Embodiments of the subject matter disclosed herein generally relate to methods and systems and, more particularly, to mechanisms and techniques for configuring streamers to achieve desired seismic data characteristics.
Reflection seismology is a method of geophysical exploration to determine the properties of a portion of the earth's subsurface, information that is especially helpful in the oil and gas industry. Marine reflection seismology is based on the use of a controlled source that sends energy waves into the earth. By measuring the time it takes for the reflections to come back to plural receivers, it is possible to estimate the depth and/or composition of the features causing such reflections. These features may be associated with subterranean hydrocarbon deposits.
For marine applications, a seismic survey system 100, as illustrated in
Source array 130 has plural source elements 136, which typically are air guns. The source elements are attached to a float 137 to travel at desired depths below the water surface 104. During operation, vessel 102 follows a predetermined path T while source elements 136 emit seismic waves 140. These waves bounce off the ocean bottom 142 and other layer interfaces below the ocean bottom 142 and propagate as reflected/refracted waves 144 that are recorded by receivers 122. The positions of both the source element 136 and recording receiver 122 are estimated based on GPS systems 124 and recorded together with the seismic data in a storage device 127 onboard the vessel. Controller 126 has access to the seismic data and may be used to achieve quality control or even full processing of this data. Controller 126 may be also connected to the vessel's navigation system and other elements of the seismic survey system, e.g., birds 128.
The recorded seismic data is later processed to achieve one or more objectives. For example, in a 3D seismic survey, it may be desirable to achieve ghost diversity so that the notches formed by the ghosts in the frequency spectrum can be filled in. To achieve good deghosting, as disclosed in U.S. Pat. No. 8,593,904, authored by Soubaras and assigned to the assignee of this application (the entire content of which is incorporated by reference), it is possible to shape the streamer to have a curved profile in a vertical plane. Depending on the interest in the low frequency content or the high frequency content, the depth of the streamer and the receiver composition may also be adapted to maximize the quality of the seismic data. In this respect, it is known that for a depth imaging of the Earth, the low-frequencies are desirable as they travel a long distance. On the contrary, the high-frequencies are quickly attenuated by the Earth, and thus, they are more appropriate for shallow imagining. However, the high-frequencies generate a finer definition of the surveyed subsurface. For example, the high-frequency data may include frequencies between 100 and 250 Hz and the low-frequency data may include frequencies lower than 35 Hz.
However, for another survey, the goal may be different, e.g., to comply with another survey characteristic. Such survey characteristic may require a configuration of the streamers different from having parallel streamers.
Thus, there is a need to have a spread that can be quickly adapted to comply with a specific survey characteristic.
According to an embodiment, there is a seismic acquisition system for acquiring seismic data. The system includes a streamer spread including first and second streamers, each of the first and second streamers having at least one seismic receiver and at least one position control device and a seismic source located within an area underlined by the streamer spread and configured to generate seismic waves. The streamer spread and the source are towed independent of each other, a streamer separation DS between the first and second streamers varies along a length of the spread to comply with a given survey characteristic, and the streamer separation varies from a front-end value DS(F) at a front-end of the spread, to a middle of the spread value DS(O), to a back-end value DS(B) at a back-end of the spread, and the middle of the spread value is smaller than the front-end value and smaller than the back-end value.
According to another embodiment, there is a method for acquiring seismic data that includes towing a streamer spread including first and second streamers, each of the first and second streamers having at least one seismic receiver and at least one position control device; towing a seismic source located within an area underlined by the streamer spread and configured to generate seismic waves; and controlling with the position location devices a streamer separation DS between the first and second streamers so that the streamer separation DS varies along a length of the spread to comply with a given survey characteristic. The streamer spread is towed by a first vessel and the source is towed by a second vessel. The streamer separation varies from a front-end value DS(F) at a front-end of the spread, to a middle of the spread value DS(O), to a back-end value DS(B) at a back-end of the spread, and the middle of the spread value is smaller than the front-end value and smaller than the back-end value.
According to still another embodiment, there is a method for acquiring seismic data that includes calculating plural streamer separations DS between first and second streamers of a spread so that the streamer separation DS varies along a length of the spread to comply with a given survey characteristic, calculating forces to be applied by birds, which are located on the first and second streamers, to maintain the streamer separations DS along the length of the spread, and programming the birds to hold the forces during a seismic survey to maintain the streamer separations DS while the first and second streamers move through the water. There are a streamer separation DS(F) at a front-end of the spread, a streamer separation DS(O) at a middle of the spread, and a streamer separation DS(B) at a back-end of the spread, and the streamer separation at the middle of the spread is smaller than the streamer separations at the front-end and the back-end.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate one or more embodiments and, together with the description, explain these embodiments. In the drawings:
The following description of the embodiments refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. The following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims. The following embodiments are discussed, for simplicity, with regard to the terminology and structure of a streamer towed in water by a vessel. However, the embodiments to be discussed next are not limited to a marine streamer; they may be applied to other seismic elements that need to be flexible for accommodating various configurations.
Reference throughout the specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with an embodiment is included in at least one embodiment of the subject matter disclosed. Thus, the appearance of the phrases “in one embodiment” or “in an embodiment” in various places throughout the specification is not necessarily referring to the same embodiment. Further, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
According to a split-spread configuration illustrated in
Source 208 is located at the middle of the split-spread 202, i.e., at L/2 from the head of the spread and W/2 from an outer streamer. For this embodiment, the near offset data 230 (the offset is defined as the distance between a recording receiver 222 and the source 208) are recorded close to the middle of the spread, where the seismic source is located, and the long offset data 232 are located at the back-end of the spread as well as at the front-end. Only one offset data point 232 is shown for a receiver 222′.
During certain seismic surveys, the spread needs to have a certain configuration in order that the acquired seismic data complies with a given survey characteristic. In the following, the survey characteristic is selected to be the Fresnel zone size. In other words, the size of the Fresnel zone may be considered when distributing the seismic sensors over the area to be surveyed. Other survey characteristics may be used. A Fresnel zone is defined, as illustrated in
This means that the illumination at a given depth H realized by the emission of acoustic signals and the recordings at a receiver are not originating from a single point 302, but from a surface having the size I, which depends on the bandwidth of the signal and on the source-receiver distance, commonly called offset. This surface is known as the Fresnel zone. Considering the physics of the Fresnel zone, some of the traditional seismic spreads have less receiver deployment at the large offset because for these offsets, having more receiver will not bring any extra illumination of the subsurface for this depth. In other words, the size of the Fresnel zone for a configuration of parallel streamers, as illustrated in
In order to respect the size of the Fresnel zone along the streamers versus the offsets, according to an embodiment illustrated in
For example, in one embodiment, source 408, which is towed by a corresponding vessel 406, is not located at the middle of the spread's length L, but rather at a position O, somewhere along the streamer's length L, where L=L1+L2. Position O is within the area determined by the spread in the X-Y plane, i.e., a plane parallel to the air-water interface. Note that a depth of the streamers relative to the water surface can have any value. This means that source 408 is effectively on top of spread 402. If this position is considered to be the origin, then the streamer separation DS(O) has the smallest value and the streamer separation DS(L1) at the front-end may be different from the streamer separation DS(L2) at the back-end. However, if the position O is exactly at half of the streamer's length L, then DS(L1)=DS(L2).
By properly instructing each position control device 424A and 424B to enforce a certain lateral separation between the streamers (also called cross-line separation, which is measured along a cross-line direction Y that is perpendicular on the inline direction X), any desired streamer separation may be obtained. In this regard, DS(L1) and/or DS(L2) may be in the range of about 50 to 250 m while DS(O) may be in the range of about 10 to 150 m.
The embodiment illustrated in
As the Fresnel zone's size S is changing with the source-receiver offset S-R, it is possible to model the Fresnel zone's size S to depend with the offset S-R, i.e., S can be described by a function g of S-R, S=g(S-R). In one application, function g is linear with S-R. In still another application, function g is non-linear with S-R. In still another application, function g can be parametrized as depending on S-R. In still another embodiment, function g may be defined to be more sensitive, e.g., to depend not only with the source receiver offset S-R, but also with the depth Z of a given survey target. In this case, the size S of the Fresnel zone is a function g(S-R, z) of two variables, the offset S-R and the depth z of the target. Function g, as discussed above, may take various forms. In still another embodiment, the size S of the Fresnel zone is a function g(S-R, z, f) of three variables, the offset S-R, the depth z of the target and the frequency f emitted by the source.
According to one embodiment, the Fresnel zone's size S may be calculated for a given seismic survey area, by taking into account one or more of the offsets between the source and the receivers, the depth of the target, and the frequency emitted by the source. Once these sizes are determined for various offsets, the various separation distances DS(Li) are calculated and the position control device 424A and 424B are instructed to achieve and maintain these separation distances.
The embodiment illustrated in
Returning to the embodiment of
The streamer separation at the front-end of the spread is part of dimensioning the entire spread, which depends on the total width W of the spread, which is given by N*DS(L1), where N is the total number of streamers in the spread. The width W of the spread is limited by the capacity of the vessel. However, it is possible to tow a larger spread if the layback LB distance (see
The streamer separation at the middle of the spread, where the near-offset data will be acquired, is smaller than the streamer separation at the front-end as already discussed. This variable streamer separation is achieved by using position control devices. In the case of lateral current (ocean currents), a command and control system (e.g., global controller 404A in
The streamer separation at the back-end of the spread is similar to that of the middle of the spread in the sense that the position control devices, in case that ocean currents are present, may be configured to maintain the lateral positioning of the streamers instead of maintaining the positions of the streamers relative to the vessel. The same precautions can be taken as above for minimizing the noise generated by the steering.
A method for calculating the separation distances between the streamers along the spread, while respecting the Fresnel zone considerations noted above, is now discussed with regard to
In one embodiment, it is desired to achieve a dynamic resolution acquisition for a same seismic survey. In the context of dynamic resolution acquisition, when it is desired to acquire seismic data for different geological targets, see for example U.S. Patent Application Publication 2016/0313466, different acquisition configurations could be deployed at different parts of the survey. However, that process may be slow and expensive.
According to the embodiment illustrated in
With this arrangement, for different geological targets at different depths, the value of the largest offset can be modified accordingly. A larger offset could be achieved by repositioning the source vessel 706 closer to the front-end or to the back-end of the spread 702 according to HSE (health, safety and environment) constrains (e.g., depth of the spread below the source vessel) or geophysical considerations (the relation of the variable depth streamer profile regarding the source location).
Changing the position of the source vessel 706 relative to the spread 702, as illustrated in
In another embodiment, it is possible to use the steering system to change the spread from standard narrow azimuth acquisition (NAZ) to split-spread NAZ acquisition. NAZ acquisition refers to an acquisition system in which a vessel 804 tows a plurality of streamers 802 and a source 805 (see
In the context of NAZ acquisition (the configuration of
According to an embodiment, the position control devices 824 can be instructed to make the requested minimum separation distance DS(O) move during the seismic survey along the inline direction X, as desired. If this happens, the global controller 804A located on the streamer vessel 804 can also instruct source vessel 806 to move source 808 in synchronism with DS(O), so that their positions along the inline direction X coincide.
In still another embodiment, a second source vessel 806′ may be brought in, to tow a corresponding source 808′, substantially parallel to the traveling path of source 808, but with an offset separation along the cross-line direction Y. For this embodiment, wide azimuth (WAZ) data may be acquired.
In yet another embodiment illustrated in
A method for acquiring seismic data with one or more of the configurations discussed above is now discussed with regard to
In order to be able to acquire the seismic data with the method discussed above, the position control devices (birds herein) need to be configured accordingly. According to this embodiment, a method for programming the birds includes a step 1100 of calculating plural streamer separations DS between first and second streamers of a spread so that the streamer separation varies along a length of the spread to comply with a given survey characteristic, a step 1102 of calculating forces to be applied by the birds, which are located along the first and second streamers, to maintain the streamer separations DS along the length of the spread, and a step 1104 of programming the birds to maintain the forces during a seismic survey to maintain the streamer separations DS while the first and second streamers move through the water. The method takes into consideration that there is a streamer separation DS(F) at a front-end of the spread, a streamer separation DS(O) at a middle of the spread, and a streamer separation DS(B) at a back-end of the spread, and the streamer separation at the middle of the spread is smaller than the streamer separations at the front-end and the back-end. In one application, the given survey characteristic is associated with a size of a Fresnel zone.
An example of a representative processing device capable of carrying out operations in accordance with the embodiments discussed above is illustrated in
The exemplary processing device 1200 suitable for performing the activities described in the exemplary embodiments may include server 1201. Such a server 1201 may include a central processor unit (CPU) 1202 coupled to a random access memory (RAM) 1204 and/or to a read-only memory (ROM) 1206. The ROM 1206 may also be other types of storage media to store programs, such as programmable ROM (PROM), erasable PROM (EPROM), etc. Processor 1202 may communicate with other internal and external components through input/output (I/O) circuitry 1208 and bussing 1210, to provide control signals and the like. For example, processor 1202 may communicate with the source arrays and each streamer and/or receiver. Processor 1202 carries out a variety of functions as are known in the art, as dictated by software and/or firmware instructions.
Server 1201 may also include one or more data storage devices, including disk drives 1212, CD-ROM drives 1214, and other hardware capable of reading and/or storing information, such as a DVD, etc. In one embodiment, software for carrying out the above-discussed steps may be stored and distributed on a CD-ROM 1216, removable media 1218 or other form of media capable of storing information. The storage media may be inserted into, and read by, devices such as the CD-ROM drive 1214, disk drive 1212, etc. Server 1201 may be coupled to a display 1220, which may be any type of known display or presentation screen, such as LCD, plasma displays, cathode ray tubes (CRT), etc. A user input interface 1222 is provided, including one or more user interface mechanisms such as a mouse, keyboard, microphone, touch pad, touch screen, voice-recognition system, etc.
Server 1201 may be coupled to other computing devices, such as the equipment of a vessel, via a network. The server may be part of a larger network configuration as in a global area network (GAN) such as the Internet 1228, which allows ultimate connection to the various landline and/or mobile client/watcher devices.
As also will be appreciated by one skilled in the art, the exemplary embodiments may be embodied in a wireless communication device, a telecommunication network, as a method or in a computer program product. Accordingly, the exemplary embodiments may take the form of an entirely hardware embodiment or an embodiment combining hardware and software aspects. Further, the exemplary embodiments may take the form of a computer program product stored on a computer-readable storage medium having computer-readable instructions embodied in the medium. Any suitable computer-readable medium may be utilized, including hard disks, CD-ROMs, digital versatile discs (DVD), optical storage devices or magnetic storage devices such a floppy disk or magnetic tape. Other non-limiting examples of computer-readable media include flash-type memories or other known types of memories.
The disclosed exemplary embodiments provide streamer spreads that can be configured to achieve a changing cross-line streamer separation, to comply with a survey characteristic, which varies along the spread. It should be understood that this description is not intended to limit the invention. On the contrary, the exemplary embodiments are intended to cover alternatives, modifications and equivalents, which are included in the spirit and scope of the invention as defined by the appended claims. Further, in the detailed description of the exemplary embodiments, numerous specific details are set forth in order to provide a comprehensive understanding of the claimed invention. However, one skilled in the art would understand that various embodiments may be practiced without such specific details.
Although the features and elements of the present exemplary embodiments are described in the embodiments in particular combinations, each feature or element can be used alone without the other features and elements of the embodiments or in various combinations with or without other features and elements disclosed herein.
This written description uses examples of the subject matter disclosed to enable any person skilled in the art to practice the same, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the subject matter is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims.
Number | Date | Country | |
---|---|---|---|
62318225 | Apr 2016 | US |