The invention relates to medical devices and methods, and more particularly to such devices and methods for carrying out an interventional procedure.
Interventional pulmonology is a field within pulmonary medicine focused on the use of bronchoscopic, pleuroscopic and other techniques for the treatment of thoracic disorders such as tracheobronchial stenosis and pleural effusions associated with malignant tumors. A number of techniques, such as rigid bronchoscopic recanalization, balloon dilation, laser bronchoscopy, cryotherapy, electrocautery, brachytherapy, photodynamic therapy, valve placement, and stent placement are in therapeutic use for the management of airway stenosis.
A careful pretreatment evaluation is necessary to identify the source of the airway obstruction and to select the course of treatment. Pulmonary-function testing (PFT) and thoracic imaging techniques such as computed tomorgraphy (CT) have been used in the evaluation of a patient with suspected obstruction of the central airways, though bronchoscopy is considered to be the diagnostic gold standard. Follow-up includes assessment of treatment success (i.e. recanalization/resection rate, rate of repeated interventions), complications (i.e. stent migration, perforation of the airway, fistula formation), assessment of clinical symptoms (i.e. relief of dyspnea), and clinical outcome such as pulmonary function test results.
Body sounds are routinely used by physicians in the diagnosis of various disorders. A physician may place a stethoscope on a person's chest or back and monitor the patient's breathing in order to detect adventitious (i.e. abnormal or unexpected) lung sounds. The identification and classification of adventitious lung sounds often provides important information about pulmonary abnormalities.
U.S. Pat. No. 6,887,208 to Kushnir et al. provides a system and method for recording and analyzing sounds produced by the respiratory tract. Respiratory tract sounds are recorded at a plurality of locations over an individual's thorax and the recorded sounds are processed to produce an image of the respiratory tract. The processing involves determining from the recorded signals an average acoustic energy, at a plurality of locations over the thorax over a time interval from t1 to t2. The term “acoustic energy” at a location is used herein to refer to a parameter indicative of, or approximating, the product of the pressure and the mass propagation velocity at that location. The image may be used to analyze respiratory tract physiology and to detect pathological conditions. Additionally, a time interval can be divided into a plurality of sub-intervals, and an average acoustic energy determined at a plurality of locations over the thorax for two or more of the sub-intervals. An image of for each of these sub intervals may then be determined and displayed sequentially on a display monitor. This generates a movie showing dynamic changes occurring in the acoustic energy in the respiratory tract over the time interval.
In the following description and set of claims, two explicitly described, calculable, or measurable variables are considered equivalent to each other when the two variables are proportional to one another.
In its first aspect, the present invention provides a method for managing an interventional pulmonology procedure. As used herein, the term “interventional pulmonology procedure” refers to any interventional procedure that affects the flow of air in the respiratory tract during respiration. Such procedures include, for example, balloon dilation, laser bronchoscopy, cryotherapy, electrocautery, brachytherapy, photodynamic therapy, and stent placement and administering medication into target areas in the lungs.
In accordance with the invention, microphones are affixed to the body surface of an individual at a plurality of locations over the thorax. At one or more times prior to carrying out an interventional pulmonary procedure, signals indicative of respiratory tract sounds are recorded. The signals are analyzed in order to generate one or more images of the respiratory tract indicative of the airflow in the individual's respiratory tract before the procedure is carried out. At one or more times following the interventional procedure, signals indicative of respiratory tract sounds are recorded again. The signals are analyzed in order to generate one or more images of the respiratory tract indicative of the airflow in the individual's respiratory tract after the procedure has been carried out. Images obtained before and after the procedure are compared in order to determine whether a change in the airflow has occurred as a result of the intervention.
The system of the invention includes a plurality of N transducers (microphones) configured to be attached to an essentially planar region R of an individual's back or chest over the thorax. The transducers are typically embedded in a matrix that permits them to be affixed easily on the individual's skin. Such a matrix may typically be in the form of a vest or garment for facilitating affixing of the microphones on the skin over the thorax. As may be appreciated, different matrices may be used to accommodate individuals of different sizes, different ages, sexes, etc.
The system of the invention further comprises a display device for simultaneously displaying at least one image obtained before the interventional procedure and at least one image obtained after the procedure in order to allow a user to compare the images and determine whether a change in the respiratory tract airflow occurred following the procedure.
In a preferred embodiment, a first time interval before and procedure is carried out and a recent time interval after the procedure is carried out are each divided into a plurality of subintervals, and an image is produced for each subinterval. This generates a first sequence of images indicative of respiratory tract airflow prior to the procedure, and a second sequence of images indicative of airflow after the procedure. When the images in a sequence are displayed sequentially on the display device, the sequence is displayed as a movie of respiratory tract airflow over the time interval. Thus, in a most preferred embodiment, a movie of respiratory tract airflow is obtained before and after the interventional procedure, and the two movies are displayed simultaneously on the display device.
Positions in the region R are indicated by two-dimensional position vectors x=(x1,x2) in a two-dimensional coordinate system defined in the planar region R. The ith transducer, for i=1 to N, is fixed at a position xi in the region R and generates a signal, denoted herein by P(xi,t), indicative of pressure waves in the body arriving at xi.
Any known method for generating images of the respiratory tract from the P(xi,t), may be used in accordance with the invention. In a preferred embodiment, images of the respiratory tract are obtained as disclosed in U.S. Pat. No. 6,887,208 to Kushnir et al. This patent discloses a system and method for calculating an average acoustic energy in the region at a plurality of locations x in the region R over a time interval from t1 to t2, denoted herein by {tilde over (P)}(x,t1,t2), from the signals P(xi,t) and generating an image of the lungs from the {tilde over (P)}(x,t1,t2).
In one embodiment of the invention, an average acoustic energy over a time interval from t1 to t2 is obtained at a position of one of the microphones using the algebraic expression
where xi is the position of the microphone.
In a more preferred embodiment, an average acoustic energy {tilde over (P)}(xi,t1,t2) over a time interval from t1 to t2 is obtained at a plurality of positions xi of the microphones, for example using Equation (1), and then calculating {tilde over (P)}(x,t1,t2) at other locations x by interpolation of the {tilde over (P)}(xi,t1,t2) using any known interpolation method.
In a most preferred embodiment, the interpolation is performed to obtain an average acoustic energy {tilde over (P)}(x,t1,t2) at a position x=(x1,x2) in the surface R using the algebraic expression:
where g(x,xi,σ) is a kernel satisfying
and where xi=(xi1,xi2) is the position of the ith microphone and σ is a selectable parameter.
For example, the kernel
may be used.
It will also be understood that the system according to the invention may be a suitably programmed computer. Likewise, the invention contemplates a computer program being readable by a computer for executing the method of the invention. The invention further contemplates a machine-readable memory tangibly embodying a program of instructions executable by the machine for executing the method of the invention.
Thus, in its first aspect, the present invention provides a system for assessing an interventional pulmonology procedure comprising:
In its second aspect, the invention provides a method for assessing an interventional pulmonology procedure in an individual, comprising:
In its third aspect, the invention provides a computer program comprising computer program code means for performing all the steps of the method of the invention when said program is run on a computer.
In its fourth aspect, the invention provides a computer program comprising computer program code means for performing all the steps of the method of the invention when said program is run on a computer embodied on a computer readable medium.
In order to understand the invention and to see how it may be carried out in practice, a preferred embodiment will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
a shows an image of the respiratory tract of an individual in which a tumor obstructs the right main bronchus restricting the flow of air into the right lung and
a shows an image of the respiratory tract of an individual in which a tumor obstructs the right main bronchus restricting the flow of air into the right lung and
a shows an image of the respiratory tract of an individual in which a foreign body obstructs the left main bronchus restricting the flow of air into the left lung and
An input device such as a computer keyboard 140 or mouse 145 is used to input relevant information relating to the examination such as personal details of the individual 110. The input device 140 may also be used to input values of a first pair of times t1 and t2 where the time interval from t1 to t2 occurs before the interventional procedure has been carried out. The processor 135 performs an analysis of the signals P(xi,t) from t1 to t2 so as to generate one or more images 137 indicative of airflow in the individual's respiratory tract prior to the interventional procedure. In a preferred embodiment, the analysis involves determining an average acoustic energy {tilde over (P)}(x,t1,t2)over the time interval from t1 to t2 at least one location x in the region R in a calculation involving at least one of the signals P(xi,t). The input device 140 may also be used to input values at a second pair of times t3 and t4, where the time interval t3 to t4 occurs after the interventional procedure has been carried out. The processor 135 then performs an analysis of the signals P(xi,t) from t3 to t4 to generate one or more images 139 indicative of airflow in the individual's respiratory tract after the interventional procedure has been carried out. The images 137 and 139 of the respiratory tract generated before and after the interventional procedure are displayed simultaneously on a display device 150, such as a monitor screen.
In a more preferred embodiment, the time intervals from t1 to t2 and from t3 to t4 are divided into a plurality of subintervals, and an image is generated from the signals P(xi,t) for each subinterval. This generates movies of respiratory tract airflow before and after the interventional procedure that are displayed simultaneously on the display device 150.
The system and method of the invention were used to perform a pulmonary interventional procedure.
a shows an image 300 of the right lung 302 and the left lung 304 of an individual indicative of airflow in the lungs obtained by the method disclosed in U.S. Pat. No. 6,887,208 to Kushnir et al using equations (2) , (3) and (4) above with σ=36. The image 300 was obtained in mid-inspirum. A tumor obstructs the right main bronchus restricting the flow of air into the right lung 302. Airflow in the left lung 304 appears to be unobstructed.
a shows an image 400 of the left lung 402 and the right lung 404 of an individual indicative of airflow in the lungs obtained by the method disclosed in U.S. Pat. No. 6,887,208 to Kushnir et al using equations (2) , (4) and (4) above with σ=36. The image 400 was obtained in mid-inspirum. A tumor obstructs the right main bronchus restricting the flow of air into the right lung 402. Airflow in the left lung 404 appears to be unobstructed.
a shows an image 500 of the left lung 502 and the right lung 504 of an individual indicative of airflow in the lungs obtained by the method disclosed in U.S. Pat. No. 6,887,208 to Kushnir et al using equations (2) , (5) and (4) above with σ=36. The image 500 was obtained in mid-inspirum. A foreign body obstructs the left main bronchus restricting the flow of air into the left lung 502. Airflow in the right lung 504 appears to be unobstructed.
This application claims the benefit of prior U.S. provisional patent application No. 60/728,334 filed Oct. 20, 2005, the contents of which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60728334 | Oct 2005 | US |