This U.S. patent application claims priority under 35 U.S.C § 119 to Indian patent application no. (202021049784), filed on Nov. 13, 2020. The entire contents of the aforementioned application are incorporated herein by reference
The disclosure herein generally relates to the field of building management system, and, more particularly, to method and system for maximizing space utilization in a building.
Building utilization is extremely valuable in organizations for efficient space and resource allocation without unnecessary expenditure on excess workspace, energy, operation, and maintenance. Pandemic scenario has caused a dramatic reduction in the use of office buildings. However, organizations eventually need to plan for the return of employees to office spaces from post pandemic scenarios by ensuring their bio-safety. Healthier office spaces are important to their employees. In a recent study of workplaces, 87% of employees rated healthier office spaces as very important. While offices have traditionally served as key venues for social interaction and inclusion in the organization, this perception has changed dramatically, almost overnight, due to COVID-19 induced social distancing. Symptomatic employees can be screened out from buildings while asymptomatic employees can be handled mainly through social distancing. Organizations have embraced working-from-home in a significant way. Employees too currently report preferring to work from home even more than earlier Organizations too potentially benefit from reduced real-estate cost and talent hiring with fewer location constraints.
The current trend of reduced office space utilization is however unlikely to be permanent because humans prefer in-person social interaction and are likely to do so in the future. Due to Pandemic scenarios most of the office-occupancy rebounds, organizations remains closed facing challenge in operating office buildings at least until and possibly even beyond the time a vaccine is available for the pandemic. Specifically, ensuring occupant bio-safety in office buildings will be a sine qua non for organizations from ethical, legal, and economic perspectives.
Current organizational challenges in the pandemic scenarios focus on minimizing infections due to subjects interacting at their offices. While frequent personal and environmental disinfection and indoor use of mask helps major approach to achieve bio-safety is social distancing between the office occupants. So the organization limits maximum occupancy in the building ensuring at least the minimum social distancing or better. Using standard rules of thumb naïvely without understanding a building's specific configuration may be sub-optimal from the perspectives of efficient utilization of the space; and worse, bio-safety.
Many conventional approaches focus on joint optimization of building energy and occupant comfort. These include model-driven optimal HVAC (heating, ventilating and air conditioning) controller and energy optimization with varying occupant thermal comfort preferences. It is summarized with few of existing approaches. Most of these focus on controller of HVAC while some include planning components in placing users for comfort as well.
In another existing approach of the Optimal HVAC controller, significant energy savings were shown over typical rule-based controller strategies. Calibrated models developed from first principles were used. Centralized controller of multiple actuators in a shared space was shown to improve over distributed controller. In another approach for varying thermal comfort preferences is to minimize the overall thermal discomfort. In the self-tuned HVAC controller aims to minimize occupant thermal discomfort. A study on the impact of temperature sensor resolution on various HVAC controller strategies along with personal comfort preferences, placing users with different temperature preferences along the natural temperature field in the shared space was shown to decrease the overall thermal discomfort. In another approach comfort fairness metric evaluates the loss in the comfort of occupants in shared spaces. A user-participatory approach to intelligently adjust the set-point to reduce user comfort conflicts.
Further, viral transmission in buildings has received less attention where for indoor viral propagation has mainly focus on modelling viral droplet behavior in a room. Variation in droplet size with time was studied. The emission rate (or shedding rate) from infected persons for air-borne viral infection was quantified. The effect of HVAC controller filtration products such as MERV 7-11 on control air-borne disease transmission for indoor workspace was considered. Transmission rates of airborne infection in a dental clinic was modelled.
Embodiments of the present disclosure present technological improvements as solutions to one or more of the above-mentioned technical problems recognized by the inventors in conventional systems. For example, in one embodiment, a system for maximizing space utilization in a building is provided. The system includes dynamically receiving, using a thermodynamics model, a plurality of thermal signals using plurality of sensors positioned in the building. The open plan space of the building is segmented into equally spaced cells comprising a plurality of infected cells and a plurality of uninfected cells. Further, using an optimal occupancy placement technique, maximum allowable occupants in the plurality of uninfected cells is determined based on (i) a plurality of parameters comprising an infection probability, an exposure, and a total number of segmented cells of the open plan space, (ii) a temperature and a humidity obtained from the plurality of thermal signals (iii) an estimated amount of viral particles concentration shed by a plurality of infected subjects at one or more of equally spaced cells in the preoccupied open plan space of the building, and (iv) a susceptible probability of an uninfected subject infected at predefined exposure time, and (v) a one or more neighboring cells adjoining the infected cells. Furthermore, using a joint actuator control technique, energy consumed by an HVAC (heating, ventilation and air conditioning) controller for the building is estimated based on the determined maximum allowable occupants, wherein the HVAC controller comprises a plurality of actuators in the open plan space of the building based on (i) the HVAC controller energy computed using a chiller energy and an actuator supply fan energy, (ii) a predefined temperature range, (iii) a cooling load of each actuator computed using a mass flow rate of the corresponding actuators, an enthalpy of actuator supply, and return air, and (iv) maximum average cell temperature range.
In another aspect, a method for maximizing space utilization in a building is provided. The method includes dynamically receiving, using a thermodynamics model, a plurality of thermal signals using a plurality of sensors positioned in the building. The open plan space of the building is segmented into equally spaced cells comprising a plurality of infected cells and a plurality of uninfected cells. Further, using an optimal occupancy placement technique, maximum allowable occupants in the plurality of uninfected cells is determined based on (i) a plurality of parameters comprising an infection probability, an exposure, and a total number of segmented cells of the open plan space, (ii) a temperature and a humidity obtained from the plurality of thermal signals (iii) an estimated amount of viral particles concentration shed by a plurality of infected subjects at one or more of equally spaced cells in the preoccupied open plan space of the building, and (iv) a susceptible probability of an uninfected subject infected at predefined exposure time, and (v) a one or more neighboring cells adjoining the infected cells. Furthermore, using a joint actuator control technique, energy consumed by an HVAC (heating, ventilation and air conditioning) controller for the building is estimated based on the determined maximum allowable occupants, wherein the HVAC controller comprises a plurality of actuators in the open plan space of the building based on (i) the HVAC controller energy computed using a chiller energy and an actuator supply fan energy, (ii) a predefined temperature range, (iii) a cooling load of each actuator computed using a mass flow rate of the corresponding actuators, an enthalpy of actuator supply, and return air, and (iv) maximum average cell temperature range.
In yet another aspect, provides one or more non-transitory machine readable information storage mediums comprising one or more instructions, which when executed by one or more hardware processors perform actions includes dynamically receiving, using a thermodynamics model, a plurality of thermal signals using a plurality of sensors positioned in the building. The open plan space of the building is segmented into equally spaced cells comprising a plurality of infected cells and a plurality of uninfected cells. Further, using an optimal occupancy placement technique, maximum allowable occupants in the plurality of uninfected cells is determined based on (i) a plurality of parameters comprising an infection probability, an exposure, and a total number of segmented cells of the open plan space, (ii) a temperature and a humidity obtained from the plurality of thermal signals (iii) an estimated amount of viral particles concentration shed by a plurality of infected subjects at one or more of equally spaced cells in the preoccupied open plan space of the building, and (iv) a susceptible probability of an uninfected subject infected at predefined exposure time, and (v) a one or more neighboring cells adjoining the infected cells. Furthermore, using a joint actuator control technique, energy consumed by an HVAC (heating, ventilation and air conditioning) controller for the building is estimated based on the determined maximum allowable occupants, wherein the HVAC controller comprises a plurality of actuators in the open plan space of the building based on (i) the HVAC controller energy computed using a chiller energy and an actuator supply fan energy, (ii) a predefined temperature range, (iii) a cooling load of each actuator computed using a mass flow rate of the corresponding actuators, an enthalpy of actuator supply, and return air, and (iv) maximum average cell temperature range.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this disclosure, illustrate exemplary embodiments and, together with the description, serve to explain the disclosed principles:
Exemplary embodiments are described with reference to the accompanying drawings. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. Wherever convenient, the same reference numbers are used throughout the drawings to refer to the same or like parts. While examples and features of disclosed principles are described herein, modifications, adaptations, and other implementations are possible without departing from the scope of the disclosed embodiments.
Embodiments herein provides a method and system for maximizing space utilization in a building. The method disclosed, enables maximizing joint optimization of building energy and occupant comfort. Effective space utilization and adhering to social distancing norms are intrinsically competing objectives for the organizations. For informed decision making, understanding the infection transmission in an open-plan indoor office space associated with the building and its effect on susceptible occupants is important. The proposed disclosure is utilizing two heuristics comprising an optimal occupancy placement technique for maximum allowable space utilization, and joint actuator control technique for minimizing energy consumption. The system includes thermodynamics model and a viral propagation model for determining virus concentration for maximum space utilization. The viral community infection rate includes occupants exposure duration, and virus emission rate as parameters. The placing of occupants in the infected cells from the open plan space resulted in a low-risk probability for the uninfected occupants. The challenge of maximizing space utilization subject to meeting the occupant thermal comfort keeping the risk of new infection to low value, has not received much attention. The method of the proposed disclosure provides an optimal occupancy placement technique which increases maximum allowable space utilization. Further, the joint controller multiple actuators available in the open-plan space are necessary to meet thermal and bio-safety constraints. When the space utilization required is less than the maximum allowable space, energy optimization is the secondary objective in the proposed disclosure based on HVAC (heating, ventilation and air conditioning) controller with significant energy savings. The HVAC controller and user placement for minimizing viral transmission is necessity in buildings for maximizing occupancy placement and for minimizing energy consumption. The disclosed system is further explained with the method as described in conjunction with
Referring now to the drawings, and more particularly to
In an embodiment, the occupancy placement system 100 includes processor (s) 104, communication interface (s), alternatively referred as occupancy placement system or input/output (I/O) interface(s) 106, and one or more data storage devices or memory 102 operatively coupled to the processor (s) 104. The system 100, with the processor(s) is configured to execute functions of one or more functional blocks of the system 100.
Referring to the components of the system 100, in an embodiment, the processor (s) 104 can be one or more hardware processors 104. In an embodiment, the one or more hardware processors 104 can be implemented as one or more microprocessors, microcomputers, microcontroller, digital signal processors, central processing units, state machines, logic circuitries, and/or any devices that manipulate signals based on operational instructions. Among other capabilities, the processor(s) 104 is configured to fetch and execute computer-readable instructions stored in the memory. In an embodiment, the system 100 can be implemented in a variety of computing systems, such as laptop computers, notebooks, hand-held devices, workstations, mainframe computers, servers, a network cloud, and the like.
The I/O interface(s) 106 can include a variety of software and hardware interfaces, for example, a web interface, a graphical user interface, and the like and can facilitate multiple communications within a wide variety of networks N/W and protocol types, including wired networks, for example, LAN, cable, etc., and wireless networks, such as WLAN, cellular, or satellite. In an embodiment, the I/O interface (s) 106 can include one or more ports for connecting a number of devices (nodes) of the system 100 to one another or to another server.
The memory 102 may include any computer-readable medium known in the art including, for example, volatile memory, such as static random access memory (SRAM) and dynamic random access memory (DRAM), and/or non-volatile memory, such as read only memory (ROM), erasable programmable ROM, flash memories, hard disks, optical disks, and magnetic tapes. The modules 108 can be an Integrated Circuit (IC) (not shown), external to the memory 102, implemented using a Field-Programmable Gate Array (FPGA) or an Application-Specific Integrated Circuit (ASIC). The names (or expressions or terms) of the modules of functional block within the modules 108 referred herein, are used for explanation and are not construed to be limitation(s).
Referring now to the steps of the method 300, at step 302, the one or more hardware processors 104 dynamically receiving, using a thermodynamics model, a plurality of thermal signals using sensors positioned in a building, wherein an open plan space of the building is segmented into equally spaced cells comprising a plurality of infected cells and a plurality of uninfected cells. Considering an example where the organization objective is to minimize infection rate due to subjects interacting or returning to office from post pandemic scenarios. In general, infection spread rate is a function of three major factors comprising (i) the base community infection rate representing probability that a randomly chosen individual is infected symptomatically, (ii) the extent of transmission of the airborne viral emissions due to air circulation in a specific building which largely is a function of the solar insolation and actuator controller, and (iii) the exposure duration of the occupants.
The thermodynamics model estimates the spatio temporal dynamics of thermal and bio safety properties of the open plan space associated with the building. This model calibrates the plurality of thermal signals from the open plan space derived from the first principles. The open plan space of the building is segmented into equally spaced cells for maximizing optimal occupant placement as referred in
Referring now to the steps of the method 300, at step 304, the one or more hardware processors 104 determining, using an optimal occupancy placement technique, to place maximum allowable occupants in the plurality of uninfected cells based on (i) a plurality of parameters, (ii) a temperature and a humidity obtained from the plurality of thermal signals (iii) an estimated amount of viral particles concentration shed by a plurality of infected subjects at one or more of equally spaced cells in the preoccupied open plan space of the building, and (iv) an susceptible probability of an uninfected subject infected at predefined exposure time, and (v) a one or more neighboring cells adjoining the infected cells. Here, considering the above example for determining maximum allowable occupancy in the building, the plurality of thermal signals is utilized to obtain the temperature and the humidity.
The example of the open plan space specifications in the real-world of size 20,000 sqft (1860 m2) shown in the figure. Four identical HVAC controller actuators serve this space with a design occupancy of ΦD=200 at 100 square feet per person. Thus the minimum separation distance is 10 ft between the adjacent cells. Each actuator can deliver 11,000 CFM of cold air with a design tonnage of 20 TR. It is to be noted that placements may not always be as regular as shown in figure. However, the chosen uniform placements for ease of presentation, while noting that the proposed method does not require this. The normal occupancy duration is between 0900 h to 1800 h, while the HVAC controller starts at 0800 h to pre-cool the space.
In one embodiment, the optimal occupancy placement technique determines maximum allowable occupants to be placed in the uninfected cells in the open plan space of the building. This technique performs the steps of the following, obtaining a plurality of parameters comprising an infection probability, an exposure, and a total number of segmented cells of the open plan space. The two main objective of the infection dynamics module is to estimate the viral particles concentration shed by the infected persons at various points in the occupied open plan space of the building. Further, the infection probability is estimated from the uninfected person based on the exposure for a given viral load concentration and the exposure time. The occupancy placement performs the steps as specified below in Table 1,
indicates data missing or illegible when filed
Further, the thermal capacitance of air is computed to determine the plurality of thermal parameters in the open plan space of the building based on (i) an internal heat gain from the occupants, (ii) a convective heat gain from walls and windows of the building, (iii) an air mixing flowrate of temperature between adjoining cells, (iv) an infiltration rate of outside temperature and heat capacity, and (v) an actuator heat removal rate as described below in equation 1 and Table 1 and Table 2 for the notations used in the equation 1,
Further, an air density volume of the open plan space is computed based on (i) a moisture generation rate, (ii) an air mixing flowrate of humidity between adjoining cells, (iii) an infiltration rate of outside humidity, and (iv) an actuator moisture removal rate. Referring now again to
Further, the amount of viral particles concentration is estimated based on (i) a viral shredding rate, (ii) a particle mixing from adjoining cells, (iii) an infiltration rate of outside air, and (iv) an actuator virus removal rate; virus moves due to the air movement, mass transport balance equation to compute the virus concentration at any point in space and time as the virus spread like contaminant gas would spread.
The virus concentration at the location of cell and at time is defined as the number of unit particles quanta per unit volume. This step is computed based on the below mentioned equation 3,
Further, a susceptible probability of an uninfected subject is estimated at the exposure time based on exponential function of breathing rate of an occupant and the viral particles concentration at the exposure. For the obtained viral concentration at each cell location of the open plan space of the building, the susceptible probability for each individual cell is estimated based on the exposure time which gets infected. Using equation 3, the susceptible probability is estimated by deriving equation 4,
P
i=1−e−b
Where, br is the breathing rate of each occupant,
τ is the total exposure duration,
Δt is the simulation time step.
While the breathing rate depends on the age, gender and activity level of the occupant. The results of the proposed disclosure depict increasing trend for infection as the breathing rate, the exposure duration and the concentration of viral particles increases.
In one embodiment iteratively, maximum allowable occupants to be placed in the segmented cell of the open plan space of the building is determined by, placing, the first occupant at the cell that affects minimum neighbors after placing the first occupant and eliminating the neighboring cells affected by the first occupant. Computing, an average euclidian distance between every consecutive cells in the open plan space and the cells occupied with occupants and placing, the consecutive occupant at the cell which has minimum euclidian distance. Referring again now to the (
Subject to equation 1 to equation 3,
∀iAi=1,pi(t)≤α for t∈[0,τ] equation 6
Further, for the assigned cells constraints requires all cells occupied with the probability of infection due to other occupied cells bounded. The energy considered for the occupancy placement that the temperature of each cell is maintained within the comfort temperature range irrespective of the cell's occupancy. The constraints are obtained using the equation 6, at the end of exposure duration for cells with occupants, where ‘a’ represents the threshold of new infection risk. The cumulative effect of quanta concentration at every time step is the air mixing mass flowrate which is a function of the cell temperature and humidity based on equation 1 and equation 2.
In another embodiment, the optimal placement technique enables providing heuristic approach for placing the occupants. For the given infected cell, the spatial quanta concentration is estimated using the equation 3. The method iteratively visits each cell in the space (ΦD). In each iteration, it is assumed that the visited cell ‘i’ alone has an infected occupant. Then the number of neighboring cells that visited the infected cell affects is calculated at (Line 11) as depicted in Table 1. The neighboring cell is affected by cell i if the probability of infection due to ‘i’ exceeds a threshold
The limiting case is when the community infection rate is so low such that γΦD≈0. At this γ, the space can be utilized to its full capacity. The first occupant is placed in the cell that minimizes the number of affected neighbors. Then pruning the set of feasible locations by removing those cells with probability of infection >α (Line 15) (Table 1). Sequentially, the placement process follows for the next occupant which is to be placed in the feasible location that is at the nearest average euclidian distance from the locations already chosen in Lines 18-25 (Table 1). After each placement, the set of feasible locations is pruned by eliminating the locations that are at risk of infection >α. It is to be noted that when the cell ‘C’ is processed, when χc may not be a proper subset of Θ. This is because as the previous cell ‘C’ whose χc′ was removed from Θ might have removed the subset χc∩χc′ from Θ already while processing cell C′. This process is repeated till there are no more feasible locations.
Referring now to the steps of the method 300, at step 306, the one or more hardware processors 104 estimating (306), using an joint actuator control technique, energy consumed by an HVAC controller for the building based on the determined maximum allowable occupants, wherein the HVAC controller comprises a plurality of actuators in the open plan space of the building based on (i) the HVAC controller energy using a chiller energy and an actuator supply fan energy, (ii) a predefined temperature range, and (iii) a cooling load of each actuator computed using a mass flow rate of the corresponding actuator, an enthalpy of actuator supply, and return air, and (iv) a maximum average cell temperature range. The joint actuator control technique performs the steps as specified below in Table 6, for minimizing energy consumed.
In another embodiment, the joint actuator control technique is defined in equation 5 and equation 6 that have discrete A and continuous TSP actuator temperature set-points) decision variables. Further, the non-linear objective functions and constraints constitute integer or mixed integer non-linear programming that are generally considered hard to solve using standard optimization techniques. The proposed disclosure having two heuristics approaches provides the solution to the occupant placement and joint actuator control problem using the model for viral concentration in equation 3 and temperature in equation 1. Further the bound of the probability of the new infection at a pre-determined threshold α even after placing the maximum number of occupants. The maximum expected number of infected people is γ, ΦD, where ΦD is the maximum (design) occupancy and γ is the probability that randomly chosen subject in the community is infected. The feasible uninfected cells pruned from the set-of all those cells where the probability of infection due to that occupant is less than
After placing the set of ϕ occupants, the probability of the available subjects placed is newly infected from all other placements is approximated by
which is lesser than α based on the construction constraints ϕ≤ΦD.
The joint actuators technique performs the steps of minimizing energy consumed by the HVAC controller in the open plan space of the building for maximizing occupancy placement by computing, the HVAC controller energy for optimization based on actuator controller set points. The HVAC controller energy is computed using the chiller energy and the actuator supply fan energy for every segmented cell of the building. The temperature of averaged cells is determined for all the segmented cells in the open plan space of the building. Here, the space utilization required in the organization policy allows only 25% of the occupancy which is less than maximum allowable occupancy represented as (ϕ<Φ*) considering HVAC controller energy is optimized based on equation 7,
minA,TSPEHVAC=(Ech+Σj=1mEactuatorj) equation 7
Further, the temperature of the segmented cells in the open plan space of the building is estimated within the predefined temperature range, which is represented using the equation 8,
T
min
≤T
i
t
≤T
max equation 8
Where, Tmin and Tmax are the minimum and maximum cell temperatures, which is further represented below in equation 9 and equation 10,
T
min
=T
SP−1° C. equation 9
T
max
=T
SP+1° C. equation 10
respectively in the occupied cells. In the unoccupied cells, Tmax is allowed to the higher set back temperature of TSB+1° C. Further, the maximum average temperature range is computed for each cell in the open plan space of the building by, sorting the available uninfected cells in the open plan space and determining the occupant counts. Further, iteratively determining the required occupants to be placed in the viral concentration uninfected cells in the open space of the building by, placing, the first occupant at the cell which has minimum temperature and eliminating the neighboring cells affected by the first occupant. Then sorting, the remaining available cells based on the temperature range to place the consecutive next occupant at the cell which has minimum temperature and recomputing, the HVAC controller energy for optimization based on actuator controller set points.
The joint actuator control technique gives an overview of the approach like in the optimal occupancy placement technique, iterating over cells one at a time to establish the maximum temperature range possible in the open-plan space. It is well-known that maintaining the temperature within acceptable limits in the occupied cells and keeping a higher temperature in unoccupied cells where possible can result in reduced HVAC controller energy consumption. So the joint actuator controller problem is solved in each step to minimize the energy consumption. The resulting temperature field that has the maximum range amongst all possible cell iterations is chosen as the template for assigning occupants to cells (Lines 8-11) (Table 6). Further, sorting the cells in ascending order of the temperature values and placing the occupants sequentially in the ordered list while being constrained by the same probability of infection in cells as before. It is to be noted that the joint actuator control technique is most likely to help when there are fewer occupants than the maximum allowable Φ* is identified using the optimal occupant placement technique, particularly when cells under one or more actuators is left unoccupied. If the required occupancy is such that all the actuators need to run, then there may not be any scope to save HVAC controller energy.
Referring now to
The model parameters utilize a combination of real-world data and empirical models to calibrate the thermal model. Table 7 summarizes the source of thermal model parameters. If the room does not have a widespread deployment of sensors, calibrating a thermal model to match the readings of the temperature and humidity sensors available at the actuator's supply and return air ducts.
Further, the flowrate of cool air is not directly measured, but is estimated using the actuator's operating frequency data in Hz. Threshold of new infection risk and community infection rates, the probability of an uninfected occupant contracting the virus over the exposure duration must be kept to a low value and is taken as α=0.1 (in Equation 6). The community infection rates are evaluated for γ=0.5%, 1%, 1.5%, 2%, 2.5%, and 3%. Since the open plan space is designed for ϕD=200, the expected number of new infections at peak occupancy is non-zero and ranges from 1-6.
The baseline for the occupant placement problem is compared with standard regular pattern placements in the open-plan space that have minimum separation distance between the occupants as 10-50 feet. It is compared with the optimal occupant placement technique that minimizes HVAC controller energy with random occupant placements in locations thereby maximizing the space utilization (A* from the optimal occupant placement technique).
In another embodiment, the evaluated baselines with all placement locations is not computationally feasible. Hence, depending on γ, considering the number of random placement of infected occupants in the available locations which impacts the uninfected occupants and HVAC controller energy. The performance metrics uses the following two metrics: (1) the total number of newly infected occupants at the end of the exposure duration, and (2) the HVAC controller energy savings during the occupied business hours EHVACsavings. In all the experimental results, the simulation time-step is Δt=1 min, chosen to capture the rate of infection dynamics. The comfort set-point and the set-back temperatures in the occupied cells and the unoccupied cells are taken as TSP=24° C. and TSB=27° C., respectively, following ASHRAE Standard. Further, the actuators are designed to take a maximum of 40% outside air in the supply air at rated conditions. It is chosen to keep outside air fixed at 40% in all the experimental analysis. The outside air is assumed to be fresh, meaning the quanta concentration is taken as 0.
The written description describes the subject matter herein to enable any person skilled in the art to make and use the embodiments. The scope of the subject matter embodiments is defined by the claims and may include other modifications that occur to those skilled in the art. Such other modifications are intended to be within the scope of the claims if they have similar elements that do not differ from the literal language of the claims or if they include equivalent elements with insubstantial differences from the literal language of the claims.
The embodiments of present disclosure herein addresses unresolved problem of building management system. The embodiment thus provides method and system for maximizing space utilization in a building. Moreover, the embodiments herein further provide maximum allowable occupancy decreases with increases in the community infection rate. The rate of decrease in the occupancy is non-linear in the community infection rate, with lower decreased with higher infection rate. The problem of maximizing the allowable occupants in an open-plan space is subject to meeting the occupants' thermal comfort and bio-safety constraints. It is also experimented and evaluated the scope to minimize the HVAC controller energy particularly when the open-plan space is served by multiple actuators and the required occupancy is less than the maximum allowable. The proposed disclosure provides two heuristics approaches to solve the problems that obey the physics-based thermal and virus concentration models. The community infection rate, occupants exposure duration, and virus emission rates are utilized as parameters for experimental analysis. The placing occupants results in low-risk probability for uninfected occupants. Further, full utilization of the space is possible only when the community infection rate and exposure duration are relatively low. For the average occupancy placement scenario, it is experimented that the space utilization is only 17.5%. The method also shown that when the required occupancy is less than the maximum allowable, occupant placement together with joint controller of multiple actuators resulted in savings of up to 15%.
It is to be understood that the scope of the protection is extended to such a program and in addition to a computer-readable means having a message therein; such computer-readable storage means contain program-code means for implementation of one or more steps of the method, when the program runs on a server or mobile device or any suitable programmable device. The hardware device can be any kind of device which can be programmed including e.g. any kind of computer like a server or a personal computer, or the like, or any combination thereof. The device may also include means which could be e.g. hardware means like e.g. an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a combination of hardware and software means, e.g. an ASIC and an FPGA, or at least one microprocessor and at least one memory with software processing components located therein. Thus, the means can include both hardware means and software means. The method embodiments described herein could be implemented in hardware and software. The device may also include software means. Alternatively, the embodiments may be implemented on different hardware devices, e.g. using a plurality of CPUs.
The embodiments herein can comprise hardware and software elements. The embodiments that are implemented in software include but are not limited to, firmware, resident software, microcode, etc. The functions performed by various components described herein may be implemented in other components or combinations of other components. For the purposes of this description, a computer-usable or computer readable medium can be any apparatus that can comprise, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
The illustrated steps are set out to explain the exemplary embodiments shown, and it should be anticipated that ongoing technological development will change the manner in which particular functions are performed. These examples are presented herein for purposes of illustration, and not limitation. Further, the boundaries of the functional building blocks have been arbitrarily defined herein for the convenience of the description. Alternative boundaries can be defined so long as the specified functions and relationships thereof are appropriately performed. Alternatives (including equivalents, extensions, variations, deviations, etc., of those described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternatives fall within the scope of the disclosed embodiments. Also, the words “comprising,” “having,” “containing,” and “including,” and other similar forms are intended to be equivalent in meaning and be open ended in that an item or items following any one of these words is not meant to be an exhaustive listing of such item or items, or meant to be limited to only the listed item or items. It must also be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
Furthermore, one or more computer-readable storage media may be utilized in implementing embodiments consistent with the present disclosure. A computer-readable storage medium refers to any type of physical memory on which information or data readable by a processor may be stored. Thus, a computer-readable storage medium may store instructions for execution by one or more processors, including instructions for causing the processor(s) to perform steps or stages consistent with the embodiments described herein. The term “computer-readable medium” should be understood to include tangible items and exclude carrier waves and transient signals, i.e., be non-transitory. Examples include random access memory (RAM), read-only memory (ROM), volatile memory, nonvolatile memory, hard drives, CD ROMs, DVDs, flash drives, disks, and any other known physical storage media.
It is intended that the disclosure and examples be considered as exemplary only, with a true scope of disclosed embodiments being indicated by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
202021049784 | Nov 2020 | IN | national |