lying down), and may also identify the timing of transitions between such postures. In certain embodiments of the invention, information from a posture sensor may be used to identify two or more “recumbent” postures and the timing of transitions between such postures. Such recumbent postures may include, for example, supine (i.e., substantially flat on back), left lateral decubitus (i.e., on left side), and right lateral decubitus (i.e., on right side), according to certain embodiments of the invention.
IMD 14 may also incorporate information from an activity sensor 140 to thereby collect patient activity information according to certain embodiments of the invention. Specifically, as will be described in greater detail below, IMD 14 may monitor an activity level of a patient based on an activity signal generated by activity sensor 140 that varies as a function of patient activity. An activity level signal may comprise, for example, a number representative of patient activity (e.g., activity counts). Sensors that output a signal as a function of patient activity may further include one or more bonded piezoelectric crystals, mercury switches, or gyros that generate a signal as a function of body motion, footfalls or other impact events, and the like.
In exemplary embodiments, posture sensor 120 may include two or more accelerometers which are oriented substantially orthogonally with respect to each other. In certain embodiments, three accelerometers (e.g., tri-axial accelerometers) may be used to acquire the desired posture information. In addition to being oriented orthogonally with respect to each other, each of the accelerometers may be substantially aligned with an axis of the body 11 of the patient. The magnitude and polarity of DC components of signals generated by the accelerometers may indicate the orientation of the patient relative to the Earth's gravity, and processor 108 (
In certain exemplary embodiments, IMD 14 may monitor signals generated by a plurality of accelerometers. In such embodiments, IMD 14 may be adapted to both determine activity levels and identify patient postures (or postural transitions) based on the accelerometer signals.
The plot of RVSP 400 shown in
In the plot of RVSP 400 in
The timing of shifts in patient posture is also indicated in
The plot of RVSP 400 in
From RVSP plot 400, it appears that the range of measured pressures is similar at S 402 and S 408, both being periods of time where the patient was in a supine position. The range of measured parameters while in a given posture may be quantified in a variety of ways to allow for such comparisons. For example, the median (e.g., 50th percentile) plot 412 may be used by itself to provide an indication of the range of a measured hemodynamic parameter, either as a plotted parameter, or reduced to a number (or numbers). For example, the average of the median plot 412 over a period of time, or the high and low values of the median plot 412 over a period of time, may provide useful information to a physician attempting to interpret the data. Alternate measures of the range of measured parameters (i.e., pressures) may incorporate information from the high (e.g., 94th %-ile) plot 410 and the low (e.g., 6th %-ile) plot 414. For example, the average of the low plot 414, when subtracted from the average of the high plot 410, may provide a concise (i.e., a single number) representation of the variability of the measured parameter over a given period of time. Many other forms of data representation may become apparent to one of ordinary skill in the art with the benefit of these teachings, and are considered to be within the scope of the claimed invention.
As suggested by
The method of acquiring and interpreting hemodynamic data illustrated in
Step 704 includes calibrating a posture sensor with the IMD implanted in step 702. This step enables signals from the posture sensor to be correlated and to correctly identify specific patient postures. The number and type of patient postures used may be determined by an operator (e.g., a physician), and may include upright, supine, and right/left sided positions, for example. It should be noted that step 704 need not be performed at or near the same time as the implantation of IMD in step 702; the calibration of the posture sensor with the IMD may occur at a subsequent patient visit, possibly on an out-patient basis. The next step, step 706, includes acquiring ambulatory data from the patient using the IMD and sensor system implanted in step 702. The ambulatory data acquired may include hemodynamic data (e.g., hemodynamic pressure data), posture signals (e.g., from a posture sensor), activity signals (e.g., from an activity sensor), impedance measurement signals (e.g., transthoracic impedance), or any other suitable data desired to be monitored.
Step 708 in
Step 716 includes interpreting the hemodynamic data acquired using the identified posture associated therewith. In certain embodiments of the invention, the step of interpreting the hemodynamic data based on the identified posture may comprise interpreting hemodynamic data separately, depending on patient posture. For example, in certain embodiments, hemodynamic data acquired while in a supine position may be analyzed or interpreted only in conjunction with other data acquired while in a supine position. Hemodynamic data acquired in a supine posture may, for example, more closely correlate with data collected during implantation of the IMD (assuming a supine posture during implant), or during subsequent follow-up visits, particularly if the patient is observed in a supine position during those scenarios.
In another embodiment of the invention, interpretation of the hemodynamic data based on patient posture may further include calculation of statistics on the percentage of time spent in various patient postures, for example.
In certain other embodiments of the invention, interpretation of hemodynamic data based on patient posture may comprise “normalizing” data taken in various postures to allow for direct comparison between hemodynamic data collected in different postures. For example, if a particular patient exhibits an increase in a hemodynamic pressure parameter of an average of 10 mm Hg when changing from a supine to a left-sided posture, normalization may comprise subtracting 10 mm Hg from hemodynamic pressure data acquired in the affected (e.g., left-sided) posture. In one embodiment, normalization (e.g., adjusting or “correcting”) of hemodynamic pressure data acquired while a patient is in right and/or left lateral decubitus postures may allow for meaningful comparison to hemodynamic pressure data acquired in a supine posture, for example. Of course, one of ordinary skill in the art would recognize that other normalization schemes or strategies could be employed to allow for meaningful comparisons between hemodynamic data acquired in different patient postures. The reference posture, for example, may be chosen to be a right-sided posture if a particular patient spends a significant percentage of their time sleeping in a right-sided posture. Similarly, a measured pressure change from one known posture to another known posture (e.g., from right lateral decubitus to left lateral decubitus) may be used as a diagnostic parameter by monitoring and recording the pressure changes associated with the same type of posture changes over time.
Step 802 comprises implanting an IMD in a patient. The IMD may be adapted to monitor hemodynamic parameters such as pressure, impedance, and other parameters of interest. Step 804 in
Step 806 includes acquiring ambulatory hemodynamic data from a patient, including data acquired over the normal course of a patient's daily activities. Step 808 comprises comparing the acquired ambulatory hemodynamic data with the hemodynamic parameter baselines established in step 804 to identify postures and changes in posture. Step 810 may next include categorizing the acquired ambulatory hemodynamic data according to the patient posture identified and correlated with such acquired data, for example. Step 812 follows, and includes interpreting the categorized hemodynamic data acquired according to the postures identified in step 808.
In certain embodiments of the invention, step 808 may include using a posture detection criterion (or criteria, if more than one) to identify postures and changes in posture. The posture detection criteria may be based on changes in acutely acquired hemodynamic data signals, for example, a change in a given hemodynamic pressure parameter that exceeds a certain value in a certain period of time. The posture detection criteria may also be based on changes in summary statistical data in certain embodiments. For example, the posture detection criteria may require that a statistical representation (e.g., a median value over a sampling or storage interval) of a hemodynamic pressure parameter change by a predetermined amount and/or fall within a range corresponding to the baseline hemodynamic profiles established for the identified postures to detect a change in patient posture.
In certain further embodiments of the invention, an activity sensor signal may be used in conjunction with the posture signal to identify the timing of changes in posture between two or more recumbent postures. An activity sensor signal of a certain amplitude and duration may, for example, be used to confirm a change in posture detected using either a posture sensor, or using the above-described posture detection method. In some embodiments, the activity sensor signal may increase temporarily from a relatively low activity level, above some predetermined level, and back to a relatively low activity level to confirm a change in posture detected from other means. In further embodiments, the temporary increase in activity level may be required to be complete within a predetermined period of time.
In certain other embodiments of the invention, measured heart rate information may be used to confirm a change in posture detected by other means. For example, a measured heart rate temporarily increasing from below a relatively low rate, above some predetermined heart rate, and back to a relatively low rate can be used to confirm a change in posture detected by other means. In a similar further embodiment, the temporary increase in heart rate may be required to be complete within a predetermined period of time.
Thus, embodiments of a METHOD AND SYSTEM FOR INTERPRETING HEMODYNAMIC DATA INCORPORATING PATIENT POSTURE INFORMATION are disclosed. One skilled in the art will appreciate that the invention can be practiced with embodiments other than those disclosed. The disclosed embodiments are presented for purposes of illustration and not limitation, and the invention is limited only by the claims that follow.
This application is a continuation of U.S. patent application Ser. No. 11/323,895, filed Dec. 30, 2005 entitled “METHOD AND SYSTEM FOR INTERPRETING HEMODYNAMIC DATA INCORPORATING PATIENT POSTURE INFORMATION”, herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11323895 | Dec 2005 | US |
Child | 12714850 | US |