METHOD AND SYSTEM FOR MEASURING POROSITY OF PARTICLES

Abstract
A method for analyzing porosity of a particle and a medium disposed in the porosity of the particle. A video-holographic microscope is provided to analyze interference patterns produced by providing a laser source to output a collimated beam, scattering the collimated beam off a particle and interacting with an unscattered beam to generate the interference pattern for analyzation to determine the refractive index of the particle and a medium disposed in the porosity of the particle to measure porosity and the medium.
Description

The present invention is directed to an improved method and system for analyzing properties of particles including particle size, indices of refraction, process of particle porosity development and particle porosity characterization measured by holographic characterization. More particularly the invention concerns a method, system and computerized method of analysis for characterization of particle porosity by determining refractive indices of particles, such as colloidal spheres, by holographic video microscopy.


BACKGROUND OF THE INVENTION

The properties of colloidal particles synthesized by emulsion polymerization typically are characterized by methods such as light scattering, whose results reflect averages over bulk samples. However, such methods do not allow determining porosity for individual particles, particularly in suspension nor allow characterization of porosity development in particles. Consequently, a substantial need exists for a method and system for determining particle porosity and analyzing its development in particles.


SUMMARY OF THE INVENTION

The recent introduction of holographic characterization techniques now has enabled direct characterization of the radius and refractive index of individual colloidal spheres with very high resolution. Such article-resolved measurements, in turn, provide previously unavailable information on the distribution of properties in colloidal dispersions. We have used these techniques to be able to measure the porosity of individual colloidal spheres, and to probe the processes by which porosity develops during their synthesis.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an in-line holographic video microscope system;



FIG. 2A illustrates a holographic video microscope image of a nominally 1.2 μm diameter polystyrene sphere in water; and FIG. 2B shows a fit of the image in 2A to the predictions of Lorenz-Mie theory for the sphere's position, {right arrow over (rp)}(t), its radius, ap, and its refractive index, np; and FIG. 2C shows a distribution of measured radii and refractive indexes for a randomly selected sample of 2,500 spheres such as the example in FIG. 2A; each point represents the result for one sphere and is colored by the relative probability density ρ(ap,np) for finding spheres of radius ap and refractive index np;



FIG. 3A illustrates a distribution of droplet sizes and refractive indexes for emulsified silicone oil in water; FIG. 3B shows anti-correlated properties of a monodisperse sample of emulsion polymerized silica spheres in water; and FIG. 3C shows equivalent results for a monodisperse sample of PMMA spheres in water; and



FIG. 4A illustrates distribution of the scaled volumes and porosities of individual colloidal spheres composed of polystyrene (from the data in FIG. 2C); FIG. 4B shows silica (see FIG. 3B), and FIG. 4C shows PMMA (see FIG. 3C).





DETAILED DESCRIPTION OF THE INVENTION

The method and system includes an in-line holographic video microscope system 10 in which individual colloidal spheres are illuminated by the collimated beam 20 from a fiber-coupled diode laser 30 (iFlex Viper, λ=640 nm, 5 mW) on the stage of an otherwise conventional light microscope 40 (Nikon TE 2000U). Light 45 scattered by a sample particle 35, such as for example, a sphere interferes with the unscattered portion of the beam 20 in the focal plane of the microscope's objective lens 50 (Nikon Plan-Apo, 100×, numerical aperture 1.4, oil immersion). The preferred form of the system 10 includes eyepiece 70. The interference 55 pattern is magnified by the microscope system 10, and its intensity is recorded with a video camera 60 (NEC TI-324AII) at 30 frames/s and a resolution of 135 nm/pixel. The example in FIG. 2A shows the hologram of a polystyrene sphere dispersed in water.


Each particle's image is digitized at a nominal 8 bits/pixel intensity resolution and analyzed using predictions of the Lorenz-Mie theory of light scattering to obtain the particle's position in three dimensions, its radius, and its complex refractive index. FIG. 2B shows the pixel-by-pixel fit to the measured hologram in FIG. 1. The microscope system 10 is defocused for these measurements so that each particle's interference pattern subtends a 100×100 pixel field of view. Motion blurring is minimized by setting the camera's exposure time to 0.1 ms and the illuminating laser's intensity is regulated to make optimal use of the recording system's dynamic range. Fitting to such a large amount of data reliably yields estimates for the adjustable parameters with part-per-thousand resolution.


Hereinafter, we shall describe the method and system of the invention in the context of the particle being a sphere, although the method and system can be readily applied to any particle shape by well known modification of the Lorenz-Mie method or use of other well known analytical formalisms. The data in FIG. 2C were collected from 5,000 polystyrene spheres selected at random from a monodisperse sample (Duke Scientific, catalog number 5153, lot 26621). The suspension was diluted with deionized water so that no more than 10 spheres were in the field of view at any time, and was flowed in a microfluidic channel past the observation volume at a peak speed of 100 μm/s. The entire data set was acquired in 15 min. Each data point in FIG. 2C represents the radius and refractive index of a single sphere, with error bars comparable in size to the plot symbols. Individual symbols are colored according to the sample-estimated probability density p(ap,np) for finding a sphere with radius ap and refractive index np.


These results suggest a mean particle radius ap=0.778±0.007 μm that is consistent with the manufacturer's specification. The mean refractive index np=1.572±0.003 is significantly smaller than the value of 1.5866 obtained for bulk polystyrene at the imaging wavelength. It is consistent with previous bulk measurements on colloidal polystyrene spheres.


More surprising is the distinct anti-correlation between radius and refractive index revealed by the data in FIG. 2C. Such a relationship could not have been detected with bulk probes, such as dynamic light scattering. It suggests that the larger particles in a sample are less optically dense than those on the smaller end of the distribution, and thus presumably more porous.


The data in FIG. 3A-3C demonstrate that observed anti-correlation is not an artifact of the technique, but rather is a common feature of colloidal samples synthesized by emulsion polymerization. FIG. 3A shows results for a very polydisperse sample of silicone oil droplets (Dow Corning 200 fluid) stabilized with Pluronic L92 surfactant in water. Although the range of particle radii is large, the distribution of refractive indexes is consistent with the part-per-thousand resolution estimated from the uncertainty in the fitting parameters. This is reasonable because the droplets all are composed of the identical material and are not at all porous. The lack of covariance between measured radii and refractive indexes in this sample therefore demonstrates the absence of instrumental or analytical bias in the methods used to study emulsion polymerized colloidal samples.


The data in FIGS. 3B and 3C show additional results for monodisperse aqueous dispersions of colloidal silica spheres (Duke Scientific, catalog number 8150) and colloidal polymethylmethacrylate (PMMA, Bangs Laboratory, catalog number PP04N) spheres, respectively, both synthesized by emulsion polymerization. These samples both display anti-correlations between size and refractive index comparable to that of the polystyrene sample in FIGS. 2A-2C, but with different correlation coefficients. Observations on similar samples obtained from different manufacturers reveal a range of apparent correlation coefficients that may reflect differing growth conditions.


To explore this possibility, we model the growth of a colloidal sphere as the accretion of N monomers of specific volume v. Assuming a typical sphere to be comprised of a large number of monomers, and further assuming that all of the spheres in a dispersion grow under similar conditions, the probability distribution for the number of monomers in a sphere is given by the central limit theorem:












P
N



(
N
)


=


1

σ
N





2
π




exp


(

-



[

N
-

N
0


]

2


2






σ
N
2




)




,




(
1
)







where N0 is the mean number of monomers in a sphere and σN2 is the variance in that number.


Were each sphere to grow with optimal density, its volume would be Nv. Development of porosity p during the growth process increases the growing sphere's volume to











V
p

=



4
3


π






a
p
3


=

vN

1
-
p




,




(
2
)







The probability distribution for finding a sphere of volume V therefore depends on the porosity:











P


(


V
p


p

)


=



1
-
p


σ
V





2
π




exp


(

-



[



V
p



(

1
-
p

)


-


N
0


v


]

2


2






σ
V
2




)




,




(
3
)







where σv=vσN. An individual sphere's porosity, in turn, can be estimated from its measured refractive index through the Lorentz-Lorenz relation.










p
=



f


(

n
p

)


-

f


(

n
2

)





f


(

n
1

)


-

f


(

n
2

)





,




(
4
)







where n1 is the refractive index of the sphere at optimal density, n2 is the refractive index of the surrounding fluid medium, and f(n)=(n2−1)/(n2+2). In another form of the invention other analytical methods can be used to measure porosity, such as the “parallel model” where np=pn(1−p)n2 or the series model where 1/np=p/n1+(1−p)n2.


If, furthermore, a sphere's porosity develops uniformly as it grows, Eqs. (3) and (4) suggest that the rescaled volume, Vp (1−p), should be independent of porosity p. This is indeed the case for the data in FIG. 2C whose marked anti-correlation largely (although not completely) disappears when replotted in FIG. 4A. Here, we have used n1=1.5866 for bulk polystyrene and n2=1.3324 for water [14]. Comparably good results are obtained with the silica spheres from FIG. 3B (n1=1.4568) and the EMMA spheres from FIG. 4C (n1=1.4887).


Small residual anti-correlations between scaled volume and porosity, particularly evident in the silica data in FIG. 4B, primarily arise in the tails of the size and porosity distribution. Considering only those spheres in the upper half of the relative probability distributions in FIGS. 4A-4C remove any statistically significant relationship as measured by Kendall's rank correlation test. The residual covariance between p and Vp (1−p) is less than 10-4 for the high-probability fraction in all three samples. The observed correlations in the complete data sets therefore arise primarily in the tails of the distribution, and may reflect real temporal or spatial variations in the growth conditions. The absence of correlations in the highest-probability sample is consistent with the simplified model for the development of porosity, and also with the use of effective medium theory for interpreting individual spheres' light-scattering properties. More specifically, our neglect of radial gradients in porosity appears to be justified for the samples we have investigated.


The values obtained for single-particle porosities should be interpreted with care. Our method does not account for inhomogeneity in a particle's porosity. It also assumes that pores are filled with the same fluid in which the spheres are dispersed, and furthermore that the imbibed fluid retains its bulk refractive index. Departures from these assumptions will give rise to systematic errors in the estimated porosity values. Even though single-particle values for np are believed to be both precise and accurate, the precision of the porosity distributions in FIGS. 4A-4C therefore need not guarantee their accuracy.


Holographic particle characterization can be used to assess the porosity of individual colloidal particles and insights into the methods by which porosity develops in samples of emulsion-polymerized colloidal spheres and other particle shapes. For the variety of samples we have studied, porosity appears to develop with a probability distribution that is largely independent of the distribution of monomer number in the spheres. This leads to an apparent anti-correlation in the distribution of particles' radii and refractive indexes, which is stronger in more porous materials and is entirely absent in fully dense spheres. These observations, in turn, have ramifications for possible uses of emulsion polymerized colloidal particles in such applications as colloidal photonics.


In another aspect of the invention a conventional computer system can execute computer software stored in an appropriate memory, such as a ROM or RAM memory, embodying the analytical methodologies set forth hereinbefore to determine porosity of the subject particles.


The foregoing description of embodiments of the present invention have been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the present invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the present invention. The embodiments were chosen and described in order to explain the principles of the present invention and its practical application to enable one skilled in the art to utilize the present invention in various embodiments, and with various modifications, as are suited to the particular use contemplated.

Claims
  • 1. A method of analyzing characteristics of a particle in suspension, comprising the steps of: providing a particle in a suspension medium;providing a video holographic microscope;providing a laser source for producing a collimated output beam;scattering the collimated output beam off the particle to generate a scattered beam and a combination of the scattered beam and an unscattered portion of the output beam to generate an interference pattern;recording intensity of the interference pattern for analysis;analyzing the interference pattern to determine refractive index of the particle; andcomparing characteristics of an average of a bulk form of the material composing the particle to the particle refractive index to characterize parameters of the particle and the suspension medium.
  • 2. The method as defined in claim 1 wherein the step of analyzing comprises determining the refractive index and then performing the comparing step to establish at least one of porosity of the particle and character of the suspension medium disposed in pores of the particle.
  • 3. The method as defined in claim 1 wherein the step of analyzing the interference pattern comprises applying a Lorenz-Mie formalism to determine the refractive index of the particle.
  • 4. The method as defined in claim 1 further including the step of analyzing the interference pattern during growth of the particle, thereby enabling characterization of development of porosity in the particle.
  • 5. The method as defined in claim 3 wherein the Lorenz-Mie formalism comprises, I(r)=|E0(r)+E0(rp)fs(k(r−rp))|2,where I(r) is intensity of the interference pattern recorded at position r, E0(r) is the electric field of the output laser at position r, rp is the position of the particle, k is the wavenumber of the light, and fs(kr) is the Lorenz-Mie scattering function that describes scattering of light by the particle and wherein the Lorenz-Mie scattering function depends on radius of the particle, ap, effective refractive index np of the particle.
  • 6. The method as defined in claim 5 where the effective refractive index np of the particle depends on refractive index n1 of the material from which the particle is composed, porosity p of the particle, and refractive index n2 of the medium that fills the pores within the particle.
  • 7. The method as defined in claim 6 where the porosity p of the particle is related to the effective refractive index of the particle, np, the refractive index n1 of the bulk material from which the particle is composed and the refractive index n2 of the material filling the particle's pores according to
  • 8. The method as defined in claim 1 further including a computer system for executing computer software to carry out the steps of analyzing the interference pattern and comparing the refractive index of the bulk to the refractive index of the particle.
  • 9. A method of analyzing a medium disposed in a particle in suspension, comprising the steps of: providing a video holographic microscope;providing a laser source for producing a collimated output beam;scattering the collimated output beam off the particle to generate a scattered beam and a combination of the scattered beam and an unscattered portion of the output beam to generate an interference pattern;recording intensity of the interference pattern for analysis;analyzing the interference pattern to determine refractive index of the particle; andcomparing refractive index of an average of a bulk form of the particle to the refractive index of the particle in the suspension to determine a measure of the medium disposed in porosity of the particle.
  • 10. The method as defined in claim 9 wherein the step of analyzing the interference pattern comprises applying a Lorenz-Mie formalism to determine the refractive index of the particle containing the medium.
  • 11. The method as defined in claim 9 further including the step of analyzing the interference pattern during growth of the particle, thereby enabling characterization of development of the medium disposed in the porosity in the particle.
  • 12. The method as defined in claim 10 wherein the Lorenz-Mie formalism comprises, I(r)=|E0(r)+E0(rp)fs(k(r−rp))|2.where I(r) is intensity of the interference pattern recorded at position r, E0(r) is the electric field of the output laser at position r, rp is the position of the particle, nm is the refractive index of the medium disposed in the porosity of the particle, k is the wavenumber of the light, and fs(kr) is the Lorenz-Mie scattering function that describes scattering of light by the particle, wherein the Lorenz-Mie scattering function depends on radius of the particle, ap, effective refractive index np of the particle.
  • 13. The method as defined in claim 9 further including a computer system for executing computer software to carry out the steps of analyzing the interference pattern and comparing the refractive index of the bulk to the refractive index of the particle with the medium disposed in the porosity.
  • 14. The method as defined in claim 12 wherein nm is selected from the group consisting of the refractive index of a suspension fluid wetting the particle and nm=1 wherein the porosity of the particle is a void.
  • 15. A method of analyzing a particle in suspension, comprising the steps of: providing a video holographic microscope;providing a laser source for producing a collimated output beam comprised of a plurality of different wavelengths of light;scattering the collimated output beam off the particle by simultaneously using the plurality of different wavelengths of light to generate a plurality of scattered beams and a combination of the scattered beams and an unscattered portion of the output beam to generate a plurality of interference patterns;recording intensity of the interference pattern;analyzing the interference patterns to determine refractive index of the particle; anddetermining a measure of at least one of porosity of the particle and a medium disposed in the porosity of the particle.
  • 16. The method as defined in claim 15 wherein the step of analyzing the interference pattern comprises applying a Lorenz-Mie formalism to determine at least one of the refractive index of the particle and the medium disposed in the porosity of the particle.
  • 17. The method as defined in claim 15 further including the step of analyzing the interference pattern during growth of the particle, thereby enabling characterization of development of the porosity in the particle and the medium disposed in the porosity of the particle.
  • 18. The method as defined in claim 16 wherein the Lorenz-Mie formalism comprises, I(r)=|E0(r)+E0(rp)fs(k(r−rp))|2.where I(r) is intensity of the interference pattern recorded at position r, E0(r) is the electric field of the output laser at position r, rp is the position of the particle, k is the wavenumber of the light, and fs(kr) is the Lorenz-Mie scattering function that describes scattering of light by the particle, wherein the Lorenz-Mie scattering function depends on radius of the particle, ap, and on effective refractive index np of the particle.
  • 19. The method as defined in claim 15 further including a computer system for executing computer software to carry out the steps of analyzing the interference pattern and comparing the refractive index of the bulk to the refractive index of the particle.
  • 20. The method as defined in claim 18 wherein n2 is selected from the group consisting of nm, refractive index of the suspension fluid wetting the particle, and n2=1 wherein the porosity of the particle is a void.
CROSS REFERENCE TO RELATED PATENT APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 13/883,260, filed Nov. 4, 2011, which was the National Stage Entry of International Application No. PCT/US2011/59400, filed Nov. 4, 2011, which claims the benefit and priority to U.S. Application No. 61/410,739, filed Nov. 5, 2010, all of which are incorporated herein by reference in their entireties.

Government Interests

The U.S. Government has certain rights pursuant to grants from the National Science Foundation through Grant Number DMR-0820341 and in part by the NSF through Grant Number DMR-0922680.

Provisional Applications (1)
Number Date Country
61410739 Nov 2010 US
Divisions (1)
Number Date Country
Parent 13883260 Jul 2013 US
Child 15376274 US