The invention relates to a method and apparatus for making a stepped end on a tube of flexible material, wherein the stepped end is adapted to be closed to provide a closed end on a bag.
U.S. Pat. No. 6,800,051 B2 and U.S. Pat. No. 4,008,850 and US 2009/0159192 A1, respectively, disclose a method for making a bag having a staggered end also known as a stepped end. US 2009/0159192 A1 discloses a perforation line in a web of tubular film, along which perforation line a segment is severed from the web of tubular film to form a staggered end. The perforation line is formed in a flat web of film, after which the tubular film is formed by folding side parts so as to overlap, and then simultaneously inserting the side folds and affixing a longitudinal center weld. Scoring apparatus are disclosed in U.S. Pat. No. 4,273,550 and U.S. Pat. No. 5,840,002 to make creases in the film for folding the film.
US 2010/0029455 A1 discloses a fabric having a layer of woven plastic bands and at least one additional material layer, and the cutting capacity of a laser can be adjusted to a thickness of the material layers to provide a perforation line.
A perforation line in a flat web of film is unsuited for a tube. Instead of manufacturing a flat web of film having a perforation line, a continuous tube without a perforation line can be manufactured at a high production speed, followed by cutting the tube to a desired length at the high production speed. The tube can be seamless. Alternatively, the tube can have one or more longitudinal seams as disclosed by Coating Excellence LLC in US 20080187695 A1, U.S. application Ser. No. 12/019,407, filed Jan. 24, 2008. Then it would be desirable to manufacture a stepped end on the tube, wherein the stepped end is adapted to be closed to make a bag. However, a tube does not encompass a flat web of film. It follows, it would be desirable to manufacture a staggered end, also known as a stepped end, on a tube, in order to take advantage of high speed manufacture of the tube.
The invention relates to a method and apparatus for making a stepped end on a tube of flexible material, wherein the stepped end is adapted to be closed to provide a closed end on a bag.
A method of making a stepped end on a tube of flexible material includes slitting the tube adjacent an open end of the tube to provide first slits beside a first panel of the tube and to provide second slits beside a second panel of the tube; trimming the first panel to a first shortened length adjacent to the open end of the tube while the first slits separate the first panel from a remainder of the tube, wherein the remainder of the tube comprises side gussets and the second panel; trimming each of side gussets to a second shortened length adjacent to the open end of the tube while the second slits separate each of the side gussets from the second panel, wherein the second shortened length is longer than the first panel and shorter than the second panel; and applying adhesive material on the tube above and below a fold line across the tube, wherein the tube is adapted to be folded along the fold line, and the adhesive material is adapted to form an adhesive to adhesive seal above and below the fold line while the tube is folded to provide a closed stepped end for a bag.
An apparatus for making a stepped end on a tube of flexible material includes a tube slitting station having a slitting tool with double edge slitting blades penetrating through the tube to provide respective slits beside a first panel and beside a second panel, respectively; a first trimming station trimming a first panel of the tube to a first shortened length, a second trimming station trimming the side gussets to a second length, wherein the second length is longer than the first shortened length of the first panel; and an adhesive applying station applying adhesive on the tube above and below a fold line across the tube, wherein the tube is adapted to be folded along the fold line, and the adhesive material is adapted to form an adhesive to adhesive seal above and below the fold line while the tube is folded to provide a closed stepped end for a bag.
Embodiments of the invention will now be described by way of example with reference to the accompanying drawings.
In
An embodiment of the tube 100 is formed as a laminated tube 100 that has a woven inner layer 102, a portion of which is illustrated to comprise a tight basket weave of thin, flexible, elongated strips of a polymeric material, for example, polypropylene. The inner layer 102 advantageously comprises a woven seamless tube, that is highly flexible due to the weave. The laminated tube 100 has at least one outer layer 104 of a printable nonwoven polymeric material, for example, polypropylene film that is capable of being printed with graphics using water based pigments or solvent based pigments.
In an embodiment of the invention, the outer layer 104 is reverse printed on an inside surface of a first polypropylene film. In another embodiment, a second layer of polypropylene film is laminated to the first polypropylene film, with the printed surface between the first and second layers of polypropylene film. Alternatively, the second layer of polypropylene film can be printed with the graphics.
After printing, the outer layer 104, and each second layer of polypropylene film, if present, and the woven inner layer 102 are laminated, for example, by applying a solventless adhesive material or solvent based adhesive material between the layers to be laminated, and applying heat and pressure to laminate each outer layer 104, second layer and the inner layer 102 and form the continuous laminated tube 100. The woven inner layer 102 can be seamless tubular, while the outer layer 104 and each second layer of polypropylene film can overlap and form a lengthwise closed seam, that is adhesively sealed shut to form a seamed tubular construction, further described by US 20080187695 A1, U.S. application Ser. No. 12/019,407, filed Jan. 24, 2008.
Alternative embodiments of the tube 100 are fabricated with one or more nonwoven polypropylene films to provide a nonwoven inner layer 102 and a nonwoven outer layer 104.
Further embodiments of the tube 100 comprise, a seamless blown tube, a seamless woven tube and a tube manufactured from flat sheets laminated together to form a seamed tubular construction. Embodiments of the tube comprise, a seamless blown tube, a seamless woven tube and a tube manufactured from flat sheets laminated together to form a seamed tubular construction. Further, a particular embodiment of a tube includes a seamless woven tube of polypropylene or other polyolefin material, which is desired for its tensile strength in order to package and store heavy contents in granular form, such as, dog food, cereals, grains and construction materials.
First, the tube 100 in
An apparatus and method will now be described for making the stepped end 122 of the tube 100. Advantageously the tube 100 eliminates a perforated line to make the stepped end. Further, advantageously the apparatus and method applies to any embodiment of a tube of flexible polymeric material intended for making a bag, including, but not limited to an embodiment of the tube 100 described in
In
Then while the slitting tool 404 is inside the tube 100, the tool slitting 404 is indexed or displaced, relative to the tube 100, in a forward direction indicated by the forward pointing arrow 412. Thereby, the slitting tool 404 is indexed or displaced to a stationary second tool position while the slitting blades 406, 408 have forward slitting edges 414, 416 that perform slitting through a first pair of the side edges 112, 114 of the first panel 106 and the second panel 108, respectively. The forward slitting edges 414, 416 serve to provide a first pair of forward respective slits 210, 302 beside the panels 106, 108.
The tube 100 is conveyed or displaced in a forward direction indicated by the arrow 418, provided that the slitting tool 404 is displaced in a forward direction 412 faster, relative to forward displacement of the tube 100, while the forward slitting edges 414, 416 perform slitting through a first pair of the side edges 112, 114 of the first panel 106 and the second panel 108, respectively. Alternatively, the tube 100 can be stationary while the slitting tool 404 is displaced in a forward direction 412 while the forward slitting edges 414, 416 perform slitting through a first pair of the side edges 112, 114 of the first panel 106 and the second panel 108, respectively.
Then, while the tube 100 is being conveyed in a forward direction 418, the slitting tool 404 while inside the tube 100, and is indexed in a reverse or rearward direction indicated by the rearward pointing arrow 420, to return to its first tool position while inside the tube 100. The slitting blades 406, 408 have rearward slitting edges 422, 424 that perform slitting through a second pair of the side edges 112, 114 of the first panel. 106 and the second panel 108, respectively. Thereby, the rearward slitting edges 422, 424 provide a second pair of the respective slits 302, 210 beside the panels 106, 108. Then the tube 100 continues in the forward direction 418, while the slitting tool 404 is being indexed in a rearward direction indicated by the rearward pointing arrow 426 to its home position shown in
Further,
The side gussets 110, 110 become longer than the first panel 106 adjacent to the open end 122 of the tube 100, and the side gussets 110, 110 become shorter than the second panel 108 adjacent to the open end 122 of the tube 100, which comprises a stepped end 122 of the tube 100
In
Further,
The adhesive-to-adhesive seal is formed by heating the adhesive material layer 600 below the fold line 206 to a melt flow temperature at which it attains a melt flow, adhesive state. The adhesive material layer 600 below the fold line 206 has a respective melt flow temperature of about 300° F. maximum to avoid heating the polymeric material of the tube 100 to its melt flow temperature above the 300° F. threshold temperature. The adhesive material corresponding to the adhesive layer 600 has a coating weight of at least 5-10 lb./ream on each of opposing surfaces to form an adhesive-to-adhesive seal between the opposing surfaces of about 10 lb./ream coating weight to about 20 lb./ream coating weight. The adhesive material layer 600 is activated to an adhesive state by applying heat at a heat activation temperature below the heat activation temperatures of standard or traditional hot melt adhesives or solvent based adhesives that can seal traditional paper and polymer laminated bags without damaging the paper layers, but which exceed the softening point temperature Tg of polymeric bags 100 fabricated without paper layers. The standard or traditional hot melt adhesives cannot be combined with polypropylene bags 100 because the temperatures needed to activate the adhesives are destructive to the PP material structure.
Polypropylene has a melting point temperature of about 160° C. (320° F.), as determined by differential scanning calorimetry (DSC). The softening point temperature of polypropylene is below its melting point temperature. Thus, a polypropylene tube 100 can be heated to a temperature below its softening point temperature without causing heat damage of the polypropylene material.
One suitable adhesive material for heat sealing polyolefin films of the tube 100 comprises a water based emulsion of triethylamine adhesive commercially available as AQUAGRIP® 19566F, manufactured by Bostik, Inc., 11320 Watertown Plank Road, Wauwatosa, Wis. 53226 USA. Another embodiment of a hot melt adhesive for heat sealing polyolefin films of the tube 100 comprises a hot melt adhesive H9463 available commercially from Bostik, Inc. Wauwatosa, Wis. 53226, USA. Another embodiment of a hot melt adhesive for heat sealing polyolefin films of the tube 100 comprises a hot melt adhesive H9477 Generation II of H9463, now or soon to be available commercially from Bostik, Inc., Wauwatosa, Wis. 53226, USA, wherein the adhesives per se form no part of the present invention separate from being a structural component of the tubes disclosed herein.
Another embodiment of a suitable adhesive material for heat sealing polyolefin films of the tube 100 comprises an aqueous based dispersion or emulsion as an opaque liquid or fluid of an ethylene copolymer or ethylene copolymers, butyl acetate and acetaldehyde, which is commercially available as the product name ROBOND™ HS 37-140 adhesive material manufactured by Rohm and Haas Company, 100 Independence Mall West, Philadelphia, Pa. 19106-2399 USA. Another embodiment of a suitable adhesive material for heat sealing polyolefin films of the tube 100 comprises an aqueous based dispersion or emulsion as an opaque liquid or fluid, including an ionomer dispersion in water, based upon Surlyn® ionomer resin, and which can be diluted or thickened or crosslinked for enhanced properties, and which is commercially available as the product name ADCOTE™ 37-220 Heat Seal Coating, manufactured by Rohm and Haas Company, 100 Independence Mall West, Philadelphia, Pa. 19106-2399 USA, wherein the adhesives per se form no part of the present invention separate from being a structural component of the tubes disclosed herein.
Another embodiment of a suitable adhesive material for heat sealing polyolefin films of the tube 100 comprises an aqueous based dispersion or emulsion as an opaque liquid or fluid, including water, acrylic polymer; polyester polyurethane resin, formaldehyde, ammonium hydroxide, alumina and further including ammonia as a combustion product, which is commercially available as the product name NWC 23526K (and NWC 23526KC) FDA WATER BASE HEAT SEAL FOR POLYWOVEN™ adhesive material, product code 728575, manufactured by ASHLAND Inc., P.O. Box 2219, Columbus, Ohio 43216, USA, wherein the adhesive per se forms no part of the present invention separate from being a structural component of the tubes disclosed herein.
Another embodiment of a suitable adhesive material for heat sealing polyolefin films of the tube 100 comprises a liquid state, acrylated epoxy based adhesive commercially available as the product name, VERSA-WELD™ 70-7879, adhesive material manufactured by Henkel Corporation, P.O. Box 6500; 10 Finderline Avenue, Bridgewater, N.J. 08807 USA, wherein the adhesive per se forms no part of the present invention separate from being a structural component of the tubes disclosed herein.
The embodiments of adhesive material 600 as a structural component of the bags includes 1.75 grams adhesive material per bag applied wet, solubilized in water, assuming an 18 inch wide bag and a 3 inches wide stripe of adhesive on the bag, which is equivalent to 0.6 grams per bag dry or about 10.6 lbs per ream dry weight coating. Once, the adhesive material 600 is applied, it must pass under a drying system to evaporate the water and dry the adhesive layer to a stable state impervious to water, water vapor and ambient temperatures.
The tube 100 is adapted to be closed and sealed at one end 122 to make a bag, according to a process described as follows, a heat source including, but not limited to heated air or a hot bar applies heat to activate the adhesive material 600 to its respective, heat-activatable adhesive state. While the adhesive material 600 is in an adhesive state, the source of heat is removed and the end 122 of the tube 100 is folded on the fold line 206, while the tube 100 is pinched closed to close and seal one end 122 of the tube 100 to make a bag with one closed end 122, while an opposite end 128 is open. According to another embodiment, the tube 100 is open at the end 122, and is closed and sealed at the opposite end 128, by any known means, for example, stitching or gluing. The foldable tube 100 is flattened by folding along its gusseted side panels 110 for shipping and handling, in preparation for shipment to a location where the tube 100 is opened at one end 122 and filled with contents. The adhesive material layer 600 is in its dry, solidified state during bag filling, and is moisture and water resistant, by which the adhesive material layer 600 avoids contamination of the bag contents. After the tube 100 has been filled with contents, the tube 100 is closed and sealed at the end 122, according to a process described as follows, a heat source including, but not limited to heated air or a hot bar applies heat to activate the adhesive material 600 to its respective, heat-activatable adhesive state. While the adhesive material 600 is in its adhesive state, the source of heat is removed and the end 122 of the tube 100 is folded on the fold line 206, while the tube 100 is pinched closed to hold the contents in the tube 100.
Further, with reference to
For purposes of illustration,
In
As disclosed by
As disclosed by
According to the following description, the tube 100 having the gusset slits 816, 816 is provided with a stepped end, wherein the stepped end is disclosed by
Then, the embodiment of the tube 100 having the gusset slits 816, 820 is conveyed from the second panel trimming station 604 to a gusset trimming station 900,
After formation of the double stepped end 122 of the tube 100, the tube 100 is flattened by inwardly folding the side gussets 110, 110. To form a crease along the fold line 206, the flattened tube 100 is conveyed through the scoring apparatus 700 of the apparatus 400, which provides a crease along the fold line 206 across the tube 100. Further,
The invention provides a method and a system for making an end 122 on a tube of flexible material into a steppedend 122, wherein the stepped end is adapted to be closed and sealed to make a bag. The invention is described in conjunction with a tube 100 having an open end 122 and an opposite end 128. A stepped end 122 according to the invention can be provided on either end 122 or 128. Stepped ends 122, 122 according to the invention can be provided on tube ends 122 and 128, respectively.
This description of the exemplary embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description, relative terms, such as “lower,” “upper,” “horizontal,” “vertical,”, “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description and do not require that the apparatus be constructed or operated in a particular orientation. Terms concerning attachments, coupling and the like, such as “connected” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.
Patents and patent applications referred to herein are hereby incorporated by reference in their entireties. Although the invention has been described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claims should be construed broadly, to include other variants and embodiments of the invention, which may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.
This application claims the benefit of U.S. Provisional Application No. 61/439,015 Filed Feb. 3, 2011 incorporated by reference in its entirety herein. Further, this application is a Continuation in Part application of U.S. application Ser. No. 13/016,096, filed Jan. 28, 2011 which is based on U.S. Provisional Application No. 61,326,746 filed Apr. 22, 2010 each incorporated by reference in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
2582586 | Schenck | Jan 1952 | A |
3990626 | Goodrich | Nov 1976 | A |
4498192 | Becker et al. | Feb 1985 | A |
4889523 | Sengewald | Dec 1989 | A |
4988332 | Mattle | Jan 1991 | A |
6367976 | Bannister | Apr 2002 | B1 |
7731425 | Lin et al. | Jun 2010 | B2 |
20080292223 | Bannister | Nov 2008 | A1 |
20110103721 | Sargin et al. | May 2011 | A1 |
20110230323 | Robinette et al. | Sep 2011 | A1 |
20130022295 | Shapiro et al. | Jan 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20120196731 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
61326746 | Apr 2010 | US | |
61439015 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13016096 | Jan 2011 | US |
Child | 13364473 | US |