The present invention is generally directed to displaying text in a web page, and more particularly, to enabling the same relative font size to be displayed on different platforms as intended by the author of the web page.
An author of content in a web page initially selects the type and size of the font for displayed text. However, the functional differences in the operation of different types of platforms, (operating system and browser) make it difficult to display text in the intended font size across different platforms. In the past, different approaches have been employed to try to maintain consistent font sizes for the display of text in a web page on different platforms. However, these approaches can interfere with the operation of a browser control for adjusting font size and may not work in the same way on different types of platforms.
Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following drawings. In the drawings, like reference numerals refer to like parts throughout the various figures unless otherwise specified.
For a better understanding of the present invention, reference will be made to the following Detailed Description of the Invention, which is to be read in association with the accompanying drawings, wherein:
The present invention will be described more fully hereinafter with reference to the accompanying drawings, which form a part hereof, and which show, by way of illustration, specific exemplary embodiments by which the invention may be practiced. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Among other things, the present invention may be embodied as methods or devices. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. The following detailed description is, therefore, not to be taken in a limiting sense.
Throughout the specification, the term “platform” means at least in part to the type of operating system and browser application that are employed to display a web page.
Throughout the specification, the term “web page” or “webpage” means at least a markup language document that can be accessed at a uniform resource locator (URL), web address, and the like over a network. The mark up language can include, but is not limited to, HTML, XML, DHTML, VHTML, and the like. A web page can be displayed with different applications, including, but not limited to, a browser, editor, viewer, and the like.
Throughout the specification, the term “connected” means a direct connection between the things that are connected, without any intermediary devices or components. The term “coupled,” means a direct connection between the things that are connected, or an indirect connection through one or more either passive or active intermediary devices or components. The meaning of “a,” “an,” and “the” include plural references. The meaning of “in” includes “in” and “on.”
Briefly stated, the invention is directed to a system and method for automatically enabling the font size for text in a web page to be maintained as intended by the author across different types of platforms and without disabling the native browser control for adjusting font sizes. If a web page that employs the invention is selected for display, the type of platform, i.e., particular operating system and browser application, for displaying the web page is automatically determined. In different embodiments, this determination can be performed with a script, applet, program, application, and the like. Once the platform is determined, the invention automatically provides the platform with predetermined small, big, and default font sizes that enable the display of the text at substantially the same size(s) as intended by the author of the web page.
Out of band research is performed to determine a hierarchical ranking of the most to least used platforms to display a web page that employs the invention. At least in part based on this ranking, the invention can quickly determine if one of the more popular platforms is employed to display a web page that uses the invention. Also, out of band, research is performed for the different platforms to predetermine font sizes for small, big and default text that will enable the display of text as intended by the author of the web page at a substantially similar size on each platform. Once the type of platform is determined, the predetermined font sizes for that particular type of platform are provided for displaying text in a web page that employs the invention.
Also, since predetermined font sizes are provided to each platform for displaying text in the web page, the functionality of any font size controls native to that particular platform's browser will remain substantially operative. Additionally, a default font, colors, and the like, can be provided to the particular platform used to display a web page the employs the invention.
In one embodiment, the relative small, default, and big, font sizes are provided as HTML tags, which enables their sematic meaning to be preserved.
Illustrative Operating Environment
As such, it will be appreciated that the Internet itself may be formed from a vast number of such interconnected networks, computers, and routers. Generally, the term “Internet” refers to the worldwide collection of networks, gateways, routers, and computers that use Transmission Control Protocol/Internet Protocol (“TCP/IP”) and other packet based protocols to communicate with one another. An embodiment of the invention may be practiced over the Internet without departing from the spirit or scope of the invention.
The media used to transmit information in communication links as described above illustrates one type of computer-readable media, namely communication media. Generally, computer-readable media includes any media that can be accessed by a computing device. Computer-readable media may include computer storage media, communication media, or any combination thereof.
Communication media typically embodies computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, communication media includes wired media such as twisted pair, coaxial cable, fiber optics, wave guides, and other wired media and wireless media such as acoustic, RF, infrared, and other wireless media.
Those of ordinary skill in the art will appreciate that the server 200 may include many more components than those shown in
Server 200 also includes processing unit 212, video display adapter 214, and a mass memory, all connected via bus 222. The mass memory generally includes random access memory (“RAM”) 216, read-only memory (“ROM”) 232, and one or more permanent mass storage devices, such as hard disk drive 228, a tape drive (not shown), optical drive 226, such as a CD-ROM/DVD-ROM drive, and/or a floppy disk drive (not shown). The mass memory stores operating system 220 for controlling the operation of server 200. Basic input/output system (“BIOS”) 218 is also provided for controlling the low-level operation of server 200.
The mass memory as described above illustrates another type of computer-readable media, namely computer storage media. Computer storage media may include volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer-readable instructions, data structures, program modules or other data. Examples of computer storage media include RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computing device.
The mass memory may also store program code and data for providing a web site. More specifically, the mass memory may store applications including WWW server application 230, HTTP server 231, and programs 234. WWW server application 230 includes computer executable instructions which, when executed by server 200, generate browser displays, including performing the logic described above. Server 200 may include a JAVA virtual machine, an SMTP handler application for transmitting and receiving email, an HTTP handler application for receiving and handing HTTP requests, and an HTTPS handler application for handling secure connections. The HTTPS handler application may also be used for communication with an external security application to send and receive sensitive information, such as email, in a secure fashion.
Server 200 also comprises input/output interface 224 for communicating with external devices, such as a mouse, keyboard, scanner, or other input devices not shown in
Client computer 300 also includes BIOS 326, processing unit 306, video display adapter 308, and memory. The memory generally includes RAM 310, ROM 304 and a permanent mass storage device, such as a disk drive. The memory stores operating system 312 and programs 334 for controlling the operation of client computer 300. The memory also includes email client 315 for accessing email over a network, and browser application 314 for accessing web sites and sponsored search servers. It will be appreciated that these components may be stored on a computer-readable medium and loaded into memory of client computer 300 using a drive mechanism associated with the computer-readable medium, such as a floppy disk drive (not shown), optical drive 316, such as a CD-ROM/DVD-ROM drive, and/or hard disk drive 318. Input/output interface 320 may also be provided for receiving input from a mouse, keyboard, or other input device. The memory, network interface unit 302, video display adapter 308, and input/output interface 320 are all connected to processing unit 306 via bus 322. Other peripherals may also be connected to processing unit 306 in a similar manner.
Methods of Operation
Next, the process flows to block 508 where a default font and at least one color such as for the background are provided to the platform for displaying the web page. At block 510, a control that is native to the determined platform is enabled for adjusting the font sizes displayed by the web page. Moving to block 512, the process provides the contents of the web page to the determined platform for subsequent display. The process advances to a return block and returns to processing other actions.
The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
This application claims the benefit of U.S. Provisional Application Ser. No. 60/486,698 filed on Jul. 11, 2003, the benefit of the earlier filing date of which is hereby claimed under 35 U.S.C. § 119 (e) and further incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5533174 | Flowers et al. | Jul 1996 | A |
5598520 | Harel et al. | Jan 1997 | A |
5805153 | Nielsen | Sep 1998 | A |
5815160 | Kikuchi et al. | Sep 1998 | A |
5920880 | Dowdy et al. | Jul 1999 | A |
6073147 | Chan et al. | Jun 2000 | A |
6167441 | Himmel | Dec 2000 | A |
6356268 | Beaman et al. | Mar 2002 | B1 |
6519630 | Hanawa | Feb 2003 | B1 |
6665842 | Nielsen | Dec 2003 | B2 |
6700589 | Canelones et al. | Mar 2004 | B1 |
7210099 | Rohrabaugh et al. | Apr 2007 | B2 |
7222306 | Kaasila et al. | May 2007 | B2 |
7287220 | Kaasila et al. | Oct 2007 | B2 |
7385606 | Everett et al. | Jun 2008 | B2 |
7386790 | Hino | Jun 2008 | B2 |
7461353 | Rohrabaugh et al. | Dec 2008 | B2 |
7502867 | Mitchell et al. | Mar 2009 | B2 |
7555706 | Chapman et al. | Jun 2009 | B2 |
7565359 | Nazem et al. | Jul 2009 | B2 |
20040177323 | Kaasila et al. | Sep 2004 | A1 |
20040183817 | Kaasila | Sep 2004 | A1 |
20050131887 | Rohrabaugh et al. | Jun 2005 | A1 |
20070216687 | Kaasila et al. | Sep 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20050086599 A1 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
60486698 | Jul 2003 | US |