1. Field of the Invention
The present invention relates generally to the field of consumer research methods for identifying emotional and cognitive responses to product and marketing stimuli.
2. Background Description
Consumer responses to products and messages have traditionally been measured with verbal and written self-reports of conscious reactions. These measures are often referred to in the research literature as explicit measures. They make several assumptions about a person's relationship to a stimulus that may or may not be true; for example, they typically assume that the person:
(a) has already formed an opinion or is able to construct one on the spot,
(b) is aware of (i.e., has conscious access to) his or her attitude, and
(c) is willing to share it accurately with the researcher.
Examples of explicit measurement techniques include focus group interviews, telephone surveys, paper-and-pencil questionnaires, online surveys, and instrument-mediated measurement systems using sliders or dials to capture moment-to-moment changes in emotional reactions. Responses measured include stated preferences among alternative products or messages, propensities to buy, likelihood of use, aesthetic judgments of product and packaging designs, moment-to-moment affective responses, and other predictions of likely future behaviors.
These measures can be flawed and biased in several ways, and often do not product accurate, consistent or reproducible results (Poels, K. and Dewitte, S. (2005). How to capture the heart? Reviewing 20 years of emotion measurement in advertising. Working Paper MO 0605. Dept. of Marketing and Organization Studies, Catholic University of Leuven, Leuven, Belgium.). Some reasons that have been cited for this effect include:
Recently, researchers have begun measuring naturally occurring biological processes to overcome some of these biases of self-reporting. These measures are often referred to in the research literature as implicit measures. By recording and analyzing naturally occurring biological activity, researchers have gained insights into how the mind and body respond to messages (Lang, A. (1994). What can the heart tell us about thinking. In A. Lang (Ed.),Measuring psychological responses to media (pp. 99-111). Hillsdale, N.J.: Lawrence Erlbaum Associates, Inc.; Ravaja, N. (2004). Contributions of psychophysiology to media research: Review and recommendations. Media Psychology, 6, 193-235.) and products (Chartrand, T. (2005). The role of conscious awareness in consumer behavior. Journal of Consumer Psychology, 15(3), 203-210.). Conscious introspection has been shown to include only a narrow band of the processes that happen in the brain. The vast majority of human biological and cognitive functions are governed by processes in the brain and nervous system that are well below the threshold of conscious perception.
Although humans do not have cognitive access to these low-level biological functions, they can provide important clues about how consumers pre-verbally and pre-consciously respond to products, media and messaging (Fitzsimons, G., et al. (2002). Non-Conscious Influences on Consumer Choice. Marketing Letters 13:3, 269-279.). At any moment, a person may be lost in thought or focused on a conversation, but the body is preparing itself to be able to act appropriately. If we are experiencing something we want or desire, our body is preparing to move toward it. In this sense, the body is constantly making hypotheses about the appropriate next action, and neural and psychophysiological measurements allow provide a window into these somatic predictions. By knowing what the brain and body are doing below the level of consciousness, we can better understand psychological events like responses to products and messages. That is, cognition is an embodied phenomenon (Bradley, S. D. (2007a). Dynamic, embodied limited-capacity attention and memory: Modeling cognitive processing of mediated stimuli. Media Psychology, 9, 211-239.; Bradley, S. D. (2007b). Examining the Eyeblink Startle Reflex as a Measure of Emotion and Motivation to Television Programming. Communication Methods and Measures, 1(1), 7-30, 9, 211-239.; Clark, A. (1997). Being there: Putting brain, body, and world together again. Cambridge, Mass.: MIT Press.).
But available neural and physiological measures that constitute current art also have limitations. The most important limitation for the purposes of consumer research is that each measure, by itself, is an incomplete and unreliable indicator of a person's emotional and cognitive response to a stimulus (Andreassi, J. (2007). Psychophysiology: human behavior and physiological response. Fifth edition. Mahwah, N.J.: Lawrence Erlbaum.). Facial electromyography (EMG), for example, provides a reliable measure of emotional valence or liking, but does not measure emotional arousal or excitation. Electrodermal activity (EDA), such as skin conductance response, provides an accurate measure of emotional arousal, but not of directional valence. Other measures, such as event related potentials (ERP), are reliable only in a multi-exposure experimental task, because averaging across trials is required to suppress electrical signal noise not associated with the stimulus being measured (Luck, S. (2005). An introduction to the event-related potential technique. Cambridge, Mass.: MIT Press.).
A second limitation with individual neural and physiological measures is that different individuals have different baseline levels of activity that can bias aggregated results when measures are combined or averaged across a sample of consumers. These differences may be strictly individual; for example, a person with peripheral vascular disease manifests lower average skin conductance responses to any stimulus than a person with normal vascular functionality. More generally, one person may display large changes in electrodermal activity with increased emotional arousal and show only moderate changes in heart rate and peripheral blood flow volume, while another individual may show the reverse pattern. Differences may also be age or gender-related; for example, men on average manifest higher skin conductance responses than women, but lower EMG responses (Bradley, M. M. et al. (2001). Emotion and Motivation II: Sex Differences in Picture Processing. Emotion, 1(3), 300-319.). Brainwave activity associated with cogitation varies by age, with older people exhibiting a slowing of the EEG as compared to younger people (Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews 29, 169-195.).
When multiple neural and physiological measures are collected simultaneously, a third limitation is that they measure activity that occurs at different time scales (Andreassi, J. (2007). Psychophysiology: human behavior and physiological response. Fifth edition. Mahwah, N.J.: Lawrence Erlbaum.). Neural responses measured by direct brain processing recordings, such as continuous electroencephalography (EEG), occur in milliseconds. Muscle movement responses measured by EMG also occur in milliseconds, but with a consistent time lag proportional to time required to transmit a signal to the muscle being measured. Autonomic nervous system arousal responses, such as electrodermal activity measured by skin conductance response (SCR), occur on a much slower time scale, occurring between one and two seconds after stimulus exposure, and lasting up to four or five seconds.
Accordingly, there is a need for systems and methods of measuring consumer responses to external stimuli that avoid, or at least alleviate, these limitations and provide accurate and replicable measures of pre-verbal and pre-conscious, as well as conscious, responses. There is also a need to integrate and aggregate these measures to provide improved and more accurate analyses and research results than can be produced with prior art.
Much prior art related to the current invention addresses a purpose other than consumer research, such as medical diagnosis or training feedback. For example:
Much prior art focuses on a single metric solution, an incomplete subset of metrics, or a single sensory modality. For example:
Prior art has significant limitations with respect to measurement of pre-verbal and pre-conscious responses to external stimuli, including:
Although much prior art addresses methods for acquiring consumer research data (for example, U.S. Pat. No. 7,308,418 by Malek, U.S. Pat. No. 5,124,911 by Sack, U.S. Pat. No. 7,151,540 by Young, and references therein), none specifically describes a complete system and method for collecting, analyzing, and interpreting pre-verbal and pre-conscious responses to external stimuli such provided by aspects of the current invention.
Methods and systems for recording and metricizing neurological and physiological responses to stimuli, and translating these recordings into quantitative measures of central and peripheral nervous system processes that occur pre-verbally and are not directly accessible to conscious awareness.
An embodiment of the present invention generates data from a configuration of experimental tasks, neurological and physiological recording devices, and a sequenced process of data acquisition and analysis that produces quantitative measures of pre-verbal and pre-conscious brain processes.
Utilizing the invention, an investigator can measure how a person responds to a stimulus at a pre-verbal or pre-conscious level. Results from the recording and analysis process are used to calculate neurometric indicators of human responses to stimuli that can be compared to, or serve as an alternative to, more traditional self-reporting measures, such as interviews and survey results.
Aspects of the current invention utilize the principle of “triangulation” across multiple neurological and physiological measurement modalities to improve the accuracy and reliability of consumer response measures. Rather than relying on any single measure, aspects of the invention combine and synchronize multiple measures, employing an integrated and aggregated combination of neurological and physiological modalities to achieve superior accuracy and reliability as compared to prior art.
Embodiments of the invention are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings, in which like reference numbers refer to similar elements.
An embodiment of the invention is a configuration of:
Together, these elements are incorporated in computer instructions on a storage medium that, based on at least a portion of the information received from the set of sensors, determines:
The terms “pre-conscious response” and “pre-conscious reaction” are used interchangeably and refer to a response to stimuli that occurs in the brain or body, but that the subject is not consciously aware of. Pre-conscious responses include, but are not limited by, electrical activity in the brain and physiological responses in the autonomic nervous system (ANS).
The terms “pre-verbal response” and “pre-verbal reaction” are used interchangeably and refer to a response to stimuli that may or may not be “conscious,” in the sense that a subject is aware of the response, but are not verbal, in the sense that the response itself is verbalized, written down, or otherwise self-reported by the subject, or occurs prior to verbalization by the subject. All pre-conscious responses are pre-verbal, but some pre-verbal responses may not be pre-conscious.
The term “pre-verbal and pre-conscious responses” is used to refer to responses that are pre-verbal only, or both pre-verbal and pre-conscious.
An aspect of the invention is the presentation of an experimental task or series of tasks to one or more subjects to elicit pre-verbal and pre-conscious responses to external stimuli. These tasks are adapted from experimental protocols developed in the academic literatures of experimental psychology, social psychology, and neuroscience, and the clinical literature and practice of neurology. Their purpose is to present stimuli to subjects in experimental contexts in which potentially confounding factors are controlled and results are accurately measured for significance and effect size.
As used herein, “experimental tasks” includes both individual and group tasks; that is, tasks a subject performs alone and tasks a subject performs while interacting with other subjects or individuals outside the experimental group; for example, an audience.
Example protocols include, but is not limited to, any of the following, or a combination of any of the following:
These and other protocols are assembled into experimental tasks that are included in an aspect of the invention. The following examples represent an illustrative, partial, and non-exhaustive list of exemplary experimental tasks that can be implemented in different embodiments of the invention.
In an embodiment, to generate a data stream measuring a subject's pre-verbal and pre-conscious responses to product packaging alternatives, the following steps might be performed in an experimental session:
In an embodiment, to generate a data stream measuring a subject's pre-verbal and pre-conscious responses to alternative product benefit statements, the following steps might be performed in an experimental session:
In an embodiment, to generate a data stream measuring a subject's pre-verbal and pre-conscious responses to an online information search experience, the following steps might be performed in an experimental session:
In an embodiment, to generate a data stream measuring a subject's pre-verbal and pre-conscious responses to product auditory attributes, such as a mechanical sound, the following steps might be performed in an experimental session:
In an embodiment, to generate a data stream measuring a subject's pre-verbal and pre-conscious responses to product olfactory attributes, such as a scent or fragrance, the following steps might be performed in an experimental session:
In an embodiment, to generate a data stream measuring a subject's pre-verbal and pre-conscious responses to alternative television advertisements, the following steps might be performed in an experimental session:
In an embodiment, to generate a data stream measuring a subject's pre-verbal and pre-conscious responses to a product-related message, and further, to determine the impact of those responses on the subject's likelihood of purchasing the product, the following steps might be performed in an experimental session:
An aspect of the invention is a system of sensors and recording and analysis devices through which neural signals and physiological signals are collected.
In an embodiment, a physical system comprising an array of sensors and measurement devices is deployed around and coupled to an individual (the subject). The term “coupled” refers to any method of connecting a sensor to an individual, including wired and wireless connections, and invasive and non-invasive connections. In one embodiment, the system is assembled in a research facility or laboratory, but may be assembled in other settings as well.
The number of subjects coupled to the system as one time may include one, two, or more subjects. These subjects may be engaged in individual tasks, in which they are not interacting with each other, or group tasks, in which they are interacting with each other through cooperation, coordination, competition, or some other form of interaction. They may also be engaged in tasks in the presence of individuals who are not subjects in the experiment, for example, an audience.
The subject or subjects may interact with the system while sitting, standing, lying down, or moving about in an environment.
The set of sensors and measurement devices may include, but is not limited to, any of the following, or a combination of any of the following devices:
An aspect of the invention is a method and system for data acquisition and analysis of the acquired data.
In an embodiment of the invention, a system comprised of sensors, recording devices, and computer instructions on a storage medium are employed in a sequence of steps to collect and process a data stream that serves as input into an analysis and measurement calculation process that is carried out in a sequence of steps.
Recording, analysis, and metrics generation in an embodiment of the invention may be comprised of any of the following, or a combination of any of the following steps:
In preparation for recording, subjects are fitted with an electrode cap (201) comprised of 20 to 256 electrodes, connected to an electrical signal amplifier (202) (for example, the EEG data collection system from Advanced Neuro Technologies, Inc.), connected to a computer (203) for recording brain signals and a software program (204) for EEG data acquisition (for example, ASA from Advanced Neuro Technologies, Inc.). To measure EDA through skin conductance response, the subject is connected to a bipolar skin conductance sensor (205) attached to two fingertips of the left hand, which is also connected the (202) electrical signal amplifier. To measure EMG, a bipolar sensor (206) is placed on the subject's face to the left and right of the corrugator muscle, located between the eyebrows, and connected to an electrical signal amplifier (202). To measure Respiration, (207) a rubber belt is placed around the subject's chest and connected to an electrical signal amplifier (202). To measure EKG, two sensors (208) are placed on the subject's chest and connected to an electrical signal amplifier (202).
EEG, ERP and RSVP measures are calculated in post-processing of the EEG signal captured by (201). Gaze tracking and pupillary dilation are measured by an eye-tracking monitor (209) with supporting software (210) running (for example, the Tobii Technologies 2150 monitor and ClearView 2.7 software) on a data acquisition computer (211) dedicated to capturing the eye tracking data stream.
Visual and auditory stimuli are presented to the subject using (212) a commercial stimulus presentation package (for example, eevoke from Advanced Neuro Technologies, Inc.). The subject experiences the visual/auditory stimuli and engages in various actions defined by the experimental protocol using (213) a computer mouse and keyboard.
The stimulus presentation may include any or all of the following visual, auditory, or other sensory components: (221) video of advertisements, (222) video of entertainment programs, (223) dynamic web pages, (224) tasks to be performed in computer software applications, (225) immersive environments or video games, (226) images of products, logos, or brands, (227) word lists referencing concepts associated with any of the above, (228) physical products, (229) taste sensations, (230) olfactory sensations, (231) tactile sensations, and other sensory components as required by the needs of the experimental task.
Neurological and physiological data are recorded on a multiplicity of data collection modalities (EEG, ERP, EMG, EDA, eye tracking, pupillary dilation, heart rate, respiration, reaction time, video recording, voice recording) before, during, and after stimuli presentation associated experimental tasks are performed by the subject.
Following completion of the data acquisition, the subject is disconnected from the data collection devices and the data collection session is concluded. All data streams are backed up on an archival storage computer (301). Data is then prepared for synchronization, consolidation, data reduction, and analysis.
Synchronization and consolidation of visual data consists of the following steps: eye gaze location data, eye gaze fixation data, and mouse click data from the eye tracking software (210) is merged with the EEG data stream stored in the EEG recording computer (203). EDA, EMG, EKG, and Respiration are merged in the synchronized dataset with the visual data and EEG.
RSVP and ERP results are derived from the raw EEG data using analytic software (302) (such as ASA from Advanced Neuro Technologies, Inc.). The process of reducing the raw data to ERP and RSVP outputs consists of the following steps: (303) re-referencing the sensor channels to an average reference montage, (304) bandpass filtering the electrical signals, (305) correcting the channel signals for eye blinks and facial muscle movements, (306) manually disabling any channels exhibiting unstable signals or excessive electrical noise, (307) interpolating any disabled channels, (308) detecting and rejecting artifacts above and below specified frequency levels, (309) identifying data epochs based on coded triggers in the data stream, and (310) creating conditions representing the various stimulus types, (311), averaging the signals within each condition, and (312) detrending the averaged data.
All data streams are stored in an analytic software programming environment (321) (for example, MATLAB from The MathWorks, Inc.). Data is consolidated and “triangulated” using custom software programs (322) that align and synchronize neurological and physiological datasets across all modalities at millisecond time intervals. Metrics for pre-verbal and pre-conscious responses to stimuli are calculated for each subject using statistical and data reduction algorithms (323) developed for that purpose.
Results collected from multiple subjects are grand-averaged and combined into a dataset (324) that aggregates and summarizes independent and dependent variables relating to target stimuli. Aggregated results are calculated and analyzed for validity and statistical significance (325).
Results are collected into a written report (331) describing the range and depth of pre-verbal and pre-conscious responses to stimuli for the sample of subjects tested. In addition, results are stored in a normative database of findings (332) that can be used for cross-stimuli comparisons and trend analyses (333).
An aspect of the invention is a method and system for the calculation of specific metrics, also referred to as neurometrics, that identify components of subjects' individual and aggregated responses.
In this aspect of the invention, computer instructions on a storage medium are used to produce metrics from the data acquisition and analysis process. These metrics, also referred to as implicit response metrics, include, but are not limited to, any of the following, or a combination of any of the following metrics of pre-verbal and pre-conscious responses to external stimuli:
An aspect of the invention is a method and system for combining implicit response metrics with explicit response metrics, the latter including verbal, written, and instrument-mediated conscious responses to stimuli.
In an embodiment of the invention, implicit response metrics are used as independent variables to predict, explain, or validate metrics that measure conscious beliefs, opinions, attitudes and behaviors, also call explicit response metrics, that are useful to product developers and marketers, such as product preferences, purchase decisions and inclusion in product consideration sets.
Examples of metrics that integrate implicit response metrics with explicit response metrics include, but are not limited to, any of the following, or a combination of any of the following:
An embodiment of the invention can be utilized in any context in which pre-verbal and pre-conscious responses to external stimuli would be useful for some analytical purpose. Example uses include, but are not limited to, responses to brands and products, responses to graphic and industrial designs, responses to semantic formulations and messages, responses to political phrasings and terminology, responses to individuals such as political or business figures, responses to objects in virtual reality environments or immersive gaming environments, within-subject or within-group longitudinal responses to a single stimulus over time, responses to in-store layouts and designs, responses to print and online media presentations, responses to education, training and learning approaches, and truth detection.
While different embodiments of the present invention has been illustrated and described, it would be obvious to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended in the appended claims all such changes and modifications that are within the scope of this invention.
This application claims priority from U.S. Provisional Patent Application No. 60/911,629, filed Apr. 13, 2007. U.S. Provisional Application No. 60/911,629 is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60911629 | Apr 2007 | US |