1. Field
This disclosure relates generally to the field of wireless communications and more specifically to the system and methods for joint parameter optimization for collocated macrocell and femtocell deployments.
2. Background
Wireless communication systems are widely deployed to provide various types of communication content such as, for example, voice, data, and so on. Typical wireless communication systems may be multiple-access systems capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc.). Examples of such multiple-access systems may include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and the like. Additionally, the systems can conform to specifications such as third generation partnership project (3GPP), 3GPP long term evolution (LTE), ultra mobile broadband (UMB), evolution data optimized (EV-DO), etc.
Generally, wireless multiple-access communication systems may simultaneously support communication for multiple mobile devices. Each mobile device may communicate with one or more base stations (e.g., which can be commonly referred as macrocells). To supplement conventional base stations (e.g., macrocells), additional low power base stations (e.g., which can be commonly referred as femtocells or picocells) can be deployed to provide more robust wireless coverage to mobile devices. For example, low power base stations can be deployed for incremental capacity growth, richer user experience, in-building or other specific geographic coverage, and/or the like. Generally, these low power base stations are often deployed in homes, offices, etc. without consideration of a current network environment.
In a mixed macrocell/femtocell deployment, frequent idle-mode system reselections between macrocells and collocated femtocells can happen by a fast moving mobile device (e.g., a vehicular mobile device) entering and leaving patchy femtocell coverage and/or mobile device ping-ponging between a macrocell and collocated femtocells. Frequent system reselections are not desirable because they can lead to frequent mobile device registrations on different systems, which in turn may cause mobile device's battery drainage, increase in signaling load, missing of pages, and other problems that adversely affect transmission and processing of data and hence user experience. Therefore, it is desirable to configure macrocell and femtocell parameters to avoid frequent system reselection and other problems.
For macrocells, cell parameters, such as handover or cell reselection parameters, are typically manually configured by an operator after performing some field tests or simulations. For unplanned femtocells deployment, each femtocell typically autonomously learns its environment and configures many of its parameters. Manual configuration for femtocells is generally too difficult and costly due to their large number and random anywhere installation. However, to get best performance in terms of offload to femtocells, total cell capacity, mobility performance of mobile devices, joint optimization of femtocell and macrocell parameters is desired. Particularly, configuration of macrocells can help configuration of femtocells and vice versa.
The following presents a simplified summary of one or more aspects of mechanisms joint parameter optimization for collocated macrocells and femtocells deployments. This summary is not an extensive overview of all contemplated aspects of the invention, and is intended to neither identify key or critical elements of the invention nor delineate the scope of any or all aspects thereof. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
In one example aspect, a method for joint parameter optimization for collocated macrocells and femtocells in a wireless communication network comprises: collecting one or more performance parameters from the one or more collocated macrocells and femtocells, detecting frequent cell reselections or frequent cell handovers by mobile devices between the one or more collocated macrocells and femtocells, optimizing one or more cell reselection and handover parameters for the one or more collocated macrocells and femtocells based on the performance parameters, and overwriting one or more corresponding parameters of the collocated macrocells and femtocells with the one or more optimized cell reselection and handover parameters, thereby reducing frequent cell reselections or frequent cell handovers by mobile devices between the one or more collocated macrocells and femtocells in a wireless communication network.
In other aspects, an apparatus may include one or more means for performing the above-noted actions of the method. In yet other aspect, a computer program product may include a computer-readable medium having one or more codes for performing the above-noted actions of the method
In an additional aspect, an apparatus for wireless communication may include a parameter collection component configured to collect one or more performance parameters from one or more collocated macrocells and femtocells in a wireless communication network. Further, the apparatus may include a parameter optimization component configured to detect frequent cell reselections or frequent cell handovers by mobile devices between the one or more collocated macrocells and femtocells, and to optimize one or more of cell reselection and handover parameters for the one or more collocated macrocells and femtocells based on the performance parameters. Additionally, the apparatus may include a parameter overwriting component configured to overwrite one or more corresponding parameters of the collocated macrocells and femtocells with the one or more of optimized cell reselection and handover parameters.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
The disclosed aspects will hereinafter be described in conjunction with the appended drawings, provided to illustrate and not to limit the disclosed aspects, wherein like designations denote like elements, and in which:
In various aspects, disclosed herein mechanisms for joint parameter configuration for collocated macrocells and femtocells deployments. Various aspects will be described with reference to the drawings. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more aspects. It may be evident, however, that such aspect(s) may be practiced without these specific details. Furthermore, various aspects or features will be presented in terms of systems that may include a number of devices, components, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules etc. discussed in connection with the figures. A combination of these approaches may also be used.
The techniques described herein may be used for various wireless communication systems such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, WiFi carrier sense multiple access (CSMA), and other systems. The terms “system” and “network” are often used interchangeably. A CDMA system may implement a radio technology such as Universal Terrestrial Radio Access (UTRA), cdma2000, etc. UTRA includes Wideband-CDMA (W-CDMA) and other variants of CDMA. Further, cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM). An OFDMA system may implement a radio technology such as Evolved UTRA (E-UTRA), Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM®, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS). 3GPP Long Term Evolution (LTE) is a release of UMTS that uses E-UTRA, which employs OFDMA on the downlink and SC-FDMA on the uplink. UTRA, E-UTRA, UMTS, LTE and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP). Additionally, cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2). Further, such wireless communication systems may additionally include peer-to-peer (e.g., mobile-to-mobile) ad hoc network systems often using unpaired unlicensed spectrums, 802.xx wireless LAN, BLUETOOTH and any other short- or long-range, wireless communication techniques.
The wireless communication system(s) may include a plurality of base stations (BS) utilized for communicating with mobile devices(s). These base stations may include high-power macro BS and low-power femto BS. The femto BS also be referred to as an access point, femto nodes, pico node, micro node, a Node B, evolved Node B (eNB), home Node B (HNB) or home evolved Node B (HeNB), collectively referred to as H(e)NB, or some other terminology. These femto BS are generally considered to be low-power base stations. For example, a low-power base station transmits at a relatively low power as compared to a macro base station associated with a wireless wide area network (WWAN). As such, the coverage area of the low power base station can be substantially smaller than the coverage area of a macro base station.
As generally known in the art, a mobile device can also be called a system, device, subscriber unit, subscriber station, mobile station, mobile, remote station, mobile terminal, remote terminal, access terminal, user terminal, terminal, communication device, user agent, user device, or user equipment (UE). A mobile device may be a cellular telephone, a satellite phone, a cordless telephone, a Session Initiation Protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a handheld device having wireless connection capability, a tablet, a computing device, or other processing devices connected via a wireless modem to one or more BS that provide cellular or wireless network access to the mobile device.
In the depicted mixed macrocell/femtocell deployment, frequent system reselections and handovers between macro base station 102 and the collocated femto nodes 104, 106, 108, 110, and 112 can happen by a fast-moving mobile device 114 (e.g., a vehicular mobile device) entering and leaving patchy femtocell coverage and/or mobile device 114 ping-ponging between the macrocell 102 and the femtocells 104, 106, 108, 110, and 112. Frequent system reselections may be considered multiple attempts by a mobile device or attempt by a number of mobile devices to register and/or deregister with adjacent femtocells or macrocells within a short period of time (e.g. 10 minutes). Frequent handover occur when mobile device actually transfer an ongoing call or data session between a macrocell and a femtocell or between two femtocells. Frequent cell reselections and handovers are not desirable because they may cause frequent mobile device registrations on different systems (e.g., femtocell and macrocells), which in turn may cause device battery drainage, signaling load, missing of pages, and other problems. Therefore, it is desirable to perform joint optimization of femtocell and macrocell parameters to prevent above-described problems.
In one example aspect, the parameter collection component 202 may use a communication interface (such as X2, S1, Iur, Iu, or the like) to obtain various performance parameters from macrocells 210 and femtocells 220. These performance parameters may include, but not limited to, the number of reselections, number of handovers, types of handovers (such as intra-frequency, inter-frequency, inter-RAT, handovers to/from macrocell, handovers to/from femtocells, and other), number of call drops, average UL interference, average cell capacity used and available cell capacity, number of users served by the cell, number of connections established, traffic pattern at backhaul or traffic pattern of mobile devices served, and other performance parameters.
In one example aspect, the parameter optimization component 206 may use network resources to identify a cluster of collocated macrocells and femtocells. The collocated cell cluster may include, but not limited to, adjacent cells, overlapping cells, or more generally cells that have mutual impact with each other. The parameter optimization component 206 then identifies performance and resource utilization trends within a cell cluster and, in response to the performance and resource utilization trends, changes parameters on macro and femto nodes to allow improved performances and/or even resource utilization within the cells of a cluster. The component 206 then saves changed parameters in the database 204 and instructs parameter overwriting component 208 to communicate new parameters to the appropriate macro and femto cells 210, 220.
In one aspect, the cell reselection optimization component 242 may also optimize (e.g., reduce) frequency with which femtocell 220 transmits its reselection beacon, which will lower the probability that a fast-moving mobile device 230 will detect the reselection beacon transmitted by the femtocell 220 and reselect to that femtocell, and will delay femtocell reselection for slow-moving mobile devices 230. Particularly, reselection beacons are periodically transmitted by femtocells on the same RF channel(s) as those used by a collocated macrocells in order to temporary jam (e.g., create interference with) RF signals transmitted by the macrocells and force mobile devices 230 located in the coverage area of the femtocell 220 and the collocated macrocell 210 to reselect from the serving macrocell 210 to the target femtocell 220.
In another aspect, the cell reselection optimization component 242 may slow down cell reselections by adjusting cell reselection parameters used by the mobile device 230 to determine the time it needs to evaluate cell reselection criteria. For example, macrocell 210 may regulate (e.g., increase) a Treselection parameter used by mobile device 230 to determine the time it needs to evaluate cell reselection criteria. The mobile device 230 uses Treselection parameter for intra-frequency, inter-frequency and inter-RAT reselections. In particular, the mobile device 230 continuously evaluates target cell quality in every DRX cycle for the Treselection time. Therefore, the Treselection parameter may be used to avoid pre-mature reselection to the target cell. To that end, in one aspect, the Treselection parameter may be increased by the cell reselection optimization component 242 in order to delay fast moving mobile device 230 from camping on femtocells 220. Since femtocells often operate on a different RF channel than macrocells, only inter-frequency reselections need to be delayed. In one example, this can be achieved by adjusting the “Inter-frequency ScalingFactor for Treselection” information element (IE) in addition to Treselection parameter. Reselection Evaluation=‘Treselections’×Scaling Factor, where the range of Scaling Factor may be equal to, e.g., 1 to 4.75. In another example, this can be achieved by adjusting a Treselection parameter specific for inter-frequency reselection.
In another aspect, the cell reselection optimization component 242 can optimise (e.g., increase) Qqualmin parameter in order to shrink the perceived effective coverage area of the femtocell 220, thereby preventing frequent reselections to that cell by fast-moving mobile devices 230. Qqualmin parameter is usually broadcasted per neighboring cell (or PSC) in SIB messages (e.g., SIB11) by the collocated macrocell. Qqualmin parameter is can also be broadcasted by neighboring femtocells in its SIB messages. Qqualmin indicates the signal-to-interference ratio (Ec/Io) or received signal power below which mobile device 230 considers the neighboring cell as unsuitable for reselection. As shown in
In another aspect, the cell reselection optimization component 242 of the femto node 220 may provide power boosting to increase cells reselection radius. A fixed high value of Qqualmin may impact discovery of slow moving mobile devices 230 because mobile devices that are reasonably closer to the femtocell 220 may not be able to reselect to it. In such a case, the cell reselection optimization component 242 may instruct the femto node 220 to periodically boost its pilot power momentarily to increase its reselection radius. Such power boost can be coordinated with the transmission of the reselection beacon by the femtocell as described above. This is illustrated in
In alternative aspect, the femto node 220 may prevent frequent reselections by rejecting at least the first registration attempt by idle-mode mobile device 230. For example, when the mobile device send “RRC Connection Request” message, which identifies the mobile device using IMSI, TMSI or P-TMSI identifier, to request a connection with the femtocell 220, the femto node 220 may check for any recent registration attempts by the mobile device 230 with the same ID and if no prior attempts took place respond to the mobile device with a “RRC Connection Reject” message. However, when a second or subsequent registration message is received from the same mobile device, the femto node 220 may accept the registration form the mobile device 230. It is also possible, while rejecting the mobile device 230, to redirect the mobile device to a different frequency/RAT layer and forbid it from re-registering to the same femtocell or its frequency/RAT for some time (e.g., few seconds). In this case, “RRC Connection Reject” message can be sent with “Redirection info” and “Wait Time”.
In one example aspect, the cell handover optimization component 244 is configured to optimize various handover parameters, such as ABS (Almost Blank Subframes) configuration, Hysteresis, Time-to-trigger (TTT), Cell individual offset, event offset (Ea3-offset), filter coefficient, frequency offset, and other parameters. Optimization of handover parameters is illustrated by the following example scenarios. As density of femtocells increases, to achieve more cell splitting gains, it may be desirable for macrocells to offload more to collocated femtocells. Macrocells may need to provide more subframes to femtocells in case of eICIC (enhanced inter-Cell interference coordination) or ICIC (inter-cell interference coordination)—ABS configuration can be determined by the cell handover optimization component 244 based on the reported density of femtocells. Macrocells may need to encourage handover to femtocells. To that end, the cell handover optimization component 244 can configure hysteresis, Time-to-trigger (TTT), Cell individual offset, event offset (Ea3-offset), frequency offset, and other handover parameters. If the load on femtocells becomes too large, macrocells can make offload to femtocells less aggressive by adjusting parameters or provide it with more ABS resources. If the load on macrocells becomes too large, femtocells can make offload to macrocells difficult by adjusting parameters, such as increasing cell individual offset or event offset or frequently offset or hysteresis or TTT. In one example aspect, the parameter overwriting component 208 can send optimized cell handover parameters to be broadcast in SIBs or to be sent via dedicated messages (e.g., Measurement Control message).
Referring now to
Base station 602 can communicate with one or more mobile devices such as mobile device 616 and mobile device 622; however, it is to be appreciated that base station 602 can communicate with substantially any number of mobile devices similar to mobile devices 616 and 622. Mobile devices 616 and 622 can be, for example, cellular phones, smart phones, laptops, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable device for communicating over wireless communication system 600. As depicted, mobile device 616 is in communication with antennas 612 and 614, where antennas 612 and 614 transmit information to mobile device 616 over a forward link 618 and receive information from mobile device 616 over a reverse link 620. Moreover, mobile device 622 is in communication with antennas 604 and 606, where antennas 604 and 606 transmit information to mobile device 622 over a forward link 624 and receive information from mobile device 622 over a reverse link 626. In a frequency division duplex (FDD) system, forward link 618 can utilize a different frequency band than that used by reverse link 620, and forward link 624 can employ a different frequency band than that employed by reverse link 626, for example. Further, in a time division duplex (TDD) system, forward link 618 and reverse link 620 can utilize a common frequency band and forward link 624 and reverse link 626 can utilize a common frequency band.
Each group of antennas and/or the area in which they are designated to communicate can be referred to as a sector of base station 602. For example, antenna groups can be designed to communicate to mobile devices in a sector of the areas covered by base station 602. In communication over forward links 618 and 624, the transmitting antennas of base station 602 can utilize beamforming to improve signal-to-noise ratio of forward links 618 and 624 for mobile devices 616 and 622. Also, while base station 602 utilizes beamforming to transmit to mobile devices 616 and 622 scattered randomly through an associated coverage, mobile devices in neighboring cells can be subject to less interference as compared to a base station transmitting through a single antenna to all its mobile devices. Moreover, mobile devices 616 and 622 can communicate directly with one another using a peer-to-peer or ad hoc technology as depicted. According to an example, system 600 can be a multiple-input multiple-output (MIMO) communication system.
At base station 710, traffic data for a number of data streams is provided from a data source 712 to a transmit (TX) data processor 714. According to an example, each data stream can be transmitted over a respective antenna. TX data processor 714 formats, codes, and interleaves the traffic data stream based on a particular coding scheme selected for that data stream to provide coded data.
The coded data for each data stream can be multiplexed with pilot data using orthogonal frequency division multiplexing (OFDM) techniques. Additionally or alternatively, the pilot symbols can be frequency division multiplexed (FDM), time division multiplexed (TDM), or code division multiplexed (CDM). The pilot data is typically a known data pattern that is processed in a known manner and can be used at mobile device 750 to estimate channel response. The multiplexed pilot and coded data for each data stream can be modulated (e.g., symbol mapped) based on a particular modulation scheme (e.g., binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), M-phase-shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM), etc.) selected for that data stream to provide modulation symbols. The data rate, coding, and modulation for each data stream can be determined by instructions performed or provided by processor 730.
The modulation symbols for the data streams can be provided to a TX MIMO processor 720, which can further process the modulation symbols (e.g., for OFDM). TX MIMO processor 720 then provides NT modulation symbol streams to NT transmitters (TMTR) 722a through 722t. In various embodiments, TX MIMO processor 720 applies beamforming weights to the symbols of the data streams and to the antenna from which the symbol is being transmitted.
Each transmitter 722 receives and processes a respective symbol stream to provide one or more analog signals, and further conditions (e.g., amplifies, filters, and upconverts) the analog signals to provide a modulated signal suitable for transmission over the MIMO channel. Further, NT modulated signals from transmitters 722a through 722t are transmitted from NT antennas 724a through 724t, respectively.
At mobile device 750, the transmitted modulated signals are received by NR antennas 752a through 752r and the received signal from each antenna 752 is provided to a respective receiver (RCVR) 754a through 754r. Each receiver 754 conditions (e.g., filters, amplifies, and downconverts) a respective signal, digitizes the conditioned signal to provide samples, and further processes the samples to provide a corresponding “received” symbol stream.
An RX data processor 760 can receive and process the NR received symbol streams from NR receivers 754 based on a particular receiver processing technique to provide NT “detected” symbol streams. RX data processor 760 can demodulate, deinterleave, and decode each detected symbol stream to recover the traffic data for the data stream. The processing by RX data processor 760 is complementary to that performed by TX MIMO processor 720 and TX data processor 714 at base station 710.
The reverse link message can comprise various types of information regarding the communication link and/or the received data stream. The reverse link message can be processed by a TX data processor 738, which also receives traffic data for a number of data streams from a data source 736, modulated by a modulator 780, conditioned by transmitters 754a through 754r, and transmitted back to base station 710.
At base station 710, the modulated signals from mobile device 750 are received by antennas 724, conditioned by receivers 722, demodulated by a demodulator 740, and processed by a RX data processor 742 to extract the reverse link message transmitted by mobile device 750. Further, processor 730 can process the extracted message to determine which precoding matrix to use for determining the beamforming weights.
Processors 730 and 770 can direct (e.g., control, coordinate, manage, etc.) operation at base station 710 and mobile device 750, respectively. Respective processors 730 and 770 can be associated with memory 732 and 772 that store program codes and data. Processors 730 and 770 can also perform functionalities described herein to support selecting a paging area identifier for one or more femto nodes.
Referring again to
A femto node 910 can be deployed on a single frequency or, in the alternative, on multiple frequencies. Depending on the particular configuration, the single frequency or one or more of the multiple frequencies can overlap with one or more frequencies used by a macro cell access node (e.g., node 960). In some aspects, an mobile device 920 can be configured to connect to a preferred femto node (e.g., the home femto node of the mobile device 920) whenever such connectivity is possible. For example, whenever the mobile device 920 is within the user's residence 930, it can communicate with the home femto node 910.
In some aspects, if the mobile device 920 operates within the mobile operator core network 950 but is not residing on its most preferred network (e.g., as defined in a preferred roaming list), the mobile device 920 can continue to search for the most preferred network (e.g., femto node 910) using a Better System Reselection (BSR), which can involve a periodic scanning of available systems to determine whether better systems are currently available, and subsequent efforts to associate with such preferred systems. Using an acquisition table entry (e.g., in a preferred roaming list), in one example, the mobile device 920 can limit the search for specific band and channel. For example, the search for the most preferred system can be repeated periodically. Upon discovery of a preferred femto node, such as femto node 910, the mobile device 920 selects the femto node 910 for camping within its coverage area.
A femto node can be restricted in some aspects. For example, a given femto node can only provide certain services to certain mobile devices. In deployments with so-called restricted (or closed) association, a given mobile device can only be served by the macro cell mobile network and a defined set of femto nodes (e.g., the femto nodes 910 that reside within the corresponding user residence 930). In some implementations, a femto node can be restricted to not provide, for at least one mobile device, at least one of: signaling, data access, registration, paging, or service.
In some aspects, a restricted femto node (which can also be referred to as a Closed Subscriber Group H(e)NB) is one that provides service to a restricted provisioned set of mobile devices. This set can be temporarily or permanently extended as necessary. In some aspects, a Closed Subscriber Group (CSG) can be defined as the set of access nodes (e.g., femto nodes) that share a common access control list of mobile devices. A channel on which all femto nodes (or all restricted femto nodes) in a region operate can be referred to as a femto channel.
Various relationships can thus exist between a given femto node and a given mobile device. For example, from the perspective of a mobile device, an open femto node can refer to a femto node with no restricted association. A restricted femto node can refer to a femto node that is restricted in some manner (e.g., restricted for association and/or registration). A home femto node can refer to a femto node on which the mobile device is authorized to access and operate on. A guest femto node can refer to a femto node on which a mobile device is temporarily authorized to access or operate on. An alien femto node can refer to a femto node on which the mobile device is not authorized to access or operate on, except for perhaps emergency situations (e.g., 911 calls).
From a restricted femto node perspective, a home mobile device can refer to an mobile device that authorized to access the restricted femto node. A guest mobile device can refer to a mobile device with temporary access to the restricted femto node. An alien mobile device can refer to a mobile device that does not have permission to access the restricted femto node, except for perhaps emergency situations, for example, 911 calls (e.g., an access terminal that does not have the credentials or permission to register with the restricted femto node).
For convenience, the disclosure herein describes various functionality in the context of a femto node. It should be appreciated, however, that a pico node can provide the same or similar functionality as a femto node, but for a larger coverage area. For example, a pico node can be restricted, a home pico node can be defined for a given mobile device, and so on.
The various illustrative logics, logical blocks, modules, components, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Additionally, at least one processor may comprise one or more modules operable to perform one or more of the steps and/or actions described above. An exemplary storage medium may be coupled to the processor, such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. Further, in some aspects, the processor and the storage medium may reside in an ASIC. Additionally, the ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
In one or more aspects, the functions, methods, or algorithms described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored or transmitted as one or more instructions or code on a computer-readable medium, which may be incorporated into a computer program product. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage medium may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, substantially any connection may be termed a computer-readable medium. For example, if software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs usually reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
As used in this application, the terms “component,” “module,” “system” and the like are intended to include a computer-related entity, such as but not limited to hardware, firmware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a computing device and the computing device can be a component. One or more components can reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers. In addition, these components can execute from various computer readable media having various data structures stored thereon. The components may communicate by way of local and/or remote processes such as in accordance with a signal having one or more data packets, such as data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems by way of the signal.
While, for purposes of simplicity of explanation, the methodology shown and described as a series of acts, it is to be understood and appreciated that the methodologies are not limited by the order of acts, as some acts may, in accordance with one or more embodiments, occur in different orders and/or concurrently with other acts from that shown and described herein. For example, it is to be appreciated that a methodology could alternatively be represented as a series of interrelated states or events, such as in a state diagram. Moreover, not all illustrated acts may be required to implement a methodology in accordance with one or more embodiments.
While the foregoing disclosure discusses illustrative aspects and/or embodiments, it should be noted that various changes and modifications could be made herein without departing from the scope of the described aspects and/or embodiments as defined by the appended claims. Furthermore, although elements of the described aspects and/or embodiments may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated. Additionally, all or a portion of any aspect and/or embodiment may be utilized with all or a portion of any other aspect and/or embodiment, unless stated otherwise.
The present Application for Patent claims priority to Provisional Application No. 61/603,141 filed on Feb. 24, 2012, and assigned to the assignee hereof and hereby expressly incorporated by reference herein. The present Application for Patent is related to co-pending U.S. Patent Application entitled “METHOD AND SYSTEM FOR REGULATING FREQUENT CELL RESELECTIONS BY IDLE-MODE MOBILE DEVICES,” having Attorney Docket No. 121547U1, filed concurrently herewith, assigned to the assignee hereof, and expressly incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61603014 | Feb 2012 | US |