1. Field of the Invention
The present invention relates to networks, and more particularly to prevent disruptions in networks.
2. Background of the Invention
In a common-access network, every attached network device detects all traffic on the network, and each device determines through network-specific hand shaking when to claim data from the network. Examples of common-access networks include Ethernet, Fibre Channel—Arbitrated Loop (FC-AL), and Token-Ring.
Because each device detects all traffic on a common-access network, certain behaviors from a single network device would disrupt all network devices. For example, a FC-AL device may initiate loop initialization and disrupt all traffic in FC-AL. Similarly; a beaconing condition would disrupt all traffic on a Token-Ring network.
Hence, isolation of disruptive events (or devices) is a challenge for modern networks. The following introduces Fibre Channel standards/terminology and also describes some of the challenges that a FC-AL topology faces in this context.
Fibre channel is a set of American National Standard Institute (ANSI) standards, which provide a serial transmission protocol for storage and network protocols such as HIPPI, SCSI, IP, ATM and others. Fibre channel provides an input/output interface to meet the requirements of both channel and network users.
Fibre channel supports three different topologies: point-to-point, arbitrated loop and fibre channel fabric. The point-to-point topology attaches two devices directly. The arbitrated loop topology attaches devices in a loop. The fibre channel fabric topology attaches host systems directly to a fabric, which are then connected to multiple devices. The fibre channel fabric topology allows several media types to be interconnected.
Fibre channel is a closed system that relies on multiple ports to exchange information on attributes and characteristics to determine if the ports can operate together. If the ports can work together, they define the criteria under which they communicate.
In fibre channel, a path is established between two nodes where the path's primary task is to transport data from one point to another at high speed with low latency, performing only simple error detection in hardware.
FC-AL is one fibre channel standard (incorporated herein by reference in its entirety) that establishes the protocols for an arbitrated loop topology. Conventional elements in a FC-AL topology are not robust and do not provide an efficient way to identify, isolate and manage loop traffic.
One such problem is shown in system 210 of
Another example is shown in
Port Bypass Circuit (or PBC) modules 203 (and 206) couple plural disks (for example, 204, 202B and 207) and link 205 couples the PBC modules.
If drive 202B, which is dual ported, fails then both loops 209A and 208A are disrupted. Again, conventional techniques will require that storage 202A be removed and a bypass command issued to all drives, which takes the entire array off-line. Each device is attached and detached to investigate the reason for a link failure. Then all the drives, except the faulty drive are re-attached and loop activity is restored. This system of trial and error is labor intensive and inefficient.
Therefore, what is required is a process and system that can identify, isolate and manage loop faulty devices in common access networks, including the FC-AL topology.
In one aspect of the present invention, a method for isolating a defective device that is coupled to a fibre channel arbitrated loop in a network is provided. The method includes, isolating a port if a loop initialization primitive (“LIP”) is detected from a device coupled to the arbitrated loop; configuring the device and acquiring an AL_PA; determining if the device is sending LIPs; and isolating the device if the device continues to send LIPs. The method also includes connecting the device to the network if the device stops sending LIPs after it is configured.
In another aspect of the present invention, a fibre channel switch element having more than one port for connecting devices in a network is provided. The switch element includes, a port having an isolation state machine that allows the switch element to isolate a device whose behavior may result in disruption of other devices in the network. The state machine may also configure a device after detecting disruptive parameters from the device and perform diagnostic operations on the device.
In yet another aspect of the present invention, a network for connecting devices is provided. The network includes a fibre channel switch element including a port having an isolation state machine that allows the switch element to isolate a device whose behavior may result in disruption of other devices in the network.
This brief summary has been provided so that the nature of the invention may be understood quickly. A more complete understanding of the invention can be obtained by reference to the following detailed description of the preferred embodiments thereof concerning the attached drawings.
The foregoing features and other features of the present invention will now be described with reference to the drawings of a preferred embodiment. In the drawings, the same components have the same reference numerals. The illustrated embodiment is intended to illustrate, but not to limit the invention. The drawings include the following Figures:
Definitions:
The following definitions are provided as they are typically (but not exclusively) used in the fibre channel environment, implementing the various adaptive aspects of the present invention.
“AL_PA”: Arbitrated loop physical address.
“FC-AL”: Fibre channel arbitrated loop process described in FC-AL standard.
“Fibre channel ANSI Standard”: The standard describes the physical interface, transmission and signaling protocol of a high performance serial link for support of other high level protocols associated with IPI, SCSI, IP, ATM and others.
“FC-1”: Fibre channel transmission protocol, which includes serial encoding, decoding and error control.
“FC-2”: Fibre channel signaling protocol that includes frame structure and byte sequences.
“FC-3”: Defines a set of fibre channel services that are common across plural ports of a node.
“FC-4”: Provides mapping between lower levels of fibre channel, IPI and SCSI command sets, HIPPI data framing, IP and other upper level protocols.
“LIP”: Loop initialization protocol primitive.
“L_Port”: A port that contains Arbitrated Loop functions associated with the Arbitrated Loop topology.
“PBC”: Port Bypass Circuit.
“SES”: SCSI Enclosure Services.
“TPE”: Transmission Protocol Engine, a controller that operates at the FC-1 level.
To facilitate an understanding of the preferred embodiment, the general architecture and operation of a fibre channel system will be described. The specific architecture and operation of the preferred embodiment will then be described with reference to the general architecture of the fibre channel system.
The devices of
System 307 (or 308-312) allows faulty disks to be easily segregated. For example, if a drive 313 in string 311A is faulty, then system 311 allows drive 313 to be separated, while normal traffic in arrays 301A and 310A continues.
FC element 307 of the present invention is presently implemented as a single CMOS ASIC, and for this reason the term “FC element” and ASIC are used interchangeably to refer to the preferred embodiments in this specification. Although
System 400A provides a set of port control functions, status indications, and statistics counters for monitoring the health of the loop and attached devices, diagnosing faults, and recovering from errors.
ASIC 400A has 18 ports where 16 ports are shown as numeral 405 while a host port 404 and cascade port 404A are shown separately for convenience only. These ports are generic to common Fibre Channel port types, for example, L_Ports.
For illustration purposes only, all ports are drawn on the same side of ASIC 400A in
Each port has transmit and receive connections to switch matrix 408 and includes transmit protocol engine 407 and a serial/deserializer 406. Frames enter/leave the link 405A and SERDES 406 converts data into 10-bit parallel data to fibre channel characters.
Switch matrix 408 dynamically establishes a connection for loop traffic. Switch matrix 408 includes a global arbiter (hence switch matrix 408 is also referred to as SGA 408) that provides lower latency and improved diagnostic capabilities while maintaining full Fibre Channel Arbitrated Loop (FC-AL) compliance.
Switch matrix 408 provides a quasi-direct architecture in the form of a buffer-less Switch Matrix. Switch matrix 408 includes data multiplexers that provide a path to each port. In one aspect, twenty multiplexers may be used. In one aspect, data is 16 bits wide plus the internal “K” control signal and two parity bits.
At power-up, SGA 408 is setup in a flow-through configuration, which means all ports send what was received on host port 404. When a valid LIP sequence occurs, SGA 408 configures the switch to a complete loop configuration for the address selection process. During normal data transfer on the loop, SGA 408 reconfigures the switch data-path to connect the active ports in what appears as a smaller loop, which lowers the latency but still emulates FC-AL functionality to all entities on the loop.
During loop configuration, SGA 408 configures the switch data-path to include a snooping port that walks through each port during the LIP physical address assignment to track each port's assigned arbitrated loop physical address (AL_PA). This snooping process is called the ‘LIP walk’. When the LIP process is done, the firmware records the “port to AL_PA” map in an internal table built in SGA 408. During normal data transfer mode, SGA 408 monitors arbitration requests, open requests, and close primitives to determine which ports have traffic that must be forwarded. The ports that have traffic for the loop provide the necessary information to create the connection points for the switch data-path. The inactive ports are provided the primitive ARB(F0).
SGA 408 selects the arbitration winner, from all the arbitrating ports, according to Fibre Channel Arbitrated Loop (FC-AL) rules. For ports, which detect arbitration, the AL_PA is looked up in a Port Address Table to see if the arbitration request is valid for that port. Due to the unique purpose of port 0 (Host port 404), port 0 never needs to win arbitration, but can detect that the arbitration winner is outside a range, or with ARB(F0)/IDLE show that devices outside system 307 are not arbitrating at a given time.
For arbitration detect on host port 404 to be considered valid the “ArbPS0” cannot match an AL_PA in the internal Port Address Table, which means that the source address is not in a particular system 307. For ports seeking a valid arbitration, the AL_PA determines which arbitrating device has highest priority; and typically, the port with the lowest AL_PA value is always selected as the winner.
SGA 408 creates a direct loop connection between source and destination devices. This connection methodology avoids the delay associated with data having to pass from one disk drive member of the loop to the next until the data has completed traversing the loop. In one aspect, the following formula evaluates performance of a loop connection:
Latency (word times)=n*(2*8)+disk+host=16n+12
Where n is the number of systems 307 that comprise the FC loop, 6 is the latency of the disk drive that is part of the loop connection and 6 is typically the latency of the attached host.
System 307 includes plural 12C (12C standard compliant) interfaces 412-413 that allow system 307 to couple to plural I2C ports each having a master and slave capability.
System 307 also includes a general purpose input/output interface (“GPIO”) 415. This allows information from system 307 to be analyzed by any device that can use GPIO 415. Control/Status information 419 can be sent or received through module 415.
System 307 also includes a SPI module 414 that is used for parallel to serial and serial to parallel transfer between processor 400 firmware and flash memory 421 in the standard Little Endian format.
System 307 also includes a Universal Asynchronous Receiver/Transmitter (“UART”) interface 418 that converts serial data to parallel data (for example, from a peripheral device modem or data set) and vice-versa (data received from processor 400) complying industry standard requirements.
System 307 can also process tachometer inputs (received from a fan, not shown) using module 417. Processor 400 can read the tachometer input via a tachometer rate register and status register (not shown).
System 307 provides pulse width modulator (“PWM”) outputs via module 416. Processor 400 can program plural outputs. Timer module 411 is provided for monitoring and controlling various timers for various switch operations.
System 307 also includes two frame manager modules 402 and 403 that are similar in structure. Processor 400 can access runtime code from memory 420 and input/output instructions from read only memory 409.
Module 402 (also referred to as the “diag module 402”) is a diagnostic module used to transfer diagnostic information between a FC-AL and the firmware of system 307.
Diag module 402 is functionally coupled to storage media (via ports 405) via dedicated paths outside switch matrix 408 so that its connection does not disrupt the overall loop. Diag module 402 is used for AL_PA capture during LIP propagation, drive(s) (coupled to ports 405) diagnostics and frame capture.
Module 403 (also referred to as “SES module 403”) complies with the SES standard and is functionally coupled to host port 404 and its output is routed through switch matrix 408. SES module 403 is used for in-band management services using the standard SES protocol.
When not bypassed, modules 402 and 403 receive primitives, primitive sequences, and frames. Based on the received traffic and the requests from firmware, modules 402 and 403 maintain loop port state machine (LPSM) (615,
Based on a current LPSM 615 state (OPEN or OPENED State), modules 402 and 403 receive frames, pass the frame onto a buffer, and alert firmware that a frame has been received. Module 402 and 403 follow FC-AL buffer to buffer credit requirements.
Firmware may request modules 402 and 403 to automatically append SOF and EOF to the outgoing frame, and to automatically calculate the outgoing frame's CRC using CRC generator 612. Modules 402 and 403 can receive any class of frames and firmware may request to send either fibre channel Class 2 or Class 3 frames.
Port Management Interface (PMIF) 401 allows processor 400 access to various port level registers, SerDes modules 406 and TPE Management Interfaces 509 (
Modules 402 and 403 interface with processor 400 via an interface 606. Incoming frames to modules 402 and 403 are received from port 601 (which could be any of the ports 404, 404A and 405) and stored in frame buffer 607. Outgoing frames are also stored in frame buffer 607. Modules 402 and 403 have a receive side memory buffer based on “first-in, first-out” principle, (“FIFO”) RX_FIFO 603 and transmit side FIFO TX_FIFO 604 interfacing with a Random access FIFO 605. A receive side FIFO 603 signals to firmware when incoming frame(s) are received. A transmit side FIFO 604 signals to hardware when outgoing frames(s) are ready for transmission. A frame buffer 607 is used to stage outgoing frames and to store incoming frames. Modules 602 and 602A are used to manage frame traffic from port 601 to buffers 603 and 604, respectively.
Modules 402 and 403 use various general-purpose registers 608 for managing control, status and timing information.
Based on the AL_PA, modules 402 and 403 monitor received frames and if a frame is received for a particular module (402 or 403), it will pass the frame onto a receive buffer and alert the firmware that a frame has been received via a receive side FIFO 603. Modules 402 and 403 follow the FC-AL buffer-to-buffer credit requirements using module 616. Modules 402 and 403 transmit primitives and frames based on FC-AL rules. Firmware pre-sends the SOF and then appends the cyclic redundancy code (“CRC”) generated by module 612, and the EOF generated by Module 613.
Overall transmission control is performed by module 611 that receives data, SOF, EOF and CRC. A word assembler module 609 is used to assemble incoming words, and a fill word module 610 receives data “words” before sending it to module 611 for transmission. Transmit Buffer control is performed by module 614.
Each Fibre Channel port of system 400A includes a TPE module for interfacing with SerDes 406. TPE 407 handles most of the FC-1 layer (transmission protocol) functions, including 10B receive character alignment, 8B/10B encode/decode, 32-bit receive word synchronization, and elasticity buffer management for word re-timing and TX/RX frequency compensation.
SerDes modules 406 handle the FC-1 serialization and de-serialization functions. Each SerDes 406 port consists of an independent transmit and receive node.
TPE 407 has a receive module 500 (that operates in the Rx clock domain 503) and a transmit module 501. Data 502 is received from SERDES 406 and decoded by decoding module 504. A parity generator module 505 generates parity data. SGA interface 508 allows TPE to communicate with switch 514 or switch matrix 408. Interface 508 (via multiplexer 507) receives information from a receiver module 506 that receives decoded data from decode module 504 and parity data from module 505.
Management interfaces module 509 interfaces with processor 400. Transmit module 501 includes a parity checker 511, a transmitter 510 and an encoder 512 that encodes 8-bit data into 10-bit data. 10-bit transmit data is sent to SERDES 406 via multiplexer 513.
Port Management Interface (PMIF) 401 allows processor 400 access to various port level registers, SerDes modules 406 and TPE Management Interfaces 509 (MIFs). PMIF 401 contains a set of global control and status registers, receive and transmit test buffers, and three Serial Control Interface (SCIF) controllers (not shown) for accessing SerDes 406 registers.
In one aspect of the present invention, module 402/403 includes an Isolation State Machine to prevent disruptive behaviors.
If a network device is disruptive, diag module 402 connects the device to Isolation State Machine 402A to prevent disruptions to the other devices (
If the system can determine the cause and correct the fault, the system may correct the problem and move the corrected network device back to the operating network. The faulty device would stay in-place during this process of isolation, diagnosis and correction.
In step S701, the process determines if a LIP is received. If a LIP is received, then in step S702, ISM 402A isolates the port (via TPE 407). If not, the process goes back to step S700.
In step S703, the process determines if the device (for example, 616) has been configured before. If the device is not configured, then the device (616) is configured in step S705 (as described below with respect to
In step S707, the process determines if the device (for example, 616) is still sending LIPs. If yes, the device is isolated from the network in step S709. If the device is not sending LIPs, then it is connected to the network in step S708.
In certain networks, device configuration and initialization is disruptive to all network devices. For instance, when a FC-AL device initializes, it normally needs to acquire an AL_PA. This process of acquiring an AL_PA is disruptive and requires all network devices to stop any on-going data transfer until the AL_PA assignment has completed and then restart the previous data transfers.
Module 402/403 prevents device-configuration disruptions on an operational network, even when new devices are inserted. In addition, the present invention would also prevent disruptions when a faulty device is disconnected from the system, and a replacement device is connected in the place of the faulty device. In such a case, Configuration State Machine 402C can isolate the replacement device and configure the device identically to that of the replaced device.
As an example, suppose a FC-AL device is initializing and thus sends LIP primitives in order to acquire an AL_PA. To prevent disruption, the system would isolate the device and assign an AL_PA to the device as discussed below with respect to
Turning in detail to
In step S805, the process determines if the device is still sending LIPs. If yes, then the process goes to
Diagnostics and device configuration need not be restricted to knowledge contained in system 307 or module 402/403.
Control and diagnostic information may also be shared with an in-band state machine 402D (
Although the present invention has been described with reference to specific embodiments, these embodiments are illustrative only and not limiting. Many other applications and embodiments of the present invention will be apparent in light of this disclosure and the following claims.
This application claims priority under 35 USC Section 119(e), to the following provisional patent applications: Ser. No. 60/487,876 filed on Jul. 16, 2003; Ser. No. 60/487,887 filed on Jul. 16, 2003; Ser. No. 60/487,875 filed on Jul. 16, 2003; Ser. No. 60/490,747 filed on Jul. 29, 2003; Ser. No. 60/487,667 filed on Jul. 16, 2003; Ser. No. 60/487,665 filed on Jul. 16, 2003; Ser. No. 60/492,346 filed on Aug. 4, 2003; and Ser. No. 60/487,873 filed on Jul. 16, 2003. The disclosures of the foregoing applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4162375 | Schilichte | Jul 1979 | A |
4200929 | Davidjuk et al. | Apr 1980 | A |
4382159 | Bowditch | May 1983 | A |
4425640 | Philip et al. | Jan 1984 | A |
4546468 | Christmas et al. | Oct 1985 | A |
4569043 | Simmons et al. | Feb 1986 | A |
4725835 | Schreiner et al. | Feb 1988 | A |
4821034 | Anderson et al. | Apr 1989 | A |
4980857 | Walter et al. | Dec 1990 | A |
5051742 | Hullett et al. | Sep 1991 | A |
5115430 | Hahne et al. | May 1992 | A |
5144622 | Takiyasu et al. | Sep 1992 | A |
5260933 | Rouse | Nov 1993 | A |
5367520 | Cordell | Nov 1994 | A |
5590125 | Acampora et al. | Dec 1996 | A |
5598541 | Malladi | Jan 1997 | A |
5610745 | Bennett | Mar 1997 | A |
5623492 | Teraslinna | Apr 1997 | A |
5666483 | McClary | Sep 1997 | A |
5687172 | Cloonan et al. | Nov 1997 | A |
5701416 | Thorson et al. | Dec 1997 | A |
5706279 | Teraslinna | Jan 1998 | A |
5748612 | Stoevhase et al. | May 1998 | A |
5812525 | Teraslinna | Sep 1998 | A |
5818842 | Burwell et al. | Oct 1998 | A |
5821875 | Lee et al. | Oct 1998 | A |
5825748 | Barkey et al. | Oct 1998 | A |
5828475 | Bennett et al. | Oct 1998 | A |
5835752 | Chiang et al. | Nov 1998 | A |
5850386 | Anderson et al. | Dec 1998 | A |
5894560 | Carmichael et al. | Apr 1999 | A |
5954796 | McCarty et al. | Sep 1999 | A |
5978359 | Caldara et al. | Nov 1999 | A |
5987028 | Yang et al. | Nov 1999 | A |
5999528 | Chow et al. | Dec 1999 | A |
6014383 | McCarty | Jan 2000 | A |
6021128 | Hosoya et al. | Feb 2000 | A |
6026092 | Abu-Amara et al. | Feb 2000 | A |
6031842 | Trevitt et al. | Feb 2000 | A |
6047323 | Krause | Apr 2000 | A |
6055618 | Thorson | Apr 2000 | A |
6061360 | Miller et al. | May 2000 | A |
6081512 | Muller et al. | Jun 2000 | A |
6108738 | Chambers et al. | Aug 2000 | A |
6108778 | LaBerge | Aug 2000 | A |
6118776 | Berman | Sep 2000 | A |
6128292 | Kim et al. | Oct 2000 | A |
6144668 | Bass et al. | Nov 2000 | A |
6160813 | Banks et al. | Dec 2000 | A |
6201787 | Baldwin et al. | Mar 2001 | B1 |
6229822 | Chow et al. | May 2001 | B1 |
6240096 | Book | May 2001 | B1 |
6253267 | Kim et al. | Jun 2001 | B1 |
6289002 | Henson et al. | Sep 2001 | B1 |
6308220 | Mathur | Oct 2001 | B1 |
6324181 | Wong et al. | Nov 2001 | B1 |
6330236 | Ofek et al. | Dec 2001 | B1 |
6343324 | Hubis et al. | Jan 2002 | B1 |
6353612 | Zhu et al. | Mar 2002 | B1 |
6370605 | Chong | Apr 2002 | B1 |
6401128 | Stai et al. | Jun 2002 | B1 |
6411599 | Blanc et al. | Jun 2002 | B1 |
6411627 | Hullett et al. | Jun 2002 | B1 |
6418477 | Verma | Jul 2002 | B1 |
6421711 | Blumenau et al. | Jul 2002 | B1 |
6424658 | Mathur | Jul 2002 | B1 |
6449274 | Holden et al. | Sep 2002 | B1 |
6452915 | Jorgensen | Sep 2002 | B1 |
6457090 | Young | Sep 2002 | B1 |
6467008 | Gentry, Jr. et al. | Oct 2002 | B1 |
6470026 | Pearson et al. | Oct 2002 | B1 |
6532212 | Soloway et al. | Mar 2003 | B1 |
6570850 | Gutierrez et al. | May 2003 | B1 |
6570853 | Johnson et al. | May 2003 | B1 |
6594231 | Byham et al. | Jul 2003 | B1 |
6597691 | Anderson et al. | Jul 2003 | B1 |
6597777 | Ho | Jul 2003 | B1 |
6614796 | Black et al. | Sep 2003 | B1 |
6697359 | George | Feb 2004 | B1 |
6697368 | Chang et al. | Feb 2004 | B2 |
6718497 | Whitby-Strevens | Apr 2004 | B1 |
6744772 | Eneboe et al. | Jun 2004 | B1 |
6760302 | Ellinas et al. | Jul 2004 | B1 |
6785241 | Lu et al. | Aug 2004 | B1 |
6807181 | Weschler | Oct 2004 | B1 |
6816750 | Klaas | Nov 2004 | B1 |
6859435 | Lee et al. | Feb 2005 | B1 |
6865157 | Scott et al. | Mar 2005 | B1 |
6886141 | Kunz et al. | Apr 2005 | B1 |
6941357 | Nguyen et al. | Sep 2005 | B2 |
6941482 | Strong | Sep 2005 | B2 |
6952659 | King et al. | Oct 2005 | B2 |
6968463 | Pherson et al. | Nov 2005 | B2 |
7000025 | Wilson | Feb 2006 | B1 |
7002926 | Eneboe et al. | Feb 2006 | B1 |
7010607 | Bunton | Mar 2006 | B1 |
7039070 | Kawakatsu | May 2006 | B2 |
7039870 | Takaoka et al. | May 2006 | B2 |
7047326 | Crosbie et al. | May 2006 | B1 |
7050392 | Valdevit | May 2006 | B2 |
7055068 | Riedl | May 2006 | B2 |
7061871 | Sheldon et al. | Jun 2006 | B2 |
7092374 | Gubbi | Aug 2006 | B1 |
7110394 | Chamdani et al. | Sep 2006 | B1 |
7124169 | Shimozono et al. | Oct 2006 | B2 |
7151778 | Zhu et al. | Dec 2006 | B2 |
7171050 | Kim | Jan 2007 | B2 |
7185062 | Lolayekar et al. | Feb 2007 | B2 |
7188364 | Volpano | Mar 2007 | B2 |
7190667 | Susnow et al. | Mar 2007 | B2 |
7194538 | Rabe et al. | Mar 2007 | B1 |
7200108 | Beer et al. | Apr 2007 | B2 |
7215680 | Mullendore et al. | May 2007 | B2 |
7221650 | Cooper et al. | May 2007 | B1 |
7245613 | Winkles et al. | Jul 2007 | B1 |
7248580 | George et al. | Jul 2007 | B2 |
7269131 | Cashman et al. | Sep 2007 | B2 |
7292593 | Winkles et al. | Nov 2007 | B1 |
20010011357 | Mori | Aug 2001 | A1 |
20010038628 | Ofek et al. | Nov 2001 | A1 |
20010047460 | Kobayashi et al. | Nov 2001 | A1 |
20020034178 | Schmidt et al. | Mar 2002 | A1 |
20020071387 | Horiguchi et al. | Jun 2002 | A1 |
20020103913 | Tawil et al. | Aug 2002 | A1 |
20020104039 | DeRolf et al. | Aug 2002 | A1 |
20020124124 | Matsumoto et al. | Sep 2002 | A1 |
20020147560 | Devins et al. | Oct 2002 | A1 |
20020147843 | Rao | Oct 2002 | A1 |
20020156918 | Valdevit et al. | Oct 2002 | A1 |
20020172195 | Pekkala et al. | Nov 2002 | A1 |
20020191602 | Woodring et al. | Dec 2002 | A1 |
20020196773 | Berman | Dec 2002 | A1 |
20030002503 | Brewer et al. | Jan 2003 | A1 |
20030016683 | George et al. | Jan 2003 | A1 |
20030021239 | Mullendore et al. | Jan 2003 | A1 |
20030026267 | Oberman et al. | Feb 2003 | A1 |
20030026287 | Mullendore et al. | Feb 2003 | A1 |
20030035433 | Craddock et al. | Feb 2003 | A1 |
20030046396 | Richter et al. | Mar 2003 | A1 |
20030056000 | Mullendore et al. | Mar 2003 | A1 |
20030072316 | Niu et al. | Apr 2003 | A1 |
20030079019 | Lolayekar et al. | Apr 2003 | A1 |
20030084219 | Yao et al. | May 2003 | A1 |
20030086377 | Berman | May 2003 | A1 |
20030091062 | Lay et al. | May 2003 | A1 |
20030103451 | Lutgen et al. | Jun 2003 | A1 |
20030117961 | Chuah et al. | Jun 2003 | A1 |
20030120983 | Vieregge et al. | Jun 2003 | A1 |
20030126223 | Jenne et al. | Jul 2003 | A1 |
20030137941 | Kaushik et al. | Jul 2003 | A1 |
20030174789 | Waschura et al. | Sep 2003 | A1 |
20030179709 | Huff | Sep 2003 | A1 |
20030179748 | George et al. | Sep 2003 | A1 |
20030189930 | Terrell et al. | Oct 2003 | A1 |
20030189935 | Warden et al. | Oct 2003 | A1 |
20030195983 | Krause | Oct 2003 | A1 |
20030229808 | Heintz et al. | Dec 2003 | A1 |
20030236953 | Grieff et al. | Dec 2003 | A1 |
20040013092 | Betker et al. | Jan 2004 | A1 |
20040013125 | Betker et al. | Jan 2004 | A1 |
20040015638 | Bryn | Jan 2004 | A1 |
20040024831 | Yang et al. | Feb 2004 | A1 |
20040028038 | Anderson et al. | Feb 2004 | A1 |
20040057389 | Klotz et al. | Mar 2004 | A1 |
20040081186 | Warren et al. | Apr 2004 | A1 |
20040081394 | Biren et al. | Apr 2004 | A1 |
20040085955 | Walter et al. | May 2004 | A1 |
20040100944 | Richmond et al. | May 2004 | A1 |
20040109418 | Fedorkow et al. | Jun 2004 | A1 |
20040123181 | Moon et al. | Jun 2004 | A1 |
20040141521 | George | Jul 2004 | A1 |
20040153914 | El-Batal | Aug 2004 | A1 |
20040174813 | Kasper et al. | Sep 2004 | A1 |
20040208201 | Otake | Oct 2004 | A1 |
20040267982 | Jackson et al. | Dec 2004 | A1 |
20050023656 | Leedy | Feb 2005 | A1 |
20050036499 | Dutt et al. | Feb 2005 | A1 |
20050117522 | Basavaiah et al. | Jun 2005 | A1 |
20050177641 | Yamagami | Aug 2005 | A1 |
20060013248 | Mujeeb et al. | Jan 2006 | A1 |
20060047852 | Shah et al. | Mar 2006 | A1 |
20060074927 | Sullivan et al. | Apr 2006 | A1 |
20060184711 | Pettey | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
0649098 | Sep 1994 | EP |
0856969 | Jan 1998 | EP |
WO-9836537 | Aug 1998 | WO |
WO03088050 | Oct 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050013609 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
60492346 | Aug 2003 | US | |
60490747 | Jul 2003 | US | |
60487876 | Jul 2003 | US | |
60487887 | Jul 2003 | US | |
60487875 | Jul 2003 | US | |
60487667 | Jul 2003 | US | |
60487665 | Jul 2003 | US | |
60487873 | Jul 2003 | US |