The present invention relates generally to seismic monitoring and more particularly to a system and method for location error analysis and the display of information regarding microseismic events associated with a monitored volume.
Passive localization of microseismic events is commonly used to monitor resource extraction processes such as hydraulic fracture stimulation, or “fracking,” and has also been applied in monitoring other processes such as carbon sequestration and pumping of injection wells. In a typical scenario, an array of geophones is positioned in a monitor well near the well undergoing treatment. The array records seismic energy released impulsively from induced failure events as fractures form. Arrival times and polarizations of P-waves and S-waves impinging the array, among other features, are used to estimate the location of each detected event. The set of event location estimates is then used in understanding treatment results, such as total stimulated volume.
Inaccuracies in location estimates result from seismic background energy and uncertainties in seismic wave propagation, and are related to the array and fracture geometry. As described in co-pending application Ser. No. 13/598,580, which is incorporated herein by reference, localization errors remain poorly understood, and have been explored mainly through computer simulation by generating noisy travel times and polarizations (see, e.g., L. Eisner et al., “Uncertainties in passive seismic monitoring,” The Leading Edge, June, 2009). While some rules of thumb have been developed using this approach, they are not easily applied to real-world scenarios, and their limits of applicability are not known. Without having a known mathematical relationship between the scenario geometry and signal characteristics and the localization error, it may not be possible to determine whether a characteristic of the collection of event locations results from measurement error or is important to the interpretation of the treatment.
There are situations in which it is desired to understand the localization error behavior, its variance, e.g., for a high-quality event location estimator in the absence of a particular estimator. As an example, in designing a microseismic survey, it is desired to position the geophones so as to give good accuracy for events in locations anticipated to experience a lot of activity. As another survey design example, the cost of an additional observation well could be evaluated in light of the anticipated increase in event location accuracy it would afford. In addition, the performance of a high-quality estimator serves as a yardstick with which to gauge the performance of particular estimators, allowing the variation in estimate accuracy as a function of geometry, seismic background, and the like to be put into context. By weighing scenarios according to the achievable localization accuracy, the performance of two or more estimators can be compared.
Thus there is a need to compute aspects of microseismic localization errors, for instance, event position estimate variance and confidence intervals, for both individual events and collections of events.
When examining a set of event location estimates, the statistics of the particular estimator used are of interest. Many estimators produce positions by optimizing a goodness of fit to measured event arrival times and polarizations. The unweighted sum of square differences is commonly used to gauge goodness of fit. However, by assigning more importance to arrival times or polarizations that are measured more accurately or embody more geometric leverage, a more accurate position estimate can be determined. In this way, knowing the measurement accuracy as a function of an error weighting would allow the weighting to be optimized.
Accordingly, there is a need to characterize microseismic localization errors of least-squares estimators as a function of the weighting used.
Treatment of a well may result in hundreds or thousands of localized events, and understanding the statistics of those event positions is important to the interpretation of the microseismic survey, and, in particular, to the measurement of the total stimulated volume. In the current art, the total stimulated volume is estimated to be the convex hull of a set of estimated event positions. A difficulty with this approach has to do with the handling of estimated locations that appear to be outliers and the choice of the subset of localized events that is to define this convex hull: the stimulated volume estimate should be extended to include positions of accurately localized outlying events, but should not be extended in the case of poorly localized outlying events.
Thus, there is a need to compute aggregate statistics characterizing a collection of microseismic event positions. There is also a need to compute the stimulated volume in a way that accounts for the accuracy of the underlying event position estimates.
In the current art, event location estimates are displayed as spheres, centered on the estimated locations. Conventionally, the spheres are sized to indicate event energy. In this way, more energetic events are plotted as large spheres, whereas weak events are plotted as small spheres. One problem with this approach is that the greater the event energy, the more accurately the event may be localized—it has greater amplitude, and its features more visible above the seismic background. As a result, it is misleading to plot energetic events with markers that span larger volumes. In addition, the event spheres are opaque, and it is not possible to understand the density of events within a given volume if there are more than a few events present.
A set of microseismic events is often interpreted with other data, for instance, a seismic incoherence volume, which is thought to indicate those locations likely to fracture. Presently, the microseismic locations are displayed as dots or sized spheres, with the additional data forming a background. One issue that arises is how to correlate the discrete locations of the events with the continuous data, especially if the event positions are known with varying accuracy.
Therefore, there is a need to display microseismic events in a manner that conveys volume of likely event positions and reveals those regions likely to contain significant activity. Similarly, there is a need to display features of a set of events, such as stimulated volume estimates. Finally, there is a need to produce and display event collection statistics, such as event probability, that are continuous functions of the volume under consideration.
According to certain aspects, embodiments of the invention consider the problem of microseismic event localization from a parameter estimation perspective, and include a method and system for computing and displaying characteristics of event localization errors. The information inequality, often referred to as the Cramer-Rao Bound (CRB), is used to gauge the small-error region mean square error of event position estimates in the absence of a particular estimator for applications including survey design, and assessment and comparison of the performance of specific event location estimators. In embodiments, the small-error region performance of event position estimates found by minimizing square differences between measured and hypothesized arrival times and polarizations is derived, including methods for computing event position confidence intervals. Additional embodiments of the invention include methods for approximating the least-squares event position estimate probability density function, which is valid beyond the small-error region. Further embodiments of the invention include schemes for weighting arrival time and polarization measurements so as to produce accurate event location estimates.
According to certain other aspects, embodiments of the invention include techniques for deriving aggregate statistics from a set of event location estimates, including a method for computing the probability that an event occurred in any given volume, and another for describing the smallest volume that contains a specified percentage of the event probability or expected to contain the specified percentage of the events. These aggregate statistics may be used to estimate total stimulated volume, as well as to evaluate the plausibility of hypothesized fracture networks.
While collections of events are typically displayed as spheres arranged in the treatment volume and sized according to event magnitude, the event position estimate variances according to embodiments of the invention allow the events to be displayed as a set of error ellipses, each with a size and transparency set according to its position variance. Finally, the aggregate statistics may also be displayed in any number of dimensions, for instance by varying transparency or as boundaries at prescribed probabilities or confidences. All such displays can be overlaid on or with other features, such as seismic incoherence, to aid interpretation.
In accordance with these and other aspects, one object of the present invention to provide a method and system for computing microseismic event position estimate variances, confidence intervals and probability densities for individual event location estimates based on assumed or measured signal, seismic background and noise properties, observation and treatment well geometry, and/or arrival time and polarization estimate properties.
Another object of the present invention to provide a method and system for computing aggregate statistics of a collection of microseismic event location estimates, e.g., as a “probability volume,” describing the probability of occurrence of an event at locations within a given volume, or “confidence volume,” describing the smallest volume containing a specified percentage of the event position probability.
Yet another object of the present invention is to provide a method and system to display microseismic event and event collection error analysis results, including total stimulated volume (TSV) estimates. In particular, it is an object of the present invention to display error analysis results in a manner that conveys volume of likely event positions and reveals those regions likely to contain significant activity.
In furtherance of these and other objects, in one embodiment of the invention, aspects of microseismic event localization errors, including position estimate variance and position estimate confidence intervals, are computed or displayed.
In another embodiment of the invention, optimal weightings are derived for use with least-squares and semblance-based event localization methods.
In another embodiment of the present invention, a probability density function for each of one or more microseismic event position estimates is computed, and in yet another embodiment, this probability density function is used to form event probability as a function of position for a collection of events.
In another embodiment of the invention, the volume is divided into voxels, each voxel being preferably no larger than the smallest event localization standard deviation, and the probability volume, describing the probability of occurrence of an event as a function of voxel position within the volume, is generated. In still another embodiment, the confidence volume, describing the smallest volume containing a specified percentage of the event position probability, is formed.
In another embodiment of the invention, position estimates are plotted as points, with the shade, color or transparency indicating localization accuracy and/or energy. For instance, on a white background, more accurately localized events could be plotted using darker colors.
In another embodiment, events are displayed as shapes centered on their estimated positions, each sized according to the accuracy with which its position is estimated. In this way, poorly localized events would occupy larger regions about their respective estimated positions, while accurately localized events would occupy correspondingly smaller regions. In a preferred embodiment, ellipses (or ellipsoids) corresponding to event confidence intervals are used, and are made transparent and/or are colored according to their position variance.
This could be done for instance by, for each event, drawing a semi-transparent ellipsoid, centered on the estimated location and sized according to the estimate standard deviation. The transparency of the ellipsoid would be inversely related to its volume: the smaller the ellipse the less transparent it would be.
The transparencies could be nonlinearly combined such that a number of nearby inaccurately localized events could produce a relatively small opaque region. Furthermore, erosion and dilation operations could be applied to bridge small gaps in the estimated fracture structure resulting from undetected events, and the like.
In another embodiment, a region in space is divided into voxels, each preferably no larger than the greatest event localization accuracy, and the probability that each voxel in the region contains an event, the probability volume, is computed. Each voxel is then displayed using characteristics (e.g., color, intensity, transparency) that reflect the computed probability. In this way, an estimate with high variance will slightly darken a range of voxels in the region, whereas an accurately localized event will noticeably darken just a few voxels. In another embodiment, the intermediate step of computing the probability volume is skipped, and each event is in turn used to modify the properties of a set of voxels in the neighborhood of the estimated event location. In a preferred embodiment, the region would be an ellipsoid, sized according to the estimate variance, and the modification each event would affect would be a nonlinear decrease in the transparency according to the estimate variance.
In another embodiment, a confidence volume is displayed as the volume defined by a specified fraction, and in another embodiment, multiple contours are drawn for a set of confidence fractions, and each made transparent, with the smallest volumes being the least transparent.
In yet another embodiment, the probability volume or confidence volume is used as a background on which to plot one or more collections of events as points, perhaps using different colors to distinguish the different collections, for the purpose of comparing localization methods or for understanding aspects of the fracture network or total stimulated volume.
In yet another embodiment, erosion and dilation operations would be applied to the probability volume or confidence volume to bridge small gaps in the estimated fracture structure resulting from undetected events, and the like.
These and other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures, wherein:
The present invention will now be described in detail with reference to the drawings, which are provided as illustrative examples of the invention so as to enable those skilled in the art to practice the invention. Notably, the figures and examples below are not meant to limit the scope of the present invention to a single embodiment, but other embodiments are possible by way of interchange of some or all of the described or illustrated elements. Moreover, where certain elements of the present invention can be partially or fully implemented using known components, only those portions of such known components that are necessary for an understanding of the present invention will be described, and detailed descriptions of other portions of such known components will be omitted so as not to obscure the invention. Embodiments described as being implemented in software should not be limited thereto, but can include embodiments implemented in hardware, or combinations of software and hardware, and vice-versa, as will be apparent to those skilled in the art, unless otherwise specified herein. In the present specification, an embodiment showing a singular component should not be considered limiting; rather, the invention is intended to encompass other embodiments, including a plurality of the same component, and vice-versa, unless explicitly stated otherwise herein. Moreover, applicants do not intend for any term in the specification or claims to be ascribed an uncommon or special meaning unless explicitly set forth as such. Further, the present invention encompasses present and future known equivalents to the known components referred to herein by way of illustration.
According to certain general aspects, embodiments of the invention view the problem of microseismic localization as a point parameter estimation problem, wherein the observations (the recorded geophone signals) are modeled as being drawn from a probability density function, parameterized in part by a deterministic, but unknown, source position. By doing so, the information inequality, often referred to as the Cramer-Rao Bound, may be used to place a lower bound on the variance of any unbiased source position estimator. In addition, under conditions generally satisfied in estimating the position of microseismic events (i.e., when the source position can be accurately estimated), the maximum likelihood estimator will be unbiased and achieve the bound variance. Furthermore, such maximum likelihood event position estimates will have a roughly Gaussian probability density.
As a result, the information inequality bound variance can serve as a yardstick with which to gauge and compare estimator accuracy. Additionally, the bound variance defines maximum likelihood position estimate confidence intervals via a family of concentric ellipsoids in the position variables about the event location estimate.
The maximum likelihood estimator may be written as a weighted least-squares optimization operating on intermediate variables including event arrival times and polarizations. By doing so, event position estimate variances and probability density functions are available for least-squares event position estimators which are unweighted or otherwise have weightings that are different than that of the maximum likelihood estimator. Also, the optimal weighting to use with least-squares estimators is available.
Having the individual event probability density functions allows computation of statistics of collections of events, including the computation of the probability any given volume in the space contains an event or the smallest volume containing a given percentage of the event probability.
Understanding the event position estimate statistics also leads to methods for displaying microseismic events which avoid the drawbacks of drawing spheres at event locations that are sized according to event magnitude or other indicator of event energy. Error ellipsoids (e.g., ellipses in three dimensions) may be drawn about estimated event positions, with the ellipsoids sized, oriented, and made transparent according to the localization accuracy of the corresponding event. Finally, statistics over volumes, such as the probability volume or confidence volume, can be displayed along with the individual event positions or other information such as seismic incoherence.
As shown, system 100 includes a microseismic event data collection sub-system 102. In embodiments, sub-system 102 obtains data for a volume (i.e. reservoir) being surveyed/monitored for microseismic events from sensors such as geophones such as Geospace DDS-150 three-axis “Slimhole Borehole Seismic Receiver Array” geophones using a recording device such as a digital computer such as a Geospace GeoRes recording system. It should be noted that the invention is not limited to any particular type of sensor or recording system, but that any type of sensor or recording system collecting microseismic event data can be used.
In one non-limiting example, an entire set of geophones used to survey a particular site is coupled to a common collection and recording device via wired or wireless connections, the data from all the geophones is recorded over time, and the recorded data for a given period of time, such as the duration of the hydraulic fracture treatment for a single well or single stage or zone of a well treatment, is used for further analysis by sub-systems 104 and/or 106.
In addition to sensor data representing microseismic events, the data from sub-system 102 preferably also includes geographic and geological information about the volume being surveyed, including properties of the earth medium contained in the volume such as layer boundary locations, the locations of any faults present, wave propagation velocities, rock densities, and the like, the three-dimensional locations of the sensors from which the microseismic data is collected, the three-dimensional locations and configuration of any wells such as observation wells in which the sensors are located, treatment wells, and the like, and information regarding any reservoir treatments and/or stimuli applied to the reservoir that trigger and/or may be related to microseismic events including the locations and timings of any triggered shots or explosions of known location such as “perforation” or “check” shots, and the timing and values of treatment parameters such as pump pressures and rates, and pumped fluid properties such as proppant or chemical concentrations.
Microseismic event location estimation sub-system 104 receives the data from sub-system 102 and produces estimates of microseismic events, along with their locations within the volume, by performing analyses of the data. In sub-system 104, any number of known or proprietary techniques can be used to derive such location estimates.
More particularly, seismic data collected by sub-system 102 is typically from three-axis sensors for downhole array locations, recording (x,y,z) velocities or a rotation thereof, and one-axis vertical velocity sensors for surface arrays. The sensors record earth motion over time, and the resulting recordings are processed to extract information such as the source location of events that generate transient bursts of seismic energy that arrive at the sensor array. Often in detecting the presence of microseismic events and estimating their location (as would occur in sub-system 104), the raw seismic data is processed to first detect and analyze P-waves and/or S-waves associated with a candidate event. The analysis produces arrival times and/or polarizations (directions of particle motion) that will lead to a location estimate. In other approaches, such as semblance or other correlation based methods, the information encapsulated by P-wave and/or S-wave arrival times and/or polarizations is utilized through a process operating directly on the seismic data waveforms that results in a location estimate without first analyzing particular arrival times or polarizations. It can be shown that under certain conditions these two approaches yield equivalent results.
An example of the estimates that can be provided by sub-system 104 is shown in
The microseismic event location estimates shown in
Microseismic event location error analysis and display sub-system 106 performs analyses and displays according to embodiments of the invention that will be described in more detail below. The dual input paths from sub-system 102 and sub-system 104 are intended to illustrate different possible embodiments of the invention that are not necessarily mutually exclusive. For example, in some embodiments, sub-system 104 is not included in system 100 or results therefrom are not used at all by sub-system 106. In other embodiments, location or other parameter estimates from sub-system 104 are received, and sub-system 106 performs additional processing on these estimates and/or the underlying data from sub-system 102. In still further embodiments, both sub-systems 104 and 106 are included, and results therefrom are both independently produced and/or displayed.
According to aspects of the invention, and in contrast to sub-system 104, the present inventors recognize that, depending on the level of seismic background energy corrupting the recorded traces, the scenario geometry, and local propagation conditions, the location estimate will have an associated position estimate variance that can be mathematically determined. As described in more detail below, embodiments of the invention provide methods to compute the position variance, both in the form of a lower bound on variance, applicable to any estimator, and in the form of a variance for particular least-squares estimates of position. We then describe mechanisms for displaying these variances, for instance as error ellipsoids, as well as combining collections of positions and variances to form and display aggregate localization statistics.
In embodiments, each of sub-systems 102, 104 and 106 is implemented by one or more computer systems including processors, input/output devices, data communication systems (e.g. Ethernet, Wi-Fi, etc.), program and data memories (e.g. RAM, ROM, magnetic or optical data storage media, etc.) having stored thereon operating systems (e.g. Windows, Apple, Android, etc.) and application programs. Such computer systems can include any known or future systems such as desktop and notebook computers, embedded computer systems, pad computers, handheld and other portable computer devices such as iPads, iPhones, etc. In some embodiments, system 100 can integrate two or more of sub-systems 102, 104 and 106 or functions thereof in a single common computer system. For example, data from sensors and/or the reservoir being monitored may be directly communicated to a computer system implementing one or both of sub-systems 104 and 106. In other embodiments, each of sub-systems 102, 104 and 106 are implemented by separate computer systems, and any variety of known methods for transferring data therebetween can be used.
According to embodiments of the invention, sub-system 106 preferably further includes graphics devices and/or software or similar functionality for generating displays. Such displays can be in video or printed form. Those skilled in the art will understand how to adapt conventional display functionality for generating displays according to embodiments of the invention after being taught by the present examples.
1. Event Location Estimate Accuracy and Improved Localization Methods
As set forth above, according to certain aspects to now be described in more detail below, the problem of microseismic event localization is considered from a parameter estimation perspective, and associated embodiments of the invention include a method and system for computing and displaying characteristics of event localization errors. The information inequality, often referred to as the Cramer-Rao Bound (CRB), is used to gauge the small-error region mean square error of event position estimates in the absence of a particular estimator for applications including survey design, and assessing and comparing the performance of specific event location estimators. The small-error region performance of event position estimates found by minimizing square differences between measured and hypothesized arrival times and polarizations is presented, and methods for computing event position confidence intervals are described. Additionally, expressions approximating the least-squares event position estimate probability density function, valid beyond the small-error region, are derived. Furthermore, schemes for weighting arrival time and polarization measurements so as to produce accurate event location estimates are described.
We begin by describing array geometry notation and an exemplary signal model of the type that may be used in various embodiments of the presently disclosed invention. In this example, we will assume a two-dimensional scenario in which each geophone contains a vertical and single horizontal component, with the horizontal component oriented in the same vertical plane as the source and geophone. This is equivalent to assuming that we have knowledge of the azimuthal angle of incidence and have, for example, applied a transformation to the two horizontal components of a three-component geophone package to acquire the horizontal component along that angle. While a formulation of the full three-dimensional problem, where estimation of the azimuthal angle is also required for localization, can readily be performed by those familiar with the art, this two-dimensional scenario allows for greater clarity of presentation and adequately captures the essential considerations of source localization accuracy as produced by the present invention. Furthermore, although the exemplary geometry described here and presented in
Consider a source of transient microseismic energy, such as resulting from a fracture event, located at a position ξ in the presence of a set of M geophones at locations xm, m=1, □, M, as shown in
rm=∥xm−ξ∥
from the source. The column of direction cosines pointing from the source to the mth sensor is
where φm denotes the angle of incidence at the mth sensor as depicted in
The composite matrix of all source-geophone direction cosines is
B=[β1 . . . βM]T,
and the composite matrix of all direction cosines perpendicular to the source-geophone directions is
B⊥=[β1⊥ . . . βM⊥]T.
In this exemplary embodiment, the vertical and horizontal time series recorded at the mth geophone, denoted by the two-element column vector gm(t), is modeled as the sum of P-wave and S-wave arrivals from the source, pm(t) and sm(t), in a background of additive noise nm(t),
gm(t)=pm(t−(t0+τp,m))+sm(t−(t0+τs,m))+nm(t).
A set of T samples encompassing the full duration of the signals pm(t) and sm(t) are recorded, t=0, □, T−1, at a sampling rate fs. The DFT of gm(t) is then the sum of the P-wave, S-wave, and noise transforms,
Gm(ω)=Pm(ω)+Sm(ω)+Nm(ω),
where the T transform bins ω=0, 1, □, T−1 represent frequencies in the range
For a more concise notation, we form composite 2M×1 column vectors G(ω), P(ω), and S(ω) by stacking the M individual geophone, P-wave, and S-wave transform vectors, respectively.
In this exemplary embodiment, we assume that the arriving P-wave and S-wave signals are deterministic but unknown, derive from a common source signal generated by a microseismic event, and can be fully described by a set of parameters θ. The additive noise is assumed to be random, drawn from a stationary Gaussian process, and independent sensor to sensor. Accordingly, the probability density of observing the geophone signal transforms at frequency ω is Gaussian,
(G(ω;θ))=(μ(ω;θ),Σ(ω)), (1)
where the composite 2M×1 mean vector μ(ω; θ), given by
μ(ω,θ)=P(ω;θ)+S(ω;θ),
is the sum of the P-wave and S-wave arrival transforms and thus dependent on the parameters θ, and the 2M×2M covariance matrix Σ(ω) is proportional to the noise power,
Σ(ω)=σn2(ω)I,
reflecting our assumption in this exemplary embodiment that the noise is uncorrelated sensor to sensor and additionally implying that the independent noise observations at each sensor have a common power spectra. The DFT bins G(ω) are mutually independent, and so the probability of observing the entire set of frequency bins is the product of the probabilities of observing each of the individual bins,
It will be clear to those familiar with the art that other models for the recorded geophone time series data, gm(t), may be used with the presently disclosed invention in cases where the exemplary model described here may not best match or fully express the signals present in a recorded data set. For example, alternative models may include only the P-wave or S-wave arrival data or any combination of the direct-path arrivals for these propagation modes and one or more indirect arrivals such as reflections from geological surfaces or other reflections, converted-mode waves, head waves, or any other arrival of seismic energy that can be attributed to activity in the volume being monitored, and may account for noise with different structure than is assumed in this exemplary embodiment, such as noise that is correlated from one sensor to another at one or more frequencies and noise that has varying amounts of power, potentially at varying frequencies, from one sensor to another.
In the presently considered exemplary embodiment of the invention, the physical mechanism that gives rise to the microseismic waveforms is assumed to occur rapidly over some distance and accordingly radiates P and S disturbances into the surrounding rock that are scaled in time according to their propagation velocities. These radiated signals are then transformed by their respective radiation patterns, propagation losses and delays, and are scaled according to their polarizations and arrival direction. Accordingly, we model the mth P and S wave transforms as
Pm(ω)=βmαpe−jωτ
Sm(ω)=τm⊥αse−jωτ
where ψ(k) represents the microseismic pulse transform as a function of wavenumber k, which is stretched according to the respective propagation speeds to form the P-wave and S-wave pulses and includes any frequency-dependent propagation losses common to both waveforms, the constants αp and αs embody frequency-independent propagation losses and radiation pattern effects, the factors e−jωτ
Given a set of observations g drawn from a probability density (g; θ) dependent on parameters θ, the variance of any unbiased estimate of the parameters {circumflex over (θ)} is bounded below by the information inequality, commonly referred to as the Cramér-Rao bound (CRB),
Var{{circumflex over (θ)}}≥Jθ−1.
Here, Jθ is the Fisher information matrix for parameters θ,
where E[·] denotes expectation.
In the present exemplary embodiment, we will use the fact that for Gaussian observations G(ω) with mean dependent on parameters θ, c.f. Equation (1), the Fisher information for θ at frequency ω is
Additionally, because the observations G(ω) are statically independent frequency to frequency, the Fisher information at each frequency add and we have that the total Fisher information for the parameters θ is
In this exemplary embodiment, we define the set of parameters θ on which the probability distribution of our observations depends as
θ(ω)=[τpTτsTφTψ(ω)]T,
where τp and τs are vectors containing the P-wave and S-wave arrival times at each of the M sensors, φ is a vector containing the P-wave and S-wave arrival polarization angles at each of the M sensors, and ψ(k) represents the microseismic pulse transform, as described previously. Using the previously stated exemplary signal model and previously stated equations, the Fisher information for the first three of these parameters can be shown to be
are the P-wave and S-wave DSNRs, or “derivative signal-to-noise ratios”, and the SNR, or “signal-to-noise ratio” is defined as the sum of the P-wave and S-wave individual SNRs,
Further applying the previously stated equations, we can derive the lower bound variance for P-wave and S-wave arrival time estimates as
for the presently discussed exemplary embodiment of the invention. Note that the P-wave and S-wave arrival time estimates ({circumflex over (τ)}p, and {circumflex over (τ)}s) may have notably different variances and that the arrival time estimates may have different variances for each mode at various sensors across one or more arrays.
Additionally, we can derive the lower bound variance for polarization estimates as
which also exhibits the properties that estimate variances may be different for various wave modes and sensors.
Alternatively, we can apply the previously stated equations to determine the variance associated with estimates of event location, which necessarily require that we simultaneously estimate the unknown event occurrence time, t0, using intermediately estimated values of the parameters we have just examined. In this case, the Fisher information with respect to event location and origin time is given by
where the parameters θ(ω) are
θ(ω)T=[τpTτsTφTψ(ωk)],
or, using the compacted notation
Derivatives of travel times τp and τs with respect to event location (or origin time) may be estimated numerically from a travel-time table of the type typically generated through forward modeling for use in performing microseismic event localization. Derivatives of the arrival polarizations φ may similarly be estimated numerically using a table containing the forward-modeled arrival polarizations. Alternatively, these derivatives may be calculated using analytic functions. In this case, we can express these partial derivatives as
Substituting into our expression for the Fisher information, we then have
or, summing over ω=0, 1, □, T−1, that
Inverting this expression and taking the (1, 1) entry yields an expression for the lower bound variance of event location estimates,
This expression can be interpreted as showing that unknown t0 removes information along the weighted mean of τ.
Similarly, taking the (2, 2) entry of the inverted matrix yields an expression for the lower bound variance of event occurrence time estimates,
Event location can be estimated directly from the seismic data, as presented above, or alternatively, intermediate parameters such as arrival times and polarizations may be measured from the raw seismic data and, in turn, position and event time estimated from these measurements. Provided that the intermediate parameters are measured efficiently, i.e. unbiased with measurement variance equal to the information inequality, the measurements are so-called sufficient statistics, and the event position and event time information they contain will be no less than the information present in the raw seismic trace data. Assuming the set of arrival times and polarizations are efficiently measured, their probability distribution is Gaussian,
({tilde over (τ)},{tilde over (φ)};ξ,t0)=(μ(ξ,t0),Σ),
with uncorrelated arrival times and polarizations,
The associated likelihood function of event location and origin time estimated from these sufficient statistics is
Entries in this expression may be found as follows: φ(ξ) can be found for a given event location ξ by performing table-lookup on a table of arrival polarizations that has been pre-generated using forward modeling techniques; similarly, τ(ξ, t0), the set of arrival times observed by all sensors for an event occurring at location ξ and time t0, can be found by using a pre-generated travel-time table containing values τ(ξ), the set of travel times from location ξ to all sensors in the monitoring array (which may be determined through forward modeling), and an estimate of the event origin time t0 given a presumed event location and measured arrival times, calculated as
using the equation
τ(ξ,t0)=τ(ξ)+1t0.
The covariance matrices associated with arrival time and polarization estimates, Στ, and Σφ, respectively, can be taken to be the lower bound variances presented previously, which will be equivalent to the variances that occur when these parameters are estimated using maximum likelihood techniques in favorable conditions. Alternatively, in the absence of reliable SNR or DSNR information, which are necessary for computing the previously stated lower bound variances of the statistics, and preferably in the presence of a large number of sensors (say, 40), the travel time and polarization covariances used in computing the position variance may be estimated by noting the variance present in the difference between the measured travel times (or polarizations) and those computed based on the estimated position. To distinguish between position errors resulting from an imperfect velocity model, which would lead to a bias in position estimates, and position errors which are statistical in nature and result from measuring event arrivals in an additive seismic background, the needed variances may be computed by removing a smooth function such as an affine function of sensor level which best fits, say in a least-squares sense, the time of arrival modeling error (or polarization modeling error), and then computing its variance.
Finding the optimal t0 estimate as described above for each location yields an expression for the likelihood function of event location alone,
Without loss of generality, for simplicity and clarity of presentation, consider an exemplary case where the only statistic used in localization is {tilde over (τ)}. In such a case, the likelihood function for event location can be written as
Then the ML estimate, denoted as
can be found as the position where the derivative of the likelihood function with respect to event location,
is zero, that is,
In the small error region, we have by Taylor series expansion that
where ξ0 is the true event location. Combining these equations, we have that the maximum likelihood estimate of event location in this exemplary embodiment is given by
Under these conditions, the maximum likelihood estimate is unbiased and has associated variance
If we replace the matrix Στ in the previously derived likelihood expression with the symmetric weighting matrix W, the likelihood becomes a weighted sum of square travel time errors
gives our best estimate of the origin time t0 for any location ξ, and thus we have
Maximizing W then yields an event location estimate
which is unbiased and has variance
It can be shown that this variance is greater than or equal to the inverse Fisher information, with equality occurring when the weighting matrix W is set to the inverse covariance of the measured arrival times,
W=Στ−1.
In this case, the least-squares estimate is the maximum likelihood estimate,
{circumflex over (ξ)}W={circumflex over (ξ)}ML.
It should be noted that the least-squares position estimates described above can be modified to incorporate measured arrival polarizations or other measurements related to position. For example, in the case that polarizations and travel time measurements are both used, the position is estimated as the one minimizing the weighted sum of square errors,
In this case, the variance is given by Equation (2), with Jτ and Jφ replaced by Wτ and Wφ, the respective travel-time and polarization weighting matrices. As above, when the weighting matrices are set to the corresponding Fisher informations, Jτ and Jφ, the estimate variance is minimized and attains the CRB. This is consistent with the idea that small-error-region estimates are roughly Gaussian since {tilde over (τ)} and {tilde over (φ)} are roughly Gaussian {circumflex over (ξ)}ML and {circumflex over (ξ)}W are linear in {tilde over (τ)} and {tilde over (φ)}.
Finally, we note that the optimal weighting matrices used with semblance localization techniques would be the inverse of the seismic background covariance matrix.
The foregoing may be used to compute confidence intervals inside of which a specified percentage of statistically independent events are expected to lie. The confidence interval applicable in the small-error region (and somewhat conservative in the large-error region) may be found by selecting a fraction η and computing a level λ(η) as the inverse of the χ2 cumulative distribution function evaluated at η and for the number of degrees of freedom equal to the number of dimensions of the space of position estimates,
(ξ−{circumflex over (ξ)})TJ(ξ−{circumflex over (ξ)})≤λ(η).
We now describe the computation of the probability density of the maximum likelihood position estimate. Recall that, in the small-error region, the weighted least-squares and maximum likelihood estimates are approximately Gaussian distributed. Here, we describe a position probability density that is valid in the small-error region as well as away from the small-error region. For clarity of presentation, we consider the case of estimating position based only on measured arrival times {tilde over (τ)}.
The maximum likelihood position estimate {circumflex over (ξ)}ML is the position maximizing the log likelihood,
where, recall,
and where τ(ξ) is the column of travel times produced by an hypothesized position ξ. The maximum likelihood estimate then obeys
the arrival time sensitivity to changes in position ∂τT/∂{circumflex over (ξ)}ML being evaluated at the maximum likelihood estimate position.
Note that for a given maximum likelihood estimate, Equation (3) defines a subspace in the space of arrival times, any point in which would satisfy Equation (3) and produce the same estimate. The probability of estimating a given position can then be computed by finding the weighted volume of the arrival time subspace which produces that position, where the weighting is the probability of measuring any given arrival time vector in the subspace,
(ξ)=∫τ∈{tilde over (τ)}
Carrying out the computation, the probability of estimating {circumflex over (ξ)} from measurements {tilde over (τ)} is
where τ* are the true travel times and |·| represents the determinant operator. In the small-error region (loosely, in the presence of accurate estimates), the travel times can be approximated using
and the position estimate probability density reduces to
where Jξ is the Fisher information in the measured travel times, evaluated at the true position ξ*. Note that this is the expected Gaussian distribution, with the true position as the mean and the bound variance as the covariance.
As above, when computing the position probability described in Equation (4) or estimate variance or probability contours, the position estimate may be used in place of the true position, and the “true” travel times computed based on the estimated position. Also, it may be convenient to compute the normalization (the determinant) numerically by dividing each voxel probability by the total of the voxel probabilities.
Note that the probability density described in Equation (4) approximates the likelihood function evaluated using the true travel times in place of the measured travel times, and with the matrix Δ in essence projected onto the space spanned by the time delay sensitivity to position changes, and normalized to be a probability. This comparison suggests using the likelihood function, evaluated using travel times computed from the estimated position in place of the measured travel times, and appropriately normalized, as an approximation to the probability density and expected to be valid over a wide range of estimate accuracy regions,
This computation is less demanding than that of Equation (4), and if the normalization is computed numerically, no derivatives need be computed.
It is useful to point out that to capture the details of a position estimate probability density, the grid on which it is evaluated should have its points spaced at least as close to each other as one standard deviation in the dimension of interest as described by the inverse Fisher information. Additionally, note that by replacing the Σ−1 used in computing Δ with W, the probability density expressions above become applicable to weighted least squares position estimates.
2. Aggregate Activity Statistics
According to certain other aspects to be described now in more detail below, embodiments of the invention include techniques for deriving aggregate statistics from a set of event location estimates, including a method for computing the probability that an event occurred in any given volume, and another for describing the smallest volume that contains a specified percentage of the event probability or expected to contain the specified percentage of the events. These aggregate statistics may be used to estimate total stimulated volume, as well as to evaluate the plausibility of hypothesized fracture networks.
Given a grid of voxels νξ, indexed by position ξ within a volume of interest, and a set of K events, the probability that an event occurred in a given voxel p(νξ) is one minus the probability that no event occurred in the voxel. Since the event position estimates are statistically independent, the probability that no event occurred in the voxel is the product of the probabilities that each of the events are not in the voxel. Stated mathematically,
where the quantity pk(νξ) represents the probability that event k occurred within the voxel. The probability pk(νξ) is well approximated by
pk(νξ)≈ρk(νξ)dV
where pk(ξ) is the probability density associated with the kth position estimate {circumflex over (ξ)}k (say, computed using Equation (4) above), evaluated at a position in the voxel νξ, and dV is the volume of the voxel.
The quantity p(νξ) is referred to as the probability volume, and may be computed using Equation 5 by evaluating one voxel position for each of the event probabilities, or all voxel positions, accumulating the probability for each new event. This latter approach would be useful for real-time applications in which the events are detected and localized in sequence. Of course, the expression Equation 5 is easily computed using a parallel process.
When computing the probability volume, the voxels should be sized so that, in each dimension, they are no larger than the standard deviation in that dimension of the most accurate estimate along that dimension in the collection. In this way, narrow peaks in the accurately estimated position probabilities are not missed, and, in cases that the probabilities are not normalized using the analytic expression, the probabilities can be accurately normalized by summing across the set of voxels.
The probability volume may be normalized so that its sum over all voxels is equal to the number of events. In this way, a volume containing a given fraction of the probability would be expected to contain that fraction of events. The probability volume can also be normalized to sum to one.
It might be the case that one dimension, say depth, is accurately estimated, while another dimension is not. In such cases it is useful to compute the probability volume on a grid with smaller spacing along the accurately estimated axis. The high resolution along any given axis needed for accurate computation of the probability volume may not necessary for analysis or interpretation of the probability volume. In such cases, it is suggested that the voxel probabilities, computed on the high-resolution grid, be down-sampled to a more coarsely sampled grid by summing the probabilities in the high-resolution voxels associated with each coarse-grid voxel. Furthermore, if a projection onto a lower-dimensional space, say a two-dimensional plan or elevation, is desired, the voxel probabilities may be summed along lines perpendicular to the lower-dimensional space.
The voxel probabilities comprising a probability volume can be transformed to generate a quantity called the confidence volume, c(νξ, λ), defined as the smallest volume containing a given fraction λ of the probability. It is computed by summing the largest voxel probabilities until the prescribed fraction is achieved. Alternatively, it may be computed by first sorting the voxel probabilities from the highest value to the lowest value, and noting the cumulative sum, starting with the highest value. Then, the cumulative sum is normalized to be one when all voxel probabilities are included. Finally, a smooth function relating the sorted probabilities to the cumulative sum is formed by interpolating a table of, say, a hundred confidence levels and the associated sorted voxel probabilities. This function can then be used to replace each voxel probability with a voxel confidence.
The event position estimate variances and probabilities, as well as the event collection probability and confidence volumes may be used in estimating the stimulated fracture network, particularly in evaluating the plausibility of potential fracture networks. For example, a model of how fracture networks form, informed by the physics of fracture formation and information about the treatment site such as from seismic incoherence or other measurements, can be used to produce candidate fracture networks, traversing a collection of voxels in the treatment space. The plausibility of each candidate can be evaluated making use of the sum of the fracture voxel probabilities in the probability volume—the higher the sum (normalized for the length and shape of network), the more plausible the network relative to the microseismic data. (Other factors, having to do with the manner in which fractures form, for instance, should also be included in evaluating the plausibility of candidate fracture networks.) Alternatively, the weighted sum of event distances to the network, measured relative to the covariance of each event (similar to the event confidence levels), may be used—the smaller the total distance, the better the fit to the microseismic data. In another approach, models regarding the formation of fracture networks over time can be updated using event probabilities computed using the methods described herein. Additionally, the probability volume can be used as a Bayesian prior, as well as a Baysean update to a model of fracture network formation.
3. Event Estimate Statistics Display
According to certain additional aspects to be described now in more detail below, embodiments of the invention include methods for displaying information regarding microseismic events that leverage the error analyses of embodiments of the invention described above. For example, while collections of events are conventionally displayed as spheres arranged in the treatment volume and sized according event magnitude, the event position estimate variances of embodiments of the invention allow the events to be displayed as a set of error ellipses, each with a size and transparency set according to its position variance. The aggregate statistics may also be displayed in any number of dimensions, for instance by varying transparency or as boundaries at prescribed probabilities or confidences. All such displays can be overlaid on or with other features, such as seismic incoherence, to aid interpretation.
In these and other embodiments, a region in space is divided into voxels, each preferably no larger than the greatest event localization accuracy, and the probability that each voxel in the region contains an event, the probability volume, is computed. Each voxel is then displayed using characteristics (e.g., color, intensity, transparency) that reflect the computed probability. In this way, an estimate with high variance will slightly darken a range of voxels in the region, whereas an accurately localized event will noticeably darken just a few voxels. In another embodiment, the intermediate step of computing the probability volume is skipped, and each event is in turn used to modify the properties of a set of voxels in the neighborhood of the estimated event location. In a preferred embodiment, the region would be an ellipsoid, sized according to the estimate variance, and the modification each event would affect would be a nonlinear decrease in the transparency according to the estimate variance.
These and other embodiments of the invention will now be described in more detail with reference to the drawings.
Given that a microseismic event has occurred at the marked “actual” event location 404 in
The effect of this contaminating energy on resulting event location estimates can be observed through Monte Carlo simulation by generating synthetic data for a microseismic event occurring at a known location and then adding varying instances of randomized noise with a defined set of properties (such as average energy) to this data and determining the event location estimate that would result if this noise-contaminated data were to be processed using one of the localization techniques known to those skilled in the art.
Acknowledging that this limitation is fundamental to the problem of microseismic event localization because data recorded by monitoring geophones will always be contaminated with some amount of unrelated seismic energy that cannot be modeled, fully understood, or predicted, it is desirable to understand the uncertainty associated with each event location estimate. This understanding may include not just a 1-dimensional amount of uncertainty associated with a given estimate (as in more or less certain), but an understanding of the spatial distribution of this uncertainty; the directions or volumes in which the estimate error is likely to have perturbed the resulting location estimate in relation to the event's true location.
One way of describing this spatial distribution is through the definition of an error ellipse 406 or ellipsoid, representing a linear approximation of the error distribution. The shape of this ellipse will be given by properties such as the monitoring array geometry relative to the event location, the local propagation medium, and various properties of the observed data such as signal-to-noise ratio. The size of the ellipse will also be determined by these properties but may further be scaled to reflect various confidence levels. This is further depicted in
Location estimate uncertainty may also be understood in terms of a likelihood function, which expresses the likelihood that an event occurred at a location given the data observed at the monitoring array. This function has the advantage that it is not a linearization like the ellipsoidal representation, and thus can capture non-linear aspects of the localization uncertainty; however, because of this it is also less succinct. Under favorable conditions, location estimates will be near the true location and a linearization of the error about either of these locations will be accurate across a region or volume that includes them both. In this region, contours of the likelihood function and the Fisher ellipse associated with that location estimate are expected to coincide. In the case of larger errors, the likelihood function will provide a more accurate assessment of uncertainty than the linearized assessment provided by the Fisher ellipse.
For example,
For example,
In contrast to
Similar to
Taken together, these figures illustrate the importance of determining and displaying uncertainty information when interpreting the results of microseismic event localization according to embodiments of the invention. For example, the higher uncertainty for P-wave only localization that is evident in
Although the present invention has been particularly described with reference to the preferred embodiments thereof, it should be readily apparent to those of ordinary skill in the art that changes and modifications in the form and details may be made without departing from the spirit and scope of the invention. It is intended that the appended claims encompass such changes and modifications.
The present application is a continuation of U.S. application Ser. No. 14/340,356 filed Jul. 24, 2014, which application claims priority to PCT/US2013/022950, filed Jan. 24, 2013, which application claims priority to U.S. Prov. Appln. No. 61/590,189 filed Jan. 24, 2012, and which application is also a continuation-in-part of U.S. application Ser. No. 13/598,580, filed Aug. 29, 2012, which application claims priority to U.S. Prov. Appln. No. 61/528,730, filed Aug. 29, 2011. The contents of all of the above applications are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2450707 | Zwickl | Oct 1948 | A |
3453614 | Bose | Jul 1969 | A |
3460013 | Gaylor | Aug 1969 | A |
4036057 | Morais | Jul 1977 | A |
4649524 | Vance | Mar 1987 | A |
4683556 | Willis | Jul 1987 | A |
5031719 | Baria et al. | Jul 1991 | A |
5583825 | Carrazzone et al. | Dec 1996 | A |
5747750 | Bailey et al. | May 1998 | A |
5774419 | Uhl et al. | Jun 1998 | A |
5917160 | Bailey | Jun 1999 | A |
5996726 | Sorrells et al. | Dec 1999 | A |
6002063 | Bilak et al. | Dec 1999 | A |
6049508 | Deflandre | Apr 2000 | A |
6462549 | Curtis et al. | Oct 2002 | B1 |
6488116 | Bailey | Dec 2002 | B2 |
6598001 | Deflandre | Jul 2003 | B1 |
6885918 | Harmon et al. | Apr 2005 | B2 |
6947843 | Fisher et al. | Sep 2005 | B2 |
6985816 | Sorrells et al. | Jan 2006 | B2 |
7026951 | Bailey et al. | Apr 2006 | B2 |
7348894 | Bailey et al. | Mar 2008 | B2 |
7391675 | Drew | Jun 2008 | B2 |
7457195 | Jones | Nov 2008 | B2 |
7486589 | Lee et al. | Feb 2009 | B2 |
7643374 | Plona et al. | Jan 2010 | B2 |
7647183 | Jechumtalova et al. | Jan 2010 | B2 |
7660198 | Arrowsmith et al. | Feb 2010 | B2 |
7660199 | Drew | Feb 2010 | B2 |
8107317 | Underhill et al. | Jan 2012 | B2 |
8649980 | Gulati | Feb 2014 | B2 |
8705316 | Thornton et al. | Apr 2014 | B2 |
8800652 | Bartko et al. | Aug 2014 | B2 |
20020011378 | Bailey | Jan 2002 | A1 |
20040006430 | Harmon et al. | Jan 2004 | A1 |
20040008580 | Fisher et al. | Jan 2004 | A1 |
20040125696 | Jones et al. | Jul 2004 | A1 |
20050060099 | Sorrells et al. | Mar 2005 | A1 |
20050115711 | Williams et al. | Jun 2005 | A1 |
20050190649 | Eisner et al. | Sep 2005 | A1 |
20050197781 | Harmon et al. | Sep 2005 | A1 |
20060062084 | Drew | Mar 2006 | A1 |
20060081412 | Wright et al. | Apr 2006 | A1 |
20060092765 | Jones | May 2006 | A1 |
20060285438 | Arrowsmith et al. | Dec 2006 | A1 |
20070183260 | Lee et al. | Aug 2007 | A1 |
20070215345 | Lafferty et al. | Sep 2007 | A1 |
20080004847 | Bradford | Jan 2008 | A1 |
20080068928 | Duncan et al. | Mar 2008 | A1 |
20080106973 | Maisons | May 2008 | A1 |
20080112263 | Bergery | May 2008 | A1 |
20080123469 | Wibaux et al. | May 2008 | A1 |
20080151691 | Eisner et al. | Jun 2008 | A1 |
20080159075 | Underhill et al. | Jul 2008 | A1 |
20080247269 | Chen | Oct 2008 | A1 |
20080259727 | Drew | Oct 2008 | A1 |
20090010104 | Leaney | Jan 2009 | A1 |
20090048783 | Jechumtalova et al. | Feb 2009 | A1 |
20090125240 | den Boer | May 2009 | A1 |
20090168599 | Suarez et al. | Jul 2009 | A1 |
20090248312 | Hsu | Oct 2009 | A1 |
20090259406 | Khadhraoui | Oct 2009 | A1 |
20090296525 | Eisner et al. | Dec 2009 | A1 |
20100103774 | Haldorsen et al. | Apr 2010 | A1 |
20100157730 | Bradford | Jun 2010 | A1 |
20100238765 | Grechka et al. | Sep 2010 | A1 |
20100252268 | Gu et al. | Oct 2010 | A1 |
20100256964 | Lee et al. | Oct 2010 | A1 |
20100262372 | Le Calvez et al. | Oct 2010 | A1 |
20100262373 | Khadhraoui et al. | Oct 2010 | A1 |
20100307755 | Xu et al. | Dec 2010 | A1 |
20110091078 | Kherroubi | Apr 2011 | A1 |
20110120702 | Craig | May 2011 | A1 |
20120316789 | Suarez-Rivera | Dec 2012 | A1 |
20130144532 | Williams | Jun 2013 | A1 |
20130215717 | Hofland et al. | Aug 2013 | A1 |
20140112099 | Hofland et al. | Apr 2014 | A1 |
20140278120 | Kahn et al. | Sep 2014 | A1 |
20160202373 | Diller | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
1 485 733 | Dec 2011 | EP |
2 784 552 | Oct 2014 | EP |
2 450 707 | Jan 2009 | GB |
2 525 996 | Nov 2015 | GB |
WO-2004070424 | Aug 2004 | WO |
WO-2005106533 | Nov 2005 | WO |
WO-2008124759 | Oct 2008 | WO |
WO-2009026979 | Mar 2009 | WO |
WO-2010116236 | Oct 2010 | WO |
WO-2011077223 | Jun 2011 | WO |
WO-2011077227 | Jun 2011 | WO |
WO-2011077227 | Jun 2011 | WO |
WO-2012085848 | Jun 2012 | WO |
Entry |
---|
Coffin, et al., “On the Accuracy of Microseismic Event Location Estimates”, undated white paper, pp. 1-18. |
Eisner, et al., “Comparison of Surface and Borehole Locations of Induced Seismicity”, Geophysical Prospecting, 2010, pp. 809-820. |
Eisner, et al., “Determination of S-wave Slowness from a Linear Array of Borehole Receivers”, Geophysics, vol. 176, 2008, pp. 31-39. |
Eisner, et al., “Uncertainties in Passive Seismic Monitoring”, The Leading Edge, Jun. 2009, pp. 648-655. |
Grenchka, et al., “Data-Acquisition Design for Microseismic Monitoring”, The Leading Edge, Mar. 2010, pp. 1-5. |
Hur, et al., “An Analytic Model for Microseismic Event Location Estimate Accuracy”, Oct. 2011, pp. 1-18. |
Kidney, et al., “Impact of Distance Dependent Location Dispersion Error on Interpretation of Microseismic Event Distributions”, The Leading Edge, Mar. 2010, pp. 1-5. |
Maxwell, et al., “Key Criteria for a Successful Microseismic Project”, SPE Paper 134695, Sep. 2010, pp. 1-16. |
Maxwell, et al., “Microseismic Location Uncertainty”, CSEG Recorder, Apr. 2009, pp. 41-46. |
Physics Analysis Workstation, http://www2.pv.infn.it/˜sc/cern/paw.pdf (Year: 1999). |
Rutledge, et al., “Hydraulic Stimulation of Natural Fractures as Revealed by Induced Microearthquakes”, Carthage Cotton Valley Gas Field, East Texas, Geophysics, vol. 68, No. 2, 2003, pp. 1-37. |
Number | Date | Country | |
---|---|---|---|
20210389490 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
61590189 | Jan 2012 | US | |
61528730 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14340356 | Jul 2014 | US |
Child | 17158881 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2013/022950 | Jan 2013 | US |
Child | 14340356 | US | |
Parent | 13598580 | Aug 2012 | US |
Child | PCT/US2013/022950 | US |