The field of the disclosure relates generally to systems for monitoring characteristics of an eye.
Glaucoma is a widespread disease that affects 1-2% of the population. An estimated 7 to 8 million Americans have an intraocular pressure (IOP) greater than 21 millimeters of mercury (mmHg) putting them at risk for optic nerve damage. Approximately 3.93 million Americans are diagnosed with glaucoma, and as a result, 900,000 have some degree of vision impairment, with 80,000 patients classified as legally blind. In the U.S., glaucoma is growing at a rate of 80,000 new cases annually. The economic loss resulting from vision impairment and blindness caused by glaucoma is estimated to be more than $1.5 billion per year.
The measurement of IOP (tonometry) requires an office visit with tests performed by a physician or trained technician. Current tonometry methods may not detect pressure peaks, and are known to both over- and under-estimate IOP. Even in patients diagnosed with persistent glaucoma, measurements of the intraocular pressure may be taken months apart. To properly manage glaucoma with medication, IOP measurements should be taken every few hours. Therefore, what is needed is a system for monitoring IOP regularly without a physician or clinician present.
In an example embodiment, a method for monitoring a condition of an eye is provided. An intraocular pressure measurement datum and a time datum associated with the time the intraocular pressure measurement was measured using an eye measurement system are received at a first device. A dispensed amount datum associated with an amount of a drug administered to an eye of a user and a second time datum associated with the time the drug was administered are received at the first device. The received intraocular pressure measurement datum, the received time datum, the received dispensed amount datum, and the received second time datum are stored at the first device to monitor a condition of the eye.
In an example embodiment, a system is provided to monitor a condition of an eye. The system includes, but is not limited to, a communication interface and a processor operably coupled to the communication interface. The communication interface is configured to receive an intraocular pressure measurement datum and a time datum associated with the time the intraocular pressure measurement was measured using an eye measurement system. The processor is configured to receive the intraocular pressure measurement datum and the time datum, to receive a dispensed amount datum associated with an amount of a drug administered to an eye of a user and a second time datum associated with the time the drug was administered, and to store the received intraocular pressure measurement datum, the received time datum, the received dispensed amount datum, and the received second time datum to monitor a condition of the eye.
In another example embodiment, a computer-readable medium is provided comprising computer-readable instructions that, upon execution by a processor, cause the processor to perform the operations of the method of monitoring a condition of an eye.
Other features and advantages of the invention will become apparent to those skilled in the art upon review of the following drawings, the detailed description, and the appended claims.
Example embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like numerals denote like elements.
With reference to
Reader 104 receives the measured chemical, biological, physical, and/or pharmacological level from measurement system 102. Dispenser 106 dispenses medication such as a drug into the eye of the patient. Reader 104 and dispenser 106 may be integrated into a single device or included as separate devices. Computing device 108 may be a computer of any form factor including a laptop, a desktop, a server, an integrated messaging device, a personal digital assistant, a cellular telephone, an iPod, etc. Reader 104, dispenser 106, and computing device 108 may interact using a communication interface which may be wired or wireless or involve electrical connections in order to communicate information related to the condition of the eye of the patient or of the patient in general.
With reference to
Measurement system 102 includes, but is not limited to, a measurement system coil 200, a regulator 202, an oscillator 204, a sensor 206, a divider 208, and a MOSFET 210. Energy is supplied to the measurement system from a magnetic and/or an electric field produced in a reader coil 220 of reader 104. Measurement system coil 200 provides energy to regulator 202 which provides rectified and regulated power to oscillator 204 and to divider 208. Oscillator 204 determines an oscillating frequency based on a deflection of sensor 206. As known to those skilled in the art, a variety of antennas may be used instead of the coils indicated in the example embodiment of
In an example embodiment, sensor 206 is formed as a gap between parallel plates made by an etch into a surface of borosilicate glass. An electrode is patterned in the gap. Example materials for forming electrode are Ti/Pt, Cr/Au, Ti/Au, and Cr/Pt. However, almost any conducting material may be used. The electrode may be encased in a material that is biocompatible. The surface of a silicon wafer, 1-2 microns, is doped with boron using a thermal diffusion process to produce a thin, highly doped silicon layer that is resistant to wet etching by ethylenediamine pyrocatechol (EDP). After the boron diffusion, the wafer is aligned and anodically bonded to the patterned borosilicate glass. The glass/silicon assembly is placed in EDP to etch the entire silicon wafer away up to the p+ region until the remaining silicon p+ layer is about one micron thick and acts as a capacitive plate that deflects due to a pressure difference between the sealed cavity and the pressure of the external environment.
In an example embodiment, the components of measurement system 102 are mounted on a 51 micron thick Kapton® copper clad substrate. Connections between the components may be made using aluminum wire bonding. In an alternative embodiment, flip-chip bonding may be used to directly connect the components of measurement system 102 thereby eliminating most wire bonds. A one micron coating of parylene may be deposited on the components. Conformal epoxies may be overlaid to protect the wires from physical damage. A second deposition of parylene may be applied over measurement system 102.
In an example embodiment, measurement system coil 200 is formed by sputtering layers of titanium and gold onto a cured layer of polyimide. This layer is patterned using photolithography techniques and electroplated to a thickness of 10 microns. The remaining photoresist is removed and the non-electroplated gold seed layer is removed via wet etching methods. The exposed titanium layer is removed using dry plasma etching.
Measurement system 102 may include sensors of different types to measure IOP and may include sensors to measure different characteristics of the eye such as the glucose level, the temperature level, the pH level, etc. Additionally, in alternative embodiments, measurement system 102 may be powered by eye blinking, walking, solar energy, sound, light, vibration, and or a piezoelectric device. Measurement system 102 may be surgically implanted in one or more pieces. For example, measurement system 102 may include the measurement system integrated with a lens. Alternatively, the measurement system may be separate from the lens.
Measurement reader 240 of reader 104 includes reader coil 220, an antenna driver 222, a demodulator 224, a comparator 226, a filter 228, and a power supply 230. Antenna driver 222 provides the input signal to reader coil 220. Demodulator 224 receives an output signal of reader coil 220 which, in the example embodiment of
With reference to
Computer-readable medium 302 is an electronic holding place or storage for information so that the information can be accessed by processor 306 as known to those skilled in the art. Computer-readable medium 302 can include, but is not limited to, any type of random access memory (RAM), any type of read only memory (ROM), any type of flash memory, etc. such as magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips, . . . ), optical disks (e.g., compact disk (CD), digital versatile disk (DVD), . . . ), smart cards, flash memory devices, etc. Reader 104 may have one or more computer-readable media that use the same or a different memory media technology. Reader 104 also may have one or more drives that support the loading of a memory media such as a CD, a DVD, a flash memory card, etc.
Communication interface 304 provides an interface for receiving and transmitting data between devices using various protocols, transmission technologies, and media as known to those skilled in the art. The communication interface may support communication using various transmission media that may be wired or wireless. Example communication media, interfaces, and protocols include radio frequency wireless such as radio frequency identification (RFID), IEEE 802.11, IEEE 802.15, a cellular telephone network, etc.; a phone line; a power line; an infrared connection; a laser; an inductive coupling, a physical serial or parallel connection such as an Institute of Electrical and Electronics Engineers (IEEE) 1394 interface, an Ethernet interface, a universal serial bus interface, etc.
Processor 306 executes instructions as known to those skilled in the art. The instructions may be carried out by a special purpose computer, logic circuits, or hardware circuits. Thus, processor 306 may be implemented in hardware, firmware, software, or any combination of these methods. The term “execution” is the process of running an application or the carrying out of the operation called for by an instruction. The instructions may be written using one or more programming language, scripting language, assembly language, etc. Processor 306 executes an instruction, meaning that it performs the operations called for by that instruction. Processor 306 may operably couple with measurement reader 240, with display 300, with computer-readable medium 302, and with communication interface 304 to receive, to send, and to process information. Processor 306 may retrieve a set of instructions from a permanent memory device and copy the instructions in an executable form to a temporary memory device that is generally some form of RAM. Reader 104 may include a plurality of processors that use the same or a different processing technology.
Data processing application 308 performs operations associated with storing and monitoring a measured characteristic of the eye and/or with indicating to a patient that administration of a medication is due. Some or all of the operations described with reference to
Eye monitoring system 100 may interact with a server 110, for example, using communication interface 304. Server 110 may include a computing device 112 that can directly access or indirectly access a database 114. Communications between eye monitoring system 100 and server 110 may be established using secure communications through a network such as the Internet. The server may collect data from a plurality (thousands) of eye monitoring systems 100 such as an additional computing device similar to computing device 108 connected to the network.
Computing device 108 may submit IOP data (IOP and a timestamp) and dispenser data (amount of drug dispensed and a timestamp) with or without an associated patient identifier to server 110 automatically. For example, the IOP and dispenser data may be automatically sent to server 110 when a reading is obtained. The patient identifier may be associated with the wearer of measurement system 102, measurement system 102, reader 104, and/or dispenser 106. Alternatively, server 110 may interrogate each computing device 108 of the plurality of eye monitoring systems 100 for IOP data and dispenser data periodically. Server 110 may store the data received from multiple patients into database 114. The aggregated data in database 114 can be used for treatment analysis, drug effectiveness, etc. Physicians, ophthalmologists, and pharmacists can also review the data of their patients using a computing device 120 directly or indirectly connected to server 110 using a communication interface to a network such as the Internet as shown in
With reference to
With reference to
With reference to
With reference to
Reader 104 in accordance with the second example embodiment, further includes dispenser 106 mounted in a compartment within body 700 in a manner facilitating dispensing of the drug stored in dispenser 106. With reference to
Thus, dispenser 106 and reader 104 may be integrated into a single system. Dispenser 106, reader 104, and/or computing device 108 may be connected directly. For example, dispenser 106, reader 104, and/or computing device 108 may be connected using a cable for transmitting information between the devices. Dispenser 106, reader 104, and/or computing device 108 may be connected using a network using a wired or wireless media. Dispenser 106, reader 104, and/or computing device 108 may not be connected. Instead, data acquired using dispenser 106 and/or reader 104 may be manually provided to computing device 108. For example, the data may be stored on electronic media such as a CD, a DVD, a flash memory device, etc.
With reference to
In an operation 902, the user positions reader coil 220 in alignment with measurement system coil 200 and pushes button 406 which causes reader 104 to provide power to measurement system 102 through the field coupling the coils. In an operation 904, the sensor measurement performed by measurement system 102 is received at reader 104 through the field coupling the coils. In an operation 906, the received measurement datum is stored in computer readable medium 304. In an example embodiment, the measured datum is stored with a timestamp associated with the time the intraocular pressure measurement was measured using measurement system 102. The information may further be displayed to the user of reader 104 using display 300. The indicator may be turned “off” until triggered again, and parameters associated with triggering the indicator “on” may be reset.
In an operation 908, a determination of whether or not it is time to administer a drug is performed. If it is determined that it is time to administer a drug, in an operation 910, an indicator is triggered indicating that it is time to administer the drug to the eye of the user. In an operation 912, removal or opening of cap 602 is detected, for example using cap sensor 706. In an operation 914, an amount of the drug dispensed is detected, for example using drug delivery sensor 604, 704. In an operation 916, the drug delivery data is stored in computer readable medium 304 or at a computer readable medium of dispenser 106. For example, with reference to
Reader 104 and/or dispenser 106 may be integrated into a variety of devices including, but not limited to, a watch, a key chain, a pager, a cell phone, a pair of glasses, another medical device such as a blood glucose monitor, a heart monitor, a medication container, etc. For example, reader 104 may be integrated into a pair of eye glasses that includes a battery such as a rechargeable lithium battery. Reader coil 220 may be mounted such that it is aligned with measurement system coil 200 when the glasses are worn. The glasses may be placed in a rechargeable cradle for recharging. An LED may be located on an inside frame of the glasses to alert the patient that an IOP threshold has been exceeded, and thus, to administer the drug. As another example, reader 104 or some components of reader 104 may be integrated into a headband or goggles. For example, the headband worn at night may send the measured data to the glasses that are being recharged. The headband also may be placed in the rechargeable cradle for recharging.
With reference to
With reference to
In a separate process that may be executing concurrently with operations 1100, 1102, 1104, and 1106, in an operation 1108, a cap removal from dispenser 106 is detected. In an operation 1110, an amount of drug delivered from dispenser 106 is detected. In another example embodiment, the amount of drug may not be detected, but may be assumed to be a predefined amount that is triggered based on detection of the cap removal. Thus, a dispensed amount may be received into the processor that is based on a detected amount of drug delivered from dispenser 106 or based on a predefined amount that is stored in a computer-readable medium. In an operation 1112, the dispensed drug data and time are stored. For example, the data may be received and stored at one or more of dispenser 106, reader 104, and computing device 108 so that the data can be evaluated by an eye care specialist during a future office visit. In an operation 1114, the dispensed drug data and time that fall outside a prescribed drug regimen may be displayed to the user, for example, using one or more of dispenser 106, reader 104, and computing device 108. Processing continues at operation 1116.
In operation 1116, an indicator indicating that the user should see an eye care specialist is triggered. For example, if the IOP data or data associated with the IOP data such as minimum IOP, maximum IOP, and/or rate of change of IOP are outside a predefined set of parameters, the indicator may be triggered. In an operation 1118, the stored data is sent to the eye care specialist using a communication interface from one or more of dispenser 106, reader 104, and computing device 108.
In an operation 902, the user positions reader coil 220 in alignment with measurement system coil 200 and pushes button 406 which causes reader 104 to provide power to measurement system 102 through the field coupling the coils. In an operation 904, the sensor measurement performed by measurement system 102 is received at reader 104 through the field coupling the coils. In an operation 906, the received measurement datum is stored in computer readable medium 304. In an example embodiment, the measured datum is stored with a timestamp associated with the time the intraocular pressure measurement was measured using measurement system 102. The information may further be displayed to the user of reader 104 using display 300. The indicator may be turned “off” until triggered again, and parameters associated with triggering the indicator “on” may be reset.
In an operation 908, a determination of whether or not it is time to administer a drug is performed. If it is determined that it is time to administer a drug, in an operation 910, an indicator is triggered indicating that it is time to administer the drug to the eye of the user. In an operation 912, removal or opening of cap 602 is detected, for example using cap sensor 706. In an operation 914, an amount of the drug dispensed is detected, for example using drug delivery sensor 604, 704. In an operation 916, the drug delivery data is stored in computer readable medium 304 or at a computer readable medium of dispenser 106. For example, with reference to
In an alternative embodiment, a “passive” telemetry device may be used that is simpler on the measurement system side because it only contains a resonant inductor and capacitor (LC) circuit. However, a “passive” telemetry device is generally more expensive and bulky on the reader side. In an example embodiment using a “passive” telemetry device, measurement system 102 may be constructed of passive components where the resonant frequency, phase, or some characteristic of the electromagnetic response of the measurement system is a function of pressure. Passive measurement systems may include inductors, capacitors, capacitive or inductive sensors, surface acoustic wave devices, crystals, resonating MEMS structures, and antennas. Semiconductors may also be included as safety devices or elements to shape the electromagnetic response. The measurement system reader may interrogate the passive measurement system using a swept frequency electromagnetic field so that the measurement system resonates and produces a detectable signal. The measurement system reader may also generate a pulsed electromagnetic field and wirelessly sense the resonating measurement system. Any portion of the electromagnetic spectrum may be used including visible and invisible light.
The word “example” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “example” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Further, for the purposes of this disclosure and unless otherwise specified, “a” or “an” means “one or more”. The example embodiments may be implemented as a method, machine, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer to implement the disclosed embodiments.
The foregoing description of example embodiments of the invention have been presented for purposes of illustration and of description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. The embodiments were chosen and described in order to explain the principles of the invention and as practical applications of the invention to enable one skilled in the art to utilize the invention in various embodiments and with various modifications as suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
This invention was made with United States government support awarded by the following agencies: National Institute of Health Grant No. R44 Ey014728-03. The United States government has certain rights in this invention.