Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals

Information

  • Patent Grant
  • 11185695
  • Patent Number
    11,185,695
  • Date Filed
    Wednesday, December 3, 2008
    16 years ago
  • Date Issued
    Tuesday, November 30, 2021
    3 years ago
Abstract
A system and method for analyzing and logging changes in brain state of a subject for administering therapy to the subject based on the at least one cardiac signal wherein the system and method comprises the steps of receiving at least one cardiac signal of the subject into a processor, analyzing the cardiac signal to detect at least one cardiac signal change indicative of a brain state change, and logging at least one characteristic of the detected signal change or the brain state change.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to medical devices and, more specifically without limitation, to implanted medical devices.


2. Description of the Related Art

Epilepsy affects about 2.3 million Americans, and its direct and indirect annual costs amount to approximately $12.5 billion. Although anti-epileptic drugs are useful, 20-30% of persons are not helped by them and up to 30% of those treated have intolerable or serious side effects.


Recently published studies demonstrate the importance of quantitative analysis of brain signals for automated warning and blockage of seizures, optimization of existing therapies and development of new ones. Cardiac activity is under cerebral control. That is, certain changes in global, regional or focal brain activity, either physiological or pathological, modify heart activity. Epileptic seizures are one of the pathological brain states associated with changes in heart activity including but not limited to changes in heart rate, most frequently an increase and referred to as ictal tachycardia, or in other indices of cardiac function such as R-R variability. The incidence of heart changes increases as the seizure spreads outside its site of origin to other brain regions being, for example invariably present in all subjects with primarily or secondarily generalized tonic-clonic seizures (“convulsions”), in whom purportedly, most or all of the brain is involved. These changes reflect shifts in the ongoing interplay between sympathetic and parasympathetic influences, which can be quantified using time or frequency domain methods of analysis. For example, tachycardia precedes electrographic onset of temporal lobe seizures by several seconds, as ascertained via scalp electrodes (EEG), while combined activation of parasympathetic and sympathetic systems as estimated by using spectral analysis of oscillations in R-R intervals at respiratory and non-respiratory frequencies, may be detectable minutes in advance of seizure onset. Since these changes may precede visible electrographic or behavioral manifestations indicative of seizures and even of the so-called “aura,” they may have predictive value. Real-time prediction or detection of epileptic seizures, based on extracerebral sources such as the heart, is of great clinical and practical value as it obviates the reliance on cerebral signals which are highly complex and of high dimensionality and whose origin may not only be difficult to localize but quite often requires invasive intracranial implantation of electrodes or other sensors.


While methods presently exist to detect seizures using cardiac signals and quantify their characteristics, for example as described in U.S. Pat. No. 6,341,236 which is incorporated herein by reference in its entirety, no system for logging the times of seizures and their quantitative characteristics, such as date and time of occurrence, and duration based on the degree of cardiac changes, and for using this information in the objective assessment of seizure frequency and of therapeutic intervention, presently exists. This is partially due to the impact of artifacts (noise) on EKG signal analysis which can lead to inaccuracies in heart rate assessments.


Thus, the need exists for a system and method for logging seizures, or other events originating in the brain that impact cardiac activity, and associated event characteristics such as frequency, duration, intensity, and severity. Moreover, this system and method needs to be robust in the presence of artifacts or other sources of noise. The need also exists for a minimally invasive system and method to provide effective and objective means for assessing the efficacy of therapies used to control seizures.


SUMMARY OF THE INVENTION

Changes in heart activity associated with seizures can be used to automatically and in real-time detect the seizures, quantify their frequency, duration, intensity, or severity as reflected in the cardiac signal changes, predict their electrographic or clinical onset in a subset of cases, and control the seizures via therapeutic intervention. The present invention enables the logging of this information and its utilization to objectively assess the efficacy of an applied therapy. To accomplish this task with improved robustness in the presence of signal artifacts or noise, the invention can utilize EKG and complementary information obtained from other signals representative of cardiac function such as the phonocardiogram (PKG), echocardiogram, or ultrasound.





BRIEF DESCRIPTION OF THE DRAWING FIGURES


FIG. 1 is a schematic representation of a system for receiving and analyzing cardiac signals and detecting and logging seizures according to the present invention.



FIG. 2 shows an EKG signal corrupted by artifact at the start of a seizure.



FIG. 3 illustrates simultaneously recorded EKG and PKG data and the ability of PKG to provide complementary information regarding cardiac function contained therein.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Changes in certain types of global, regional or focal brain activity, either physiological or pathological, modify heart activity. Epileptic seizures are one important example of a pathological brain state with demonstrated association to changes in heart activity. The incidence of heart changes increases as the seizure spreads outside its site of origin to other brain regions being, for example invariably present in all subjects with primarily or secondarily generalized tonic-clonic seizures (“convulsions”), in whom purportedly, most or all of the brain is involved. Real-time prediction or detection, and quantitative analysis of epileptic seizures, based on extracerebral sources such as the heart, is of great clinical and practical value as it obviates the reliance on cerebral signals which are highly complex and of high dimensionality, and whose origin may not only be difficult to localize but quite often requires invasive intracranial implantation of electrodes or other sensors. The invention disclosed herein, and depicted schematically in FIG. 1, utilizes information present in signals 101 representative of the cardiac activity state, fed to system 100 that performs real-time quantitative analysis of this information in a processor 102. This processor analyzes and measures relevant changes in the cardiac activity state in order to predict or detect and quantify underlying events occurring in the brain of a subject. The system is configured to include a clock 103 and non-volatile memory 104 to enable these events and relevant data and information about associated event features to be logged. These features may include, but are not limited to, start time, end time, or duration of detected cardiac changes which provide information about underlying seizures or other brain events, the frequency or relative intensity of these changes, and the evolution of the distribution of such features as interbeat intervals. These and other features representative of cardiac state well known to one skilled in the art, such as heart rate and heart rate variability measures, can be measured and relevant changes logged. The system can be configured with a communication interface 105 that allows the subject or other user to access information from the logs stored in non-volatile memory 104 and/or to program parameters used in the operation of the system 100, including parameters involved in the analysis of cardiac signals performed using processor 102.


While methods presently exist to detect seizures using cardiac signals and quantify their characteristics, for example as described in U.S. Pat. No. 6,341,236, no system presently exists for logging these quantitative characteristics, such as times of occurrence, durations and degrees of cardiac changes associated with seizures or other underlying brain events and for using this information in objective assessment of the neurological disorder and of efficacy of therapeutic intervention. This is partially due to the impact of artifacts (noise) on EKG signal analysis which can lead to inaccuracies in heart rate assessments.


Seizures often are associated with movement, muscle, and other artifacts that can obscure or distort the EKG making it difficult or impossible to extract the important information contained in the contaminated signals. FIG. 2 illustrates an EKG signal from a subject just before and during the onset of an epileptic seizure in which there is significant artifact present as the seizure begins. This artifact makes it difficult to determine from this signal precisely when heart beats are occurring. One strategy to overcome noise is to simultaneously acquire other cardiac signals such as PKG to take advantage of the fact that these other signals have different sensitivities than EKG to certain types of noise. This approach increases the information content about the state of the heart, and indirectly about the state of the brain, and decreases the probability of signal loss or degradation by noise. FIG. 3 illustrates the differential sensitivity to noise: the EKG signal shown is contaminated by muscle artifact, a common source of noise during seizures, and is not easily recognizable visually or using spectral signal analysis while the simultaneously recorded PKG is virtually immune to this type of noise. The two arrows in FIG. 3 annotate time points when R-waves in the EKG are obscured by muscle artifacts; FIG. 3 also displays the simultaneously recorded PKG signal which is immune to this type of artifacts.


The PKG can be used instead of EKG for tracking heart rate and its variability given the high temporal correlation between the S1 and the QRS complex. Simultaneous use of PKG and EKG allows the system access to good quality information for more complete and accurate tracking of the cardiac system dynamics and, indirectly, of brain dynamics effecting the heart. Those skilled in the art can appreciate that many other types of physical or chemical heart signals suitable for use with implantable devices can also be used in addition to, or instead of, EKG and PKG for this purpose.


In view of the clinical importance of real-time automated quantitative seizure analysis and the greater signal-to-noise ratio and shorter propagation time from source to sensor, and ease of use of heart signals (electrocardiogram, EKG, or phonocardiogram, PKG) compared to scalp signals (EEG) or intracranial recording of electrical signals (ECoG), the approach of the present invention disclosed herein makes use of these signals for a) the invasive or non-invasive extracerebral, real-time automated detection of seizures based on heart signals; b) the logging of frequency, date/time of occurrence, relative intensity and relative duration of seizures; c) the anticipation of electrographic or behavioral seizure onset and/or loss of function in a subgroup of subjects with epilepsy, for automated warning and other useful purposes; and d) the automated delivery of a selected therapy, either contingent or closed-loop. Additionally and of equal importance is the ability to detect, in real-time, cardiac rhythm abnormalities, which may be life-threatening and which are temporally correlated with seizures or occur in between seizures and to provide appropriate intervention such as pacing or defibrillation.


Use of cardiac signals such as EKG and/or PKG for the automated detection of seizures, and in certain cases for the anticipation of their onset, will complement and, in a subgroup of subjects with pharmaco-resistant epilepsy, may replace scalp or intracranial (invasive) acquisition of cortical signals for automated warning and/or therapy delivery and in either case will allow for seizure logging and other tasks. One of the main advantages of using EKG/PKG for seizure detection is that unlike methods based on cortical signals recorded either directly from the cortex, which requires a craniotomy or burr hole, or indirectly from the scalp (EEG), it is not critically, dependent on accurate placement of electrodes and, in a subset of cases, the onset of heart changes may even precede scalp or behavioral changes providing yet another advantage.


Heart signals, can be obtained from several body sites obviating, in a subgroup of patients, the need for surgery, thus decreasing the inconvenience, stress, cost, potential morbidity and recovery time associated with such procedures. Furthermore, the wealth of commercially available, low power, implantable devices for analysis and control of heart signals can be easily leveraged for this application. Another advantage of EKG over EEG or ECoG is its lower dimensionality and relative simplicity wherein a single channel recording is sufficient for capturing all of the information necessary for the tasks at hand.


Those skilled in the art can appreciate that in certain cases or situations, dual, simultaneous monitoring of brain and heart may be necessary or useful to improve detection of changes in either organ or to improve the efficacy of control measures. Also, undesirable changes in heart activity caused by abnormal brain activity may be better controlled by directing the intervention to the brain rather than to the heart. For instance, while asystole caused by seizures can be controlled using a demand pacemaker, a more definitive and rational approach is to prevent or block asystole-inducing seizures. It is clear that the dynamic interactions between heart and brain can be exploited to detect changes and to control them by monitoring either organ or both and by applying control to either of them, or to both.


Frei and Osorio and others, see for example U.S. Pat. No. 6,341,236, have disclosed methods for automated EKG analysis and detection of cardiac signal changes associated with epileptic seizures. The methods developed by Frei and Osorio are especially well-suited for seizure detection using heart signals, a task which requires analysis of data over very short windows (1-2 sec). The length requirements of other methods for standard low/ultra-low frequency band power assessments of heart rate variability, typically five-minute segments assumed to be stationary, are much longer than the duration of a seizure or a dangerous cardiac abnormality that may lead to sudden death. In addition, the assumptions regarding stationarity of the system/signal are counter to the well-known nonstationarity of the normal cardiac system. Given these deficiencies, it is therefore impractical to apply methods of heart signal analysis that require long segments of data, minutes for example, for the detection of phenomena for which warning and control must take place in a very short time period (e.g., under ten seconds) for purposes of safety and efficacy. Another advantage of the methods of the present invention is that they can be used to quantify the intensity, type, and evolution of cardiac changes, which in turn may be used to detect and estimate the duration and intensity of underlying brain state changes whether physiological or pathological. The changes in heart activity that may indicate a possible onset of a seizure (a pathologic state change) include, but are not limited to, changes in heart rate and heart rate variability and their interrelationship, rhythm, morphology of the P-QRS-T complex or of the length of the different intervals (e.g., Q-T).


One skilled in the art can appreciate that, in addition to the aforementioned methods, a number of methods for detection and analysis of cardiac signal changes exist in prior art, many of which have been implemented in hardware, software, or in a hybrid configuration, and which can be used, for example, to obtain the time of each heart beat as well as the interbeat (e.g., R-R) interval. One skilled in the art will appreciate for example, that the R-R interval times or other quantities representative of cardiac state may be processed/analyzed using methods in the time or frequency domains to generate a multitude of derivative signals/sequences or ratios from which a wealth of information can be obtained about the heart, including instantaneous heart rate (IHR), its average rate in fixed or moving windows of any desired length, and measures of heart rate variability (“HRV”) (e.g., standard deviation of means of R-R intervals in a moving window, or the second derivative of instantaneous heart rate, etc.) on any desired timescale but with emphasis on those timescales suitable for seizure detection. Changes in the distributions of these, or any other quantity derived from the time-of-beat sequence, as time evolves can be detected and quantified in real-time, for example using the “lambda estimator” as disclosed in Nikitin et al, U.S. Patent Application Publication No. 20030187621, or other statistical methods. Stereotypical patterns, if found in these data, may be learned over time as more seizures are recorded and analyzed. For example, cardiac data from a subject can be used to establish normal or baseline patterns for this subject and compared against moving windows of new data to determine deviations from normalcy or baseline, proximity to dangerous or undesirable patterns, and to quantify these deviations. Degree of absolute or relative changes in heart rate, heart rate variability, and their interrelationship, ST-wave depression, and QT prolongation are examples of such quantities. The time of specific changes and their duration and/or intensity are obtainable from these analyses. As in the aforementioned Nikitin et al reference, one skilled in the art will appreciate that the analysis of interest can be multifactorial and/or multidimensional. For example, U.S. Pat. No. 6,341,236 of Osorio and Frei disclosed that changes in the relationship between IHR and HRV provide information about heart function which is not obtainable if IHR and HRV are analyzed separately.


The aforementioned lambda estimator provides one of many possible examples illustrating how statistical changes in feature signals, even when multi-dimensional, obtained from cardiac recordings, such as EKG, can be quantified as they evolve. By applying thresholding techniques or, more generally, by identifying values of quantified features that are associated with particular cardiac or body states, e.g., seizures, the start and end of these state changes can be localized in time and their relative intensity quantified.


These analyses may also be applied to PKG signals in order to detect similar, complementary, or different changes reflective of heart state. Other measures that may be used by the present invention include but are not limited to: duration including time of onset and termination of changes in heart rate or in any of its derivatives; changes in heart rate variability or in any of its derivatives; changes in rhythmicity or in generation and conduction of electrical impulses; or changes in the acoustic properties of heart beats and their variability. It will be appreciated that additional information may be obtained through analysis of occurrence times of other EKG waveforms such as Q-T intervals, changes in spectral properties of the EKG or signal morphology, as well as time-of-beat information obtained from PKG such as s1-s1 intervals, amplitude (magnitude) of the signal, or changes in its waveshape and/or spectral characteristics, etc. For example, changes in the magnitude or rate of change of the high- and low-frequency components of the heart beat, using autoregressive, Fast Fourier, wavelets, Intrinsic Timescale Decomposition (U.S. patent application Ser. No. 10/684,189, filed Oct. 10, 2003), or other suitable techniques, may be used alone or combined with other cardiac measures to increase the sensitivity, specificity, and/or speed of prediction or detection of seizures or in their ability to quantify brain state changes. Other measures derived from the raw or processed signals that may be of additional use in the present invention include, but are not limited to, analysis of entropy, correlation dimension, Lyapunov exponents, measures of synchronization, fractal analysis, etc.


The real-time prediction, detection and quantification of seizures that is possible by using the methods disclosed herein and/or associated systems may be adapted or tailored to fit an individual's cardiac state change patterns or characteristics, thereby increasing sensitivity, specificity or speed of detection of state changes. The performance of the detection methods, such as sensitivity, specificity and speed, may be enhanced, if necessary, by characterizing baseline patterns for a subject and comparing them against moving windows of current data to determine and quantify deviations from baseline and proximity to patterns indicative of state change. These can be used, together with the frequency, intensity, and duration of heart signal changes, time to maximal deviation from baseline, time to recovery to baseline rates, for assessing a patient's condition, safety risks, and even efficacy of therapy. Moreover, degree of conformance to stereotypical cardiac signal patterns that may be associated with certain seizure types can be used to infer other severity-related measures such as degree of seizure spread in the brain. Simultaneous recording and analysis of other non-cardiac signals, such as muscle, joints, skin or peripheral nerves, may also improve prediction, detection and quantification of state changes. For example, the recording, analysis, and comparison of changes in cardiac signals during the state change of interest, e.g., seizures, to that obtained during activities such as exercise, can increase their sensitivity, specificity, and/or detection speed for real-time seizure detection purposes, or for detecting changes of body state. These processes may be carried out on- or off-line.


The information about heart state provided by the present invention can be used to compute seizure index, which is defined as the fraction of time spent in a seizure over a moving window of a given size. The information can also be used to determine seizure severity, e.g., using the product of intensity and duration. These and other measures may be logged as part of the present invention (or later computed from other logged information) and can provide valuable diagnostic and prognostic information, as well as information regarding efficacy of any therapy attempted during the period of monitoring/analysis. The set of logged information stored by the present invention can also be used to develop models that may allow or refine seizure prediction or detection (using cardiac signals or in general) and shed light on an individual's seizure dynamics.


The implantable or portable device implementing the present invention is configured to include a real-time clock and a rewritable, non-volatile memory, as well as one or more sensors for use in recording EKG, PKG and/or other representative signals indicative of cardiac function and/or state, such as echocardiogram, ultrasound, blood pressure, blood flow rate or volume, heart muscle tension, etc., and processing components capable of receiving, conditioning, and analyzing the EKG and/or PKG signals to detect and/or quantify events of interest such as seizures. The logging process consists of reading the real-time clock each time an event or cluster of events of a certain designated type occurs, and logging the clock time and variables associated with the quantification of the event to the non-volatile memory. These variables may include but are not limited to information obtained through processing of the signals, and/or the raw signals themselves, i.e., “loop recordings” of events.


The system of the present invention may be further configured with an output mechanism to: a) warn the subject of an impending seizure or other type of detected event such as a cardiac arrhythmia, low system battery, full memory, etc., and b) deliver a selected therapy to the subject when heart activity reaches or exceeds safe or prespecified limits. For example, Osorio and Frei in U.S. Pat. No. 6,341,236 disclose a means to trigger the pacing of the heart in the event of a seizure detected by analysis of EKG. Osorio et al., in U.S. Pat. No. 5,995,868, disclose a method of treating seizures by, among other methods, stimulating the brain, heart and/or vagus nerve when a seizure is detected. The output mechanism may include or be connected to a neurostimulator and/or a pacemaker to control brain and/or heart activity within prespecified tolerable/safe limits. Commonly used types of warnings include audio alarms with varied tones and/or combinations of short and long sounds, other types of acoustic devices, LED or other visual displays, e.g., flashing lights, etc., low-voltage so-called “tickler” stimulus, and communication with external devices, e.g., triggering an external device such as “calling 911,” etc.


Any additional implanted or portable device may also use the non-volatile memory for storing information about events through the use of a uni- or bi-directional communications protocol. For example, a pacemaker that detects an unusual EKG rhythm or heart beat pattern could trigger the device described herein that an event has occurred and potentially could communicate other features/attributes of the event, such as type, severity, etc., to the device for logging purposes. The system may also contain a display, or means to be externally interrogated, to review and/or download the information it has stored and/or logged for review by the user, subject, or physician. In addition to logging seizures or other events of neurological origin which impact the cardiac system, the system and method of the present invention can be used to objectively assess the efficacy of therapies used to control the occurrence or severity of these events. For example, when a subject takes medication in order to control his seizures, the availability of a seizure log that includes their time of occurrence, severity, and other features can be analyzed in reference to administration times and concentrations of medication or other therapy, which also can be logged by the system via the communication interface described above. Such comparisons enable the modeling and objective efficacy assessment of the effect of the therapy on the system. For instance, the seizure frequency measure plotted against the level of medication expected to be present in the subject's system as time evolves allows the user to optimize dosing levels and times to minimize seizure frequency.


Therapies administered to the subject based on the cardiac signal change may also include administration of a drug or medicament, features of which may include medicament type, dose, administration site, time of delivery, duration of delivery, rate of delivery, frequency of delivery, and inter-delivery interval. Therapies administered to the subject based on the cardiac signal change may include thermal regulation of the brain, features of which may include time of delivery, duration of delivery, rate of delivery, frequency of delivery, inter-delivery interval, administration site, intensity of therapy, and size of region affected by thermal regulation.


It is to be understood that while certain forms of the present invention have been illustrated and described herein, it is not to be limited to the specific forms or arrangement of parts described and shown.

Claims
  • 1. A method of detecting and logging an epileptic seizure event via a medical system, comprising: receiving a cardiac signal of a patient into a processor of the medical system;determining via the processor of the medical system a cardiac signal change based on the received cardiac signal;detecting via the processor of the medical system an onset of an epileptic seizure based on the cardiac signal change;determining via the processor of the medical system an epileptic seizure characteristic where the epileptic seizure characteristic is an intensity, a duration, a date and a time of an occurrence of the epileptic seizure;logging the epileptic seizure characteristic in a memory;transferring to an external device the logged epileptic seizure characteristic; anddelivering a therapy based on a determination of the onset of the epileptic seizure;wherein the therapy to treat the epileptic seizure utilizes stimulating a region of a brain of the patient via a first electrical signal and stimulating a vagus nerve via a second electrical signal.
  • 2. The method of claim 1, further comprising determining one or more stereotypical patterns based on one or more epileptic seizure occurrences.
  • 3. The method of claim 2, further comprising detecting the onset of the epileptic seizure based on the one or more stereotypical patterns.
  • 4. The method of claim 1, further comprising providing a warning signal.
  • 5. The method of claim 1, further comprising determining an epileptic seizure index.
CROSS REFERENCE TO RELATED APPLICATIONS

This patent application is a divisional of U.S. patent application Ser. No. 10/997,540, filed Nov. 24, 2004 now U.S. Pat. No. 9,050,469, which claims priority of Provisional Patent Application No. 60/525,501 entitled “A Method and Apparatus for Logging, Warning and Treatment of Seizures Using Cardiac Signals,” filed Nov. 26, 2003, which are incorporated herein by reference in their entirety.

US Referenced Citations (385)
Number Name Date Kind
3850161 Liss Nov 1974 A
4088138 Diack et al. May 1978 A
4172459 Hepp Oct 1979 A
4291699 Geddes et al. Sep 1981 A
4541432 Molina-Negro et al. Sep 1985 A
4573481 Bullara Mar 1986 A
4702254 Zabara Oct 1987 A
4867164 Zabara Sep 1989 A
4920979 Bullara May 1990 A
4949721 Toriu et al. Aug 1990 A
4979511 Terry, Jr. Dec 1990 A
5025807 Zabara Jun 1991 A
5113869 Nappholz et al. May 1992 A
5137020 Wayne et al. Aug 1992 A
5154172 Terry, Jr. et al. Oct 1992 A
5156148 Cohen Oct 1992 A
5179950 Stanislaw Jan 1993 A
5186170 Varrichio et al. Feb 1993 A
5188104 Wernicke et al. Feb 1993 A
5188106 Nappholz et al. Feb 1993 A
5203326 Collins Apr 1993 A
5205285 Baker, Jr. Apr 1993 A
5215086 Terry, Jr. et al. Jun 1993 A
5215089 Baker, Jr. Jun 1993 A
5222494 Baker, Jr. Jun 1993 A
5231988 Wernicke et al. Aug 1993 A
5235980 Varrichio et al. Aug 1993 A
5237991 Baker, Jr. et al. Aug 1993 A
5243980 Mehra Sep 1993 A
5251634 Weinberg Oct 1993 A
5263480 Wernicke et al. Nov 1993 A
5269301 Cohen Dec 1993 A
5269302 Swartz et al. Dec 1993 A
5269303 Wernicke et al. Dec 1993 A
5282474 Sosa et al. Feb 1994 A
5299569 Wernicke et al. Apr 1994 A
5304206 Baker, Jr. et al. Apr 1994 A
5311876 Olsen et al. May 1994 A
5313953 Yomtov et al. May 1994 A
5330505 Cohen Jul 1994 A
5330507 Schwartz Jul 1994 A
5330515 Rutecki et al. Jul 1994 A
5334221 Bardy Aug 1994 A
5335657 Terry, Jr. et al. Aug 1994 A
5404877 Nolan et al. Apr 1995 A
5425373 Causey, III Jun 1995 A
5522862 Testerman et al. Jun 1996 A
5527344 Arzbaecher et al. Jun 1996 A
5540730 Terry, Jr. et al. Jul 1996 A
5540734 Zabara Jul 1996 A
5571150 Wernicke et al. Nov 1996 A
5611350 John Mar 1997 A
5645570 Corbucci Jul 1997 A
5651378 Matheny et al. Jul 1997 A
5658318 Stroetmann et al. Aug 1997 A
5683422 Rise et al. Nov 1997 A
5690681 Geddes et al. Nov 1997 A
5690688 Noren et al. Nov 1997 A
5700282 Zabara Dec 1997 A
5707400 Terry, Jr. et al. Jan 1998 A
5716377 Rise et al. Feb 1998 A
5720771 Snell Feb 1998 A
5743860 Hively et al. Apr 1998 A
5792186 Rise Aug 1998 A
5800474 Benabid et al. Sep 1998 A
5833709 Rise et al. Nov 1998 A
5913876 Taylor et al. Jun 1999 A
5916239 Geddes et al. Jun 1999 A
5928272 Adkins Jul 1999 A
5941906 Barreras, Sr. et al. Aug 1999 A
5942979 Luppino Aug 1999 A
5978702 Ward et al. Nov 1999 A
5987352 Klein et al. Nov 1999 A
5995868 Dorfmeister et al. Nov 1999 A
6016449 Fischell et al. Jan 2000 A
6018682 Rise Jan 2000 A
6061593 Fischell et al. May 2000 A
6073048 Kieval et al. Jun 2000 A
6083249 Familoni Jul 2000 A
6091992 Bourgeois et al. Jul 2000 A
6104956 Naritoku et al. Aug 2000 A
6115628 Stadler et al. Sep 2000 A
6115630 Stadler et al. Sep 2000 A
6128538 Fischell et al. Oct 2000 A
6134474 Fischell et al. Oct 2000 A
6167311 Rezai Dec 2000 A
6171239 Humphrey Jan 2001 B1
6175764 Loeb et al. Jan 2001 B1
6205359 Boveja Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6208902 Boveja Mar 2001 B1
6221908 Kilgard et al. Apr 2001 B1
6248080 Miesel et al. Jun 2001 B1
6253109 Gielen Jun 2001 B1
6269270 Boveja Jul 2001 B1
6272379 Fischell et al. Aug 2001 B1
6304775 Iasemidis et al. Oct 2001 B1
6324421 Stadler et al. Nov 2001 B1
6337997 Rise Jan 2002 B1
6339725 Naritoku et al. Jan 2002 B1
6341236 Osorio et al. Jan 2002 B1
6356784 Lozano et al. Mar 2002 B1
6356788 Boveja Mar 2002 B2
6366813 DiLorenzo Apr 2002 B1
6366814 Boveja et al. Apr 2002 B1
6374140 Rise Apr 2002 B1
6397100 Stadler et al. May 2002 B2
6427086 Fischell et al. Jul 2002 B1
6429217 Puskas Aug 2002 B1
6449512 Boveja Sep 2002 B1
6459936 Fischell et al. Oct 2002 B2
6463328 John Oct 2002 B1
6466822 Pless Oct 2002 B1
6473639 Fischell et al. Oct 2002 B1
6473644 Terry, Jr. et al. Oct 2002 B1
6477418 Plicchi et al. Nov 2002 B2
6480743 Kirkpatrick et al. Nov 2002 B1
6484132 Hively et al. Nov 2002 B1
6501983 Natarajan et al. Dec 2002 B1
6505074 Boveja et al. Jan 2003 B2
6532388 Hill et al. Mar 2003 B1
6542774 Hill et al. Apr 2003 B2
6549804 Osorio et al. Apr 2003 B1
6556868 Naritoku et al. Apr 2003 B2
6560486 Osorio et al. May 2003 B1
6564102 Boveja May 2003 B1
6587719 Barrett et al. Jul 2003 B1
6587727 Osorio et al. Jul 2003 B2
6594524 Esteller et al. Jul 2003 B2
6599250 Webb et al. Jul 2003 B2
6609025 Barrett et al. Aug 2003 B2
6610713 Tracey Aug 2003 B2
6611715 Boveja Aug 2003 B1
6615081 Boveja Sep 2003 B1
6615085 Boveja Sep 2003 B1
6622038 Barrett et al. Sep 2003 B2
6622041 Terry, Jr. et al. Sep 2003 B2
6622047 Barrett et al. Sep 2003 B2
6628985 Sweeney et al. Sep 2003 B2
6628987 Hill et al. Sep 2003 B1
6647296 Fischell et al. Nov 2003 B2
6656125 Misczynski et al. Dec 2003 B2
6656960 Puskas Dec 2003 B2
6668191 Boveja Dec 2003 B1
6671555 Gielen et al. Dec 2003 B2
6671556 Osorio et al. Dec 2003 B2
6684105 Cohen et al. Jan 2004 B2
6721603 Zabara et al. Apr 2004 B2
6735474 Loeb et al. May 2004 B1
6738671 Christophersom et al. May 2004 B2
6760626 Boveja Jul 2004 B1
6768969 Nikitin et al. Jul 2004 B1
6788975 Whitehurst et al. Sep 2004 B1
6793670 Osorio et al. Sep 2004 B2
6819953 Yonce et al. Nov 2004 B2
6819956 DiLorenzo Nov 2004 B2
6832114 Whitehurst et al. Dec 2004 B1
6836685 Fitz Dec 2004 B1
6885888 Rezai Apr 2005 B2
6904390 Nikitin et al. Jun 2005 B2
6920357 Osorio et al. Jul 2005 B2
6934580 Osorio et al. Aug 2005 B1
6934585 Schloss Aug 2005 B1
6944501 Pless Sep 2005 B1
6957107 Rogers Oct 2005 B2
6961618 Osorio et al. Nov 2005 B2
6985771 Fischell et al. Jan 2006 B2
6990377 Gliner et al. Jan 2006 B2
7006859 Osorio et al. Feb 2006 B1
7006872 Gielen et al. Feb 2006 B2
7010351 Firlik et al. Mar 2006 B2
7024247 Gliner et al. Apr 2006 B2
7054792 Frei et al. May 2006 B2
7058453 Nelson et al. Jun 2006 B2
7076288 Skinner Jul 2006 B2
7079977 Osorio et al. Jul 2006 B2
7134996 Bardy Nov 2006 B2
7139677 Hively et al. Nov 2006 B2
7146211 Frei et al. Dec 2006 B2
7146217 Firlik et al. Dec 2006 B2
7146218 Esteller et al. Dec 2006 B2
7149572 Frei et al. Dec 2006 B2
7164941 Misczynski et al. Jan 2007 B2
7167750 Knudson et al. Jan 2007 B2
7174206 Frei et al. Feb 2007 B2
7177678 Osorio et al. Feb 2007 B1
7188053 Nikitin et al. Mar 2007 B2
7204833 Osorio et al. Apr 2007 B1
7209786 Brockway et al. Apr 2007 B2
7209787 DiLorenzo Apr 2007 B2
7221981 Gliner May 2007 B2
7228167 Kara et al. Jun 2007 B2
7231254 DiLorenzo Jun 2007 B2
7236830 Gliner Jun 2007 B2
7236831 Firlik et al. Jun 2007 B2
7242983 Frei et al. Jul 2007 B2
7242984 DiLorenzo Jul 2007 B2
7254439 Misczynski et al. Aug 2007 B2
7263467 Sackellares et al. Aug 2007 B2
7277758 DiLorenzo Oct 2007 B2
7280867 Frei et al. Oct 2007 B2
7282030 Frei et al. Oct 2007 B2
7289844 Misczynski et al. Oct 2007 B2
7292890 Whitehurst et al. Nov 2007 B2
7295881 Cohen et al. Nov 2007 B2
7299096 Balzer et al. Nov 2007 B2
7302298 Lowry et al. Nov 2007 B2
7305268 Gliner et al. Dec 2007 B2
7321837 Osorio et al. Jan 2008 B2
7324850 Persen et al. Jan 2008 B2
7324851 DiLorenzo Jan 2008 B1
7346391 Osorio et al. Mar 2008 B1
7353063 Simms, Jr. Apr 2008 B2
7353064 Gliner et al. Apr 2008 B2
7373199 Sackellares et al. May 2008 B2
7389144 Osorio et al. Jun 2008 B1
7401008 Frei et al. Jul 2008 B2
7403820 DiLorenzo Jul 2008 B2
7433732 Carney et al. Oct 2008 B1
20020072782 Osorio et al. Jun 2002 A1
20020099417 Naritoku et al. Jul 2002 A1
20020103512 Echauz et al. Aug 2002 A1
20020116030 Rezai Aug 2002 A1
20020151939 Rezai Oct 2002 A1
20020188214 Misczynski et al. Dec 2002 A1
20030074032 Gliner Apr 2003 A1
20030083716 Nicolelis et al. May 2003 A1
20030083726 Zeijlemaker et al. May 2003 A1
20030125786 Gliner et al. Jul 2003 A1
20030130706 Sheffield et al. Jul 2003 A1
20030144829 Geatz et al. Jul 2003 A1
20030181954 Rezai Sep 2003 A1
20030181958 Dobak Sep 2003 A1
20030208212 Cigaina Nov 2003 A1
20030210147 Humbard Nov 2003 A1
20030212440 Boveja Nov 2003 A1
20030236558 Whitehurst et al. Dec 2003 A1
20040006278 Webb et al. Jan 2004 A1
20040088024 Firlik et al. May 2004 A1
20040122484 Hatlestad et al. Jun 2004 A1
20040122485 Stahmann et al. Jun 2004 A1
20040133119 Osorio et al. Jul 2004 A1
20040138516 Osorio et al. Jul 2004 A1
20040138517 Osorio et al. Jul 2004 A1
20040138647 Osorio et al. Jul 2004 A1
20040138711 Osorio et al. Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040153129 Pless et al. Aug 2004 A1
20040158119 Osorio et al. Aug 2004 A1
20040158165 Yonce et al. Aug 2004 A1
20040167580 Mann et al. Aug 2004 A1
20040172085 Knudson et al. Sep 2004 A1
20040172091 Rezai Sep 2004 A1
20040172094 Cohen et al. Sep 2004 A1
20040176812 Knudson et al. Sep 2004 A1
20040176831 Gliner et al. Sep 2004 A1
20040199212 Fischell et al. Oct 2004 A1
20040249302 Donoghue et al. Dec 2004 A1
20040249416 Yun et al. Dec 2004 A1
20050004621 Boveja et al. Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050021092 Yun et al. Jan 2005 A1
20050021103 DiLorenzo Jan 2005 A1
20050021104 DiLorenzo Jan 2005 A1
20050021105 Firlik et al. Jan 2005 A1
20050021106 Firlik et al. Jan 2005 A1
20050021107 Firlik et al. Jan 2005 A1
20050021118 Genau et al. Jan 2005 A1
20050027284 Lozano et al. Feb 2005 A1
20050033378 Sheffield et al. Feb 2005 A1
20050033379 Lozano et al. Feb 2005 A1
20050038484 Knudson et al. Feb 2005 A1
20050049515 Misczynski et al. Mar 2005 A1
20050049655 Boveja et al. Mar 2005 A1
20050065562 Rezai Mar 2005 A1
20050065573 Rezai Mar 2005 A1
20050065574 Rezai Mar 2005 A1
20050065575 Dobak Mar 2005 A1
20050070971 Fowler et al. Mar 2005 A1
20050075701 Shafer Apr 2005 A1
20050075702 Shafer Apr 2005 A1
20050101873 Misczynski et al. May 2005 A1
20050119703 DiLorenzo Jun 2005 A1
20050124901 Misczynski et al. Jun 2005 A1
20050131467 Boveja et al. Jun 2005 A1
20050131485 Knudson et al. Jun 2005 A1
20050131486 Boveja et al. Jun 2005 A1
20050131493 Boveja et al. Jun 2005 A1
20050143786 Boveja et al. Jun 2005 A1
20050148893 Misczynski et al. Jul 2005 A1
20050148894 Misczynski et al. Jul 2005 A1
20050148895 Misczynski et al. Jul 2005 A1
20050153885 Yun et al. Jul 2005 A1
20050154425 Boveja et al. Jul 2005 A1
20050154426 Boveja et al. Jul 2005 A1
20050165458 Boveja et al. Jul 2005 A1
20050187590 Boveja et al. Aug 2005 A1
20050192644 Boveja et al. Sep 2005 A1
20050197590 Osorio et al. Sep 2005 A1
20050245971 Brockway et al. Nov 2005 A1
20050261542 Riehl Nov 2005 A1
20050277998 Tracey et al. Dec 2005 A1
20050283200 Rezai et al. Dec 2005 A1
20050283201 Machado et al. Dec 2005 A1
20050288600 Zhang et al. Dec 2005 A1
20050288760 Machado et al. Dec 2005 A1
20060009815 Boveja Jan 2006 A1
20060074450 Boveja Apr 2006 A1
20060079936 Boveja Apr 2006 A1
20060094971 Drew May 2006 A1
20060095081 Zhou et al. May 2006 A1
20060106430 Fowler et al. May 2006 A1
20060135877 Giftakis et al. Jun 2006 A1
20060135881 Giftakis et al. Jun 2006 A1
20060155495 Osorio et al. Jul 2006 A1
20060167497 Armstrong et al. Jul 2006 A1
20060173493 Armstrong et al. Aug 2006 A1
20060173522 Osorio Aug 2006 A1
20060190056 Fowler et al. Aug 2006 A1
20060195163 KenKnight et al. Aug 2006 A1
20060200206 Firlik et al. Sep 2006 A1
20060212091 Lozano et al. Sep 2006 A1
20060224067 Giftakis et al. Oct 2006 A1
20060224191 DiLorenzo Oct 2006 A1
20060241697 Libbus et al. Oct 2006 A1
20060241725 Libbus et al. Oct 2006 A1
20060293720 DiLorenzo Dec 2006 A1
20070027486 Armstrong Feb 2007 A1
20070027497 Parnis Feb 2007 A1
20070027498 Maschino et al. Feb 2007 A1
20070027500 Maschino et al. Feb 2007 A1
20070032834 Gliner et al. Feb 2007 A1
20070043392 Gliner et al. Feb 2007 A1
20070055320 Weinand Mar 2007 A1
20070073150 Gopalsami et al. Mar 2007 A1
20070073355 DiLorenzo Mar 2007 A1
20070088403 Wyler et al. Apr 2007 A1
20070100278 Frei et al. May 2007 A1
20070100392 Maschino et al. May 2007 A1
20070142862 DiLorenzo Jun 2007 A1
20070142873 Esteller et al. Jun 2007 A1
20070150024 Leyde et al. Jun 2007 A1
20070150025 DiLorenzo et al. Jun 2007 A1
20070161919 DiLorenzo Jul 2007 A1
20070162086 DiLorenzo Jul 2007 A1
20070167991 DiLorenzo Jul 2007 A1
20070173901 Reeve Jul 2007 A1
20070173902 Maschino et al. Jul 2007 A1
20070179534 Firlik et al. Aug 2007 A1
20070179557 Maschino et al. Aug 2007 A1
20070179558 Gliner et al. Aug 2007 A1
20070208212 DiLorenzo Sep 2007 A1
20070213785 Osorio et al. Sep 2007 A1
20070233192 Craig Oct 2007 A1
20070239210 Libbus et al. Oct 2007 A1
20070244407 Osorio Oct 2007 A1
20070249953 Frei et al. Oct 2007 A1
20070249954 Virag et al. Oct 2007 A1
20070255147 Drew et al. Nov 2007 A1
20070255155 Drew et al. Nov 2007 A1
20070260147 Giftakis et al. Nov 2007 A1
20070260289 Giftakis et al. Nov 2007 A1
20070265536 Giftakis et al. Nov 2007 A1
20070272260 Nikitin et al. Nov 2007 A1
20070282177 Pilz Dec 2007 A1
20080033503 Fowler et al. Feb 2008 A1
20080033508 Frei et al. Feb 2008 A1
20080046035 Fowler et al. Feb 2008 A1
20080064934 Frei et al. Mar 2008 A1
20080071323 Lowry et al. Mar 2008 A1
20080077028 Schaldach et al. Mar 2008 A1
20080103548 Fowler et al. May 2008 A1
20080114417 Leyde May 2008 A1
20080119900 DiLorenzo May 2008 A1
20080125820 Stahmann et al. May 2008 A1
20080139870 Gliner et al. Jun 2008 A1
20080146959 Sheffield et al. Jun 2008 A1
20080161712 Leyde Jul 2008 A1
20080161713 Leyde et al. Jul 2008 A1
20080161879 Firlik et al. Jul 2008 A1
20080161880 Firlik et al. Jul 2008 A1
20080161881 Firlik et al. Jul 2008 A1
20080161882 Firlik et al. Jul 2008 A1
20080183096 Snyder et al. Jul 2008 A1
20080183097 Leyde et al. Jul 2008 A1
Foreign Referenced Citations (18)
Number Date Country
1145736 Oct 2001 EP
1486232 Dec 2004 EP
2026870 Feb 1980 GB
2079610 Jan 1982 GB
2000064336 Nov 2000 WO
2004036377 Apr 2004 WO
2005007120 Jan 2005 WO
2005053788 Jun 2005 WO
2005067599 Jul 2005 WO
2006050144 May 2006 WO
2006122148 Nov 2006 WO
2007066343 Jun 2007 WO
2007072425 Jun 2007 WO
2007124126 Nov 2007 WO
2007124190 Nov 2007 WO
2007124192 Nov 2007 WO
2007142523 Dec 2007 WO
2008045597 Apr 2008 WO
Non-Patent Literature Citations (55)
Entry
Bachman, D.,S. et al.; “Effects of Vagal Volleys and Serotonin on Units of Cingulate Cortex in Monkeys;” Brain Research , vol. 130 (1977). pp. 253-269.
Baevskii, R.M. “Analysis of Heart Rate Variability in Space Medicine;” Human Physiology, vol. 28, No. 2, (2002); pp. 202-213.
Baevsky, R.M., et al.; “Autonomic Cardiovascular and Respiratory Control During Prolonged Spaceflights Aboard the International Space Station;”J. Applied Physiological, vol. 103, (2007) pp. 156-161.
Boon, P., et al.; “Vagus Nerve Stimulation for Epilepsy, Clinical Efficacy of Programmed and Magnet Stimulation;” (2001); pp. 93-98.
Boon, Paul, et al.; “Programmed and Magnet-Induced Vagus Nerve Stimulation for Refractory Epilepsy;”Journal of Clinical Neurophysiology vol. 18 No. 5; (2001); pp. 402-407.
Borovikova, L.V., et al.; “Vagus Nerve Stimulation Attenuates the Systemic Inflammatory Response to Endotoxin;” Letters to Nature; vol. 405; (May 2000); pp. 458-462.
Brack, Kieran E., et al.; “Interaction Between Direct Sympathetic and Vagus Nerve Stimulation on Heart Rate in the Isolated Rabbit Heart;”Experimental Physiology vol. 89, No. 1; pp. 128-139.
Chakravarthy, N., et al.; “Controlling Synchronization in a Neuron-Level Population Model;” International Journal of Neural Systems, vol. 17, No. 2 (2007) pp. 123-138.
Clark, K.B., et al.; “Posttraining Electrical Stimulation of Vagal Afferents with Concomitant Vagal Efferent Inactivation Enhances Memory Storage Processes in the Rat;” Neurobiology of Learning and Memory, vol. 70, 364-373 (1998) Art. No. NL983863.
Digenarro, Giancarlo et al., “Ictal Heart Rate Increase Precedes EEG Discharge in Drug-Resistant Mesial Temporal Lobe Seizures,” Clinical Neurophysiology, No. 115, 2004, pp. 1169-1177.
Frei, M.G., et al.; “Left Vagus Nerve Stimulation with the Neurocybernetic Prosthesis Has Complex Effects on Heart Rate and on Its Variability in Humans:” Epilepsia, vol. 42, No. 8 (2001); pp. 1007-1016.
George, M.S., et al.; “Vagus Nerve Stimulation: A New Tool for Brain Research and Therapy;”Society of Biological Psychiatry vol. 47 (2000) pp. 287-295.
“Heart Rate Variability—Standards of Measurement, Physiological Interpretation, and Clinical Use” Circulation—Electrophysiology vol. 93, No. 5; http://circ.ahajournals.orgicgi/content-nwifull/93/5/1043/F3.
Henry, Thomas R.; “Therapeutic Mechanisms of Vague Name Stimulation;”. Neurology, vol. 59 (Supp 4) (Sep. 2002), pp. S3-S14.
Hallowitz et al., “Effects of Vagal Volleys on Units of Intralaminar and Juxtalaminar Thalamic Nuclei in Monkeys;” Brain Research, vol. 130 (1977), pp. 271-286.
Iasemidis; L.D., et al.; “Dynamical Resetting of the Human Brain at Epilepctic Seizures: Application of Nonlinear Dynamics and Global Optimization Techniques;” IEEE Transactions on Biomedical Engineering, vol. 51, No. 3 (Mar. 2004); pp. 493-50.
Iasemidis; L.D., et al.; “Spatiotemporal Transition to Epileptic Seizures: A Nonlinear Dynamical Analysis of Scalp and Intracranial EEG Recordings;” Spatiotemporal Models in Biological and Artificial Systems; F.L. Silva et al. (Eds.) IOS Press, 1997; pp. 81-88.
Iasemidis, L.D.; “Epileptic Seizure Prediction and Control” IEEE Transactions on Biomedical Engineering, vol. 50, No. 5 (May 2003); pp. 549-558.
Kautzner, J., et al.; “Utility of Short-Term Heart Rate Variability for Prediction of Sudden Cardiac Death After Acute Myocardial Infarction” Acta Univ. Palacki. Olomuc., Fac. Med., vol. 141 (1998) pp. 69-73.
Koenig, S.A., et al.; “Vagus Nerve Stimulation Improves Severely Impaired Heart Rate Variability in a Patient with Lennox-Gastaut-Syndrome” Seizure (2007) Article in Press—Yseiz-1305; pp. 1-4.
Koo, B., “EEG Changes With Vagus Nerve Stimulation” Journal of Clinical Neurophysiology, vol. 18 No. 5 (Sep. 2001); pp. 434-441.
Krittayaphong, M.D., et al.; “Heart Rate Variability in Patients with Coronary Artery Disease: Differences in Patients with Higher and Lower Depression Scores” Psychosomatic Medicine vol. 59 (1997) pp. 231-235.
Leutmezer, F., et al.; “Electrocardiographic Changes at the Onset of Epileptic Seizures;” Epilepsia, vol. 44, No. 3; (2003); pp. 348-354.
Lewis, M.E., et al.; “Vagus Nerve Stimulation Decreases Left Ventricular Contractility in Vivo in the Human and Pig Heart” The Journal of Physiology vol. 534, No. 2, (2001) pp. 547-552.
Li, M., et al.; “Vagal Nerve Stimulation Markedly Improves Long-Term Survival After Chronic Heart Failure in Rats;” Circulation (Jan. 2004) pp. 120-124.
Licht, C.M.M.; Association Between Major Depressive Disorder and Heart Rate Variability in the Netherlands Study of Depression and Anxiety (Nesda); Arch. Gen Psychiatry, vol. 65, No. 12 (Dec. 2008); pp. 1358-1367.
Lockard et al., “Feasibility and Safety of Vagal Stimulation in Monkey Model;” Epilepsia, vol. 31 (Supp. 2) (1990), pp. S20-S26.
Long, Teresa J. et al., “Effectiveness of Heart Rate Seizure Detection Compared to EEG in an Epilepsy MoitoringUnit (EMU),” abstract of AES Proceedings, Epilepsia, vol. 40, Suppl. 7, 1999, p. 174.
McClintock, P., “Can Noise Actually Boost Brain Power” Physics World Jul. 2002; pp. 20-21.
Mori, T., et al.; “Noise-Induced Entrainment and Stochastic Resonance in Human Brain Waves” Physical Review Letters vol. 88, No. 21 (2002); pp. 218101-1-218101-4.
Mormann, F., “Seizure prediction: the long and winding road,” Brain 130 (2007), 314-333.
Nouri, M.D.; “Epilepsy and the Autonomic Nervous System” emedicine (updated May 5, 2006); pp. 1-14; http://www.emedicine.com/neuro/topic658.htm.
O'Donovan, Cormac A. et al., “Computerized Seizure Detection Based on Heart Rate Changes,” abstract of AES Proceedings, Epilepsia, vol. 36, Suppl. 4, 1995, p. 7.
O'Regan, M.E., et al.; “Abnormalities in Cardiac and Respiratory Function Observed During Seizures in Childhood” Developmental Medicine & Child Neurlogy, vol. 47 (2005) pp. 4-9.
Osorio, Ivan et al., “An Introduction to Contingent (Closed-Loop) Brain Electrical Stimulation for Seizure Blockage, to Ultra-Short-Term Clinical Trials, and to Multidimensional Statistical Analysis of Therapeutic Efficacy,” Journal of Clinical Neurophysiology, vol. 18, No. 6, pp. 533-544, 2001.
Osorio, Ivan et al., “Automated Seizure Abaatement in Humans Using Electrical Stimulation,” Annals of Neurology, vol. 57, No. 2, pp. 258-268, 2005.
Pathwardhan, R.V., et al., Control of Refractory status epilepticus precipitated by anticonvulasnt withdrawal using left vagal nerve stimulation: a case report, Surgical Neurology 64 (2005) 170-73.
Poddubnaya, E.P., “Complex Estimation of Adaptation Abilities of the Organism in Children Using the Indices of Responsiveness of the Cardiovascular System and Characteristics of EEG” Neurophysiology vol. 38, No. 1 (2006); pp. 63-74.
Robinson, Stephen E et al., “Heart Rate Variability Changes As Predictor of Response to Vagal Nerve Stimulation Therapy for Epilepsy,” abstract of AES Proceedings,Epilepsia, vol. 40, Suppl. 7, 1999, p. 147.
Rugg-Gunn, F.J., et al.; “Cardiac Arrhythmias in Focal Epilepsy: a Prospective Long-Term Study” www.thelancet.com vol. 364 (2004) pp. 2212-2219.
Sajadieh, A., et al.; “Increased Heart Rate and Reduced Heart-Rte Variability are Associated with Subclinical Inflammation in Middle-Aged and Elderly Subjects with No Apparent Heart Disease” European Heart Journal vol. 25, (2004); pp. 363-370.
Schernthaner, C., et al.; “Autonomic Epilepsy—The Influence of Epileptic Discharges on Heart Rate and Rhythm” The Middle European Joural of Medicine vol. 111, No. 10 (1999) pp. 392-401.
Sunderam, Sridhar et al., “Vagal and Sciatic Nerve Stimulation Have Complex, Time-Dependent Effects on Chemically-Induced Seizures: A Controlled Study,” Brain Research, vol. 918, pp. 60-66, 2001.
Terry et al.; “The Implantable Neurocybernetic Prosthesis System”, Pacing and Clinical Electrophysiology, vol. 14, No. 1 (Jan. 1991), pp. 86-93.
Tubbs, R.S., et al.; “Left-Sided Vagus Nerve Stimulation Decreases Intracranial Pressure Without Resultant Bradycardia in the Pig: A Potential Therapeutic Modality for Humans” Child's Nervous System Original Paper; Springer-Verlag 2004.
Umetani, M.D., et al.; “Twenty-Four Hour Time Domain Heart Rate Variability and Heart Rate: Relations to Age and Gender Over Nince Decades” JACC vol. 31, No. 3; (Mar. 1998); pp. 593-601.
Van Elmpt, W.J.C., et al.; “A Model of Heart Rate Changes to Detect Seizures in Severe Epilepsy” Seizure vol. 15, (2006) pp. 366-375.
Vonck, K., et al. “The Mechanism of Action of Vagus Nerve Stimulation for Refractory Epilepsy—The Current Status”, Journal of Neurophysiology, vol. 18 No. 5 (2001), pp. 394-401.
Weil, Sabine et al, “Heart Rate Increase in Otherwise Sublinical Seizures Is Different in Temporal Versus Extratemporal Seizure Onset: Support for Temporal Lobe Automatic Influence,” Epileptic Disord., vol. 7, No. 3, Sep. 2005, pp. 199-204.
Woodbury, et al., “Vagal Stimulation Reduces the Severity of Maximal Electroshock Seizures in Intact Rats. Use of a Cuff Electrode for Stimulating and Recording”; Pacing and Clinical Electrophysiology, vol. 14 (Jan. 1991), pp. 94-107.
Zabara, J.; “Neuroinhibition of Xylaine Induced Emesis” Pharmacology & Toxicology, vol. 63 (1988) pp. 70-74.
Zabara, J. “Inhibition of Experimental Seizures in Canines by Repetivie Vagal Stimulation” Epilepsia vol. 33, No. 6 (1992); pp. 1005-1012.
Zabara, J., et al.; “Neural Control of Circulation I”The Physiologist, vol. 28 No. 4 (1985); 1 page.
Zabara, J., et al.; “Neuroinhibition in the Regulation of Emesis” Space Life Sciences, vol. 3 (1972) pp. 282-292.
Zijlmans, Maeike et al., “Heart Rate Changes and ECG Abnormalities During Epileptic Seizures: Prevalence and Definition of an Objective Clinical Sign,” Epilepsia, vol. 43, No. 8, 2002, pp. 847-854.
Provisional Applications (1)
Number Date Country
60525501 Nov 2003 US
Divisions (1)
Number Date Country
Parent 10997540 Nov 2004 US
Child 12315390 US