This application claims priority to Korean Patent Application No. 10-2015-0070256 filed on May 20, 2015 and all the benefits accruing therefrom under 35 U.S.C. §119, the contents of which are incorporated by reference in their entirety.
The present disclosure relates to an ocean magnetic survey for exploring metal natural resources, large-scale geological structures, and pipelines in the sea floor, and more particularly, to a method and system for accurately obtaining a total earth's magnetic field value by correcting distortion, caused by a probe constructed with a metal, in value of magnetic survey measurement at the time of undertaking the ocean magnetic survey, and a computer-readable recording medium with which the method is executable in a computer.
Referring to
The earth's magnetic field is established with about 98% of internal factors caused by liquid metal movement(referring to
As illustrated in
As shown in Table 1, the magnetic survey has a wide application range from small-scale exploration for searching a pipeline or cable near the surface of the earth to large-scale exploration such as exploration of petroleum resources. As the magnetic survey is frequently used, researches on magnetism of rock or mineral become active. In particular, researches on and applications of residual magnetism of a rock are developed to paleomagnetism, which occupies an important position in geophysics since 1950s, and to be presented as a quantitative evidence for proving main theories of modern geology such as a continent drift theory or a seafloor spreading theory. In addition, in view of industry, they are particularly used for investigating a subsurface structure such as bed rock at the time of exploring petroleum resources and are usefully used together with gravity survey and elastic wave exploration data.
In other words, while the total earth's magnetic field of an exploration target area is measured through the ocean magnetic survey, sudden variation of the earth's magnetic field is determined and elements such as metal cables or pipelines, or metal veins, which influence on the magnetic field, may be explored. Accordingly, it is very important to accurately measure a value of total earth's magnetic field in the ocean magnetic survey. However, since the value measured with marine magnetometer includes a value of magnetic field induced by a probe (manufactured from a ferromagnetic steel material), it is difficult to obtain a pure value of the total earth's magnetic field.
The present disclosure provides a method, system, and computer recording medium for measuring a total earth's magnetic field for an ocean magnetic survey through elimination of geomagnetic disturbance, which is capable of accurately measuring the total earth's magnetic field in an exploration target area by eliminating influence of a magnetic field induced by a probe manufactured from a metal material at the time of ocean magnetic survey.
In accordance with an exemplary embodiment of the present invention, a method for measuring a total earth's magnetic field for an ocean magnetic survey, including: a measuring operation for measuring an earth's magnetic field value using a magnetometer according to a heading angle of a probe, which is measured in clockwise direction on a basis of the true north, while the probe moves along a circular path based on a center point in an exploration target area with the magnetometer taken in tow; a data input operation for receiving, by a calculation unit, data for the heading angle of the probe and data for the earth's magnetic field value measured at the heading angle; a calculating operation for setting, by the calculation unit containing a calculation program therein, a magnetic disturbance value induced by the probe, which is included in the measured earth's magnetic field value ; and calculating an actual earth's magnetic field value by subtracting the magnetic disturbance value from the measured earth's magnetic field value.
According to an embodiment, in the calculating operation, the magnetic disturbance value may be calculated by the following Equation (1),
magnetic disturbance value=C0+C1 cos θ+C2 cos 2θ (1)
where θ denotes the heading angle of the probe, which is measured from the true north in clockwise direction, C0, C1, and C2, denote constants according to magnetic characteristics of the probe and distances from the exploration target area and the magnetometer to the probe,
According to another embodiment, the calculation program may determine the constants C0, C1, and C2 of Equation (1) of the magnetic disturbance value so as to minimize differences between variations of the earth's magnetic field values continuously measured while the probe moves and changes the heading angle on a basis of an earth's magnetic field value measured at an initial point (the true north direction of the heading angle of 0° of the probe) and each magnetic disturbance value induced by the probe which moves and changes the heading angle.
Exemplary embodiments can be understood in more detail from the following description taken in conjunction with the accompanying drawings, in which:
As described above, it is difficult to determine an accurate value of the total earth's magnetic field in the exploring target area due to an influence of the magnetic field induced by the probe in the ocean magnetic survey. Thus in 1961, Bullard and Mason proposed a method (i.e. the following Equation (1)) for eliminating an influence of a probe from magnetic measurement data, and the present disclosure is based on the Bullard and Mason's method.
F
Q
=F+C
0
+C
1 cos θ+C2 cos 2θ+S1 sin θ+S2 sin 2θ (1)
where FQ denotes a value measured by a marine magnetometer, F denotes a value of a total earth's magnetic field, θ denotes the heading of the probe, which is measured from the north in a clockwise direction, and C0, C1, C2, S1, and S2 denote constants according to magnetic characteristics of the probe, and distances from an exploration target area and the magnetometer to the probe.
Here, for a probe having a bilateral symmetry, an influence of sine values is very smaller than that of cosine values, and S1 and S2 may be set as 0 (Bullard and Mason, 1961). Accordingly, Equation (1) may be arranged to the following Equation (2).
F
Q
=F+C
0
+C
1 cos θ+C2 cos 2θ (2)
The underlined part of Equation (2) is caused by a magnetic field induced by the probe, and is an element for distorting a measured value FQ of the earth's magnetic field. Accordingly, once values of C0, C1, and C2, are known, a pure total earth's magnetic field F in an exploring target area may be obtained by eliminating the underlined elements from the measured magnetic field FQ.
‘Bullard and Mason’ proposed a method for eliminating the probe's influence.
Referring to
In the present disclosure, with respect to the measured values, a matrix and a least squares method are introduced to obtain the constants C0, C1, and C2, and through this, the total earth's magnetic field may be accurately measured.
Hereinafter, a description will be provided in detail about a method for measuring a total earth's magnetic field in an ocean magnetic survey through eliminating geomagnetic disturbance (hereinafter, total earth's magnetic field measuring method, total earth's magnetic field measuring system) according to an embodiment of the present disclosure. The total earth's magnetic field measuring method according to the present disclosure may be realized with a time series method, and may he more concretely realized by a computer readable program. Accordingly, the present disclosure is performed by executing a program in a computer in which the program is installed or in a computer using a recording medium on which the program is recorded.
Firstly, the total earth's magnetic field measuring system according to the present disclosure includes a probe, a marine magnetometer, and a calculation unit with a computer program contained therein. As described above, the probe is manufactured from a metal material, and the marine magnetometer is disposed in the sea in a state of being connected to the probe through a wire line. According to movement of the probe, the marine magnetometer is taken in tow and measures a magnetic field value of each point. In addition, magnetic field data obtained by the marine magnetometer is transmitted to the calculation unit by an electrical connection means, and the calculation means calculates a pure value of total earth's magnetic field in an exploration target area by removing an earth's magnetic field distortion element caused by the probe through a calculation algorithm described later.
Using the foregoing system, the total earth's magnetic field measuring method will be described.
Referring to
For the measured data, the calculation unit calculates the constants C0, C1, and C2 for determining the influence of the magnetic field induced by the probe by applying a calculation algorithm according to the present disclosure.
In addition, the pure value F of the total earth's magnetic field in the exploration area may be obtained by removing the influence by the probe from the total earth's magnetic field value FQ that is obtained by substituting the constants to Equation (2).
Hereinafter, the core equation of the calculation program, which is developed by researchers of the present disclosure, is expressed as the following Equation (3) by subtracting a matrix Y from multiplication of matrixes A and C and introducing the least squares method (parts expressed with min and square) and 2-Norm (parts expressed with a subscript of 2 and double absolute value bars).
min∥AC−Y∥22 (3)
From Equation (3), a matrix C for the magnetic disturbance constants C0, C1, and C2 may be obtained like the following Equation (4) (detailed procedure will be described later).
C=(ATA)−1·(ATY) (4)
where a superscript T in Equation (4) denotes a transpose matrix of each matrix. For example, AT is a transpose matrix of a matrix A.
Firstly, concepts of the least squares method and 2-Norm introduced to the calculation program are well-known in Algebra, and therefore they are briefly explained herein. Referring to the graph of
In other words, when X=(x1, x2, x3 . . . . xn), 1-Norm and 2-Norm are defined as the following.
1-Norm is a sum of absolute values of each value, and 2-Norm is to put a sum of squares of each value to the power of 1/2. The present calculation program uses 2-Norm.
Equation (9), which is the core of the calculation program employed herein, is derived by defining a difference between the measured magnetic field value and an actual magnetic field value, namely, the value of magnetic field induced by the probe (herein a magnetic disturbance value). In other words, through applying the binominal theorem to Equation (2), the pure value F of magnetic field in the exploration area is subtracted from the actually measured magnetic value FQ to be expressed as the following.
F
Q
−F=C
0
+C
1 cos θ+C2 cos 2θ
In addition, since values are generated according to the heading direction θ of the probe, a matrix is introduced to express the values as the following.
(here, when n<3, where n is the number of data measured through the circular survey, C may not exist)
In other words, multiplication A·C of matrixes A and C is a combined expression of a magnetic disturbance value at each point of the circular survey.
In addition, when a total earth's magnetic field value measured at 0° (start point) of the heading direction of the probe is set as a reference, Y may indicate a variation of the total earth's magnetic field value represented according to the probe's heading direction. In other words, since the probe does not move when the heading thereof is at 0°, the actually measured value FQ by the magnetometer may be considered as a pure value that is not influenced by the magnetic disturbance value caused by the probe. In addition, as the probe changes the heading thereof and moves, a variation value FQ−F0 of the actually measured earth's magnetic field may be considered as the magnetic disturbance value yn occurred by the probe.
y
n
=F
Q
−F
0
=C
0
+C
1 cos θ+C2 cos 2θ
Accordingly, a matrix function AC−Y for which the matrix Y is subtracted from the multiplication AC of the matrixes A and C is set. For the value of AC−Y, the least squares method and 2-Norm are introduced to set [min∥AC−Y∥22] like Equation (3), and the matrix C for minimizing the value of Equation (3) is obtained.
Obtaining a solution of the matrix C for minimizing Equation (3) means that the best fit curve to the actually measured values may be obtained.
Hereinafter, a procedure for obtaining the solution of matrix C will be described.
From the matrix of Equation (3), the 2-Norm and squares may be expressed as the following.
In the intermediate equation (1), the superscript T denotes a transpose matrix.
Accordingly, in the intermediate equation (1), CTATAC−2CTATY+YTY may be changed to C2A2−2CAY+Y2. This is because the transpose matrix is just to transpose rows and columns of a matrix and an absolute value thereof is identical.
In order to obtain the matrix C, the following intermediate equation (2) is derived from the intermediate equation (1) through partial differentiation.
∇(CTATAC−2CTATY+YTY)C=2ATAC−2ATY=0 intermediate equation (2)
In other words, partially differentiating C2A2−2CAY+Y2 with respect to C becomes 2CA2−2AY. However, since a sequence change is not allowed in the matrix operation, the intermediate equation (2) is arranged in that order.
Accordingly, the following Equation (4) may be derived by solving the intermediate equation (2) of 2ATAC−2ATY=0 with respect to C. Equation (4) is like the following.
C=(ATA)−1·(ATY) (4)
where (ATA)−1 is an inverse matrix of ATA, Y denotes a variation Δ of the total magnetic field measured along the heading of the probe, when the total magnetic field value measured at 0° of the probe's heading is set as a reference.
Accordingly, by solving Equation (4), the solution (C0, C1, C2) of the matrix C may be obtained. The calculation unit, which is an element of the present disclosure, contains Equation (4), and when data is input, calculation for obtaining the solution of matrix C is performed.
When the solution of the matrix is obtained, since the magnetic disturbance value (C0+C1 cos θ+C2 cos 2θ) induced by the probe may be known, the pure value of total magnetic value in the exploration target area may be calculated by subtracting the magnetic disturbance value from the actually measured total magnetic field value at each heading of the probe.
In other words, in the present disclosure, it is set (AC−Y=0) that there is no influence of disturbance magnetic field induced by the probe by selecting the total magnetic field value measured at a initial start time (a heading angle 0° of the probe) of the probe as an actual magnetic value. Thereafter, a solution for the matrix C is obtained for minimizing a difference between total magnetic field values Y (Y values actually mean a variation from the start time, since it is set that AC−Y=0 at the start time) measured while the probe moves. Once the solution of the matrix C is obtained, since the disturbance magnetic field value induced by the probe is capable of being calculated, the actual total magnetic field value may be accurately calculated by subtracting the magnetic disturbance value from the actually measured total magnetic value.
Hereinafter, an example of a procedure for mathematically obtaining the matrix C of Equation (4) will be described. In order to avoid mathematical complexity, the procedure is simplified with values measured at four angles θ1, θ2, θ3, and θ4. The operation is performed as the following four steps of STEP 1 to 4.
STEP1: ATA (here, AT is a transpose matrix of A)
Aij=value that horizontal components of AT are respectively multiplied by vertical components of A and summed
STEP2: obtain (ATA)−1 (i.e. inverse matrix of ATA)
(ATA)−1may be expressed as the following by the inverse matrix theorem.
STEP3: obtain ATY
STEP4: substitute (ATA)−1·ATY
At this point, matrix
and matrix
As described above, the calculation unit may receive data for the heading angle θ of the probe and data for magnetic values measured at each angle, solve the above-described matrixes to obtain the magnetic disturbance constants C(C0, C1, C2) and may obtain the magnetic disturbance value induced by the probe. In addition, an actual magnetic field value in the exploration target area may be accurately determined by subtracting the magnetic disturbance value from the actually measured magnetic value.
The researchers of the present disclosure performed experiments in order to investigate effects of the total magnetic field measuring method and calculation program.
As illustrated in
Through the above-described experiment, a magnetic survey was performed by using the vessel of “Joides Resolution” in area of “Ori Massif” and magnetic disturbance constants C(C0, C1, C2) were obtained as the following by using the calculation program, and the disturbance magnetic field value FH by the probe vessel was obtained.
F
H
=C
0
+C
1 cos θ+C2 cos 2θ=40.91−45.89 cos θ+3.66 cos2θ
Referring to
The following Table 2 and Table 3 show results of cross-over error comparison before and after correction of the magnetic disturbance caused by the probe with the present calculation program in the above-described experiment.
Before the correction of magnetic disturbance, it shows an average error of 20.2 nT, a maximum error of 48.2 nT, and a minimum error of 5.7 nT.
After the correction of magnetic disturbance, it shows an average error of 6.2 nT, a maximum error of 12.1 nT, and a minimum error of −0.1 nT. In other words, as a result of performing the correction with the present calculation program, it may be seen that an error range is remarkably reduced. This means that when the circular survey is performed and the calculation program is executed according to the present disclosure, an influence of the disturbance magnetic field induced by the probe is minimized in an ocean magnetic survey to enable a reliable magnetic survey.
In particular, the present disclosure is not applied only to a specific magnetometer, but is useable to all magnetometers regardless of types thereof. Furthermore, even an area where the exploration is already performed, when there are magnetic field measurement values according to a heading angle of the probe, correction therefor may be possible through post-processing data by executing the present calculation program.
According to the method and system for measuring a total earth's magnetic field in the ocean magnetic survey, when a magnetic survey is undertaken by using a vessel in an exploration target area, the value of total earth's magnetic field in the exploration target area may be accurately measured by removing an influence of the magnetic field induced by the vessel.
In addition, post-processing correction for the magnetic survey data is possible by using already measured data, even when the exploration is completed.
In addition, the system and method according to the present disclosure may be applied to all the magnetometers used for magnetic survey regardless of a type thereof.
Although the method and system for measuring total earth's magnetic field in ocean magnetic survey through elimination of geomagnetic disturbance and Recording medium therefor have been described with reference to the specific embodiments, they are not limited thereto. Therefore, it will be readily understood by those skilled in the art that various modifications and changes can be made thereto without departing from the spirit and scope of the present invention defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2015-0070256 | May 2015 | KR | national |