Information
-
Patent Application
-
20030079536
-
Publication Number
20030079536
-
Date Filed
September 10, 200222 years ago
-
Date Published
May 01, 200321 years ago
-
CPC
-
US Classifications
-
International Classifications
Abstract
A method of monitoring a tire pressure, comprises the steps: measuring at least one parameter that influences the tire pressure, calculating the optimum tire pressure ρopt on the basis of the at least one measured parameter, comparing a measured tire pressure p with the optimum tire pressure ρopt in order to generate a deviation signal in the event of a predetermined deviation.
Description
BACKGROUND OF THE INVENTION
[0001] The invention relates to a method and a system for monitoring a tire air pressure.
[0002] The air pressure in a tire is typically subjected to specific changes. These changes in the tire air pressure can be caused, for example, by various parameters such as the ambient air pressure around the tire. Likewise, the air pressure in a tire changes depending on whether the tire is used in warmer or colder areas.
[0003] U.S. Pat. No. 5,895,846 discloses a method of processing signals in a system for monitoring tires on a vehicle during its operation. In this case, only the tire pressure and the internal temperature of the tire but no further parameters that determine the air pressure in a tire are taken into account, so that a defect in the tire may mistakenly be detected.
SUMMARY OF THE INVENTION
[0004] The object of the invention is to provide a method and system for monitoring a tire air pressure, it being possible to determine reliably whether there is an optimum tire pressure in spite of the effect of various factors which determine the tire air pressure.
[0005] This object is achieved by a method of monitoring a tire pressure, comprising the steps of:
[0006] measuring at least one parameter that influences the tire pressure;
[0007] calculating an optimum tire pressure on the basis of the at least one measured parameter;
[0008] comparing a measured tire pressure with the optimum tire pressure in order to generate a deviation signal in the event of a predetermined deviation, the predetermined deviation being defined by an upper and lower limit and, in each case when the deviation signal generated exceeds the upper limit or falls below the lower limit, a deviation value is increased in order to generate an alarm signal when the deviation value reaches a predetermined threshold value, and the deviation value is reduced when no deviation signal is present.
[0009] A system for monitoring a tire pressure, comprises at least one tire to be monitored, at least one sensor for measuring at least one parameter of the at least one tire that influences the air pressure, an air pressure sensor for measuring a current tire air pressure, and an evaluation unit, which receives the at least one parameter measured by the sensor and measured data from the air pressure sensor. The evaluation unit calculates an optimum tire pressure on the basis of the at least one measured parameter and compares the measured tire pressure with the optimum tire pressure in order to generate a deviation signal in the event of a predetermined deviation. The predetermined deviation is defined by an upper and lower limit and, in each case when the deviation signal generated exceeds the upper limit and falls below the lower limit, a deviation value is increased in order to generate an alarm signal when the deviation value reaches a predetermined threshold value, and the deviation value is reduced when no deviation signal is present.
[0010] Other advantageous developments of the invention are specified in the dependent claims.
[0011] According to the method as claimed in claim 1, the influence of various parameters that influence the tire air pressure can be taken into account reliably during the monitoring of the air pressure in the tire.
[0012] In this case, a tolerance band is defined, within which a currently measured tire air pressure may deviate from an optimum tire air pressure without an alarm signal being generated.
[0013] According to the method as claimed in claim 2, it is possible to adapt the method to various vehicle types easily, since a vehicle-specific tire pressure, for example one specified by the vehicle manufacturer, is taken into account in monitoring the tire pressure.
[0014] According to claims 3 to 6, various parameters that determine the tire air pressure are taken into account in monitoring an optimum tire air pressure. In this way, the optimum tire air pressure can be calculated at any time, even when external conditions change.
[0015] According to claim 7, the tolerance band can be variable, by which means it can be adapted to various parameters that influence the tire air pressure. Thus, by using the method according to the invention, for example secure detection of a tire fault can be carried out, external influences being taken into account.
[0016] According to claims 8 and 9, the driver of a vehicle which contains at least one tire whose tire air pressure is to be monitored is informed, for example, about a pressure drop in the monitored tire. This is done, for example, at a gas station, where there is the possibility for the driver to refill the tire with air.
[0017] According to claims 10 and 11, the driver is informed about the still permissible loading of the vehicle. This can be carried out continuously or only when a permissible loading limit is exceeded.
BRIEF DESCRIPTION OF THE DRAWINGS
[0018] The invention will be described in more detail below using a preferred exemplary embodiment and with reference to the appended drawings, in which:
[0019]
FIG. 1 shows a block diagram of a preferred exemplary embodiment of a system according to the invention; and
[0020]
FIG. 2 shows a flow chart to explain the functioning of the system according to the invention or the method according to the invention.
[0021]
FIG. 1 shows a block diagram of a preferred exemplary embodiment of the system according to the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0022] As FIG. 1 shows, a pressure sensor 4 for registering the air pressure within the tire is arranged in a vehicle tire 2. The construction and mode of action of such a sensor are known per se and will therefore not be explained. The pressure sensor 4 does not necessarily have to be arranged in the interior of the tire; it can also be arranged on a valve, so that the pressure-sensitive element of the pressure sensor 4 registers the internal pressure in the tire. The output signal from the pressure sensor 4 is transmitted to an evaluation unit 8 via a radio transmission link 6. However, depending on the construction and arrangement of the sensor, this can also be done mechanically via wiping contacts or, as in accordance with the preferred system, wire-free in a manner known per se, for example by means of a transponder which communicates with a transmitter/receiver unit 10 which conditions signals transmitted via the transponder and supplies them to inputs of the evaluation unit 8. Connected to further inputs of the evaluation unit 8 are an ambient air pressure sensor 12, a vehicle loading state sensor 13 and a speed sensor 14.
[0023] The evaluation unit 8 contains, in a manner known per se, a microprocessor 16 having a program memory 18 and a data memory 20. One output of the evaluation unit 8 is connected to a warning device 22, for example a warning lamp or a display in a vehicle switch panel with, if appropriate, an additional acoustic indicator.
[0024] A functional example of the unit described will be explained using the flow chart according to FIG. 2.
[0025] Following the activation of the method in step S1, according to the preferred exemplary embodiment, a permanently predefined vehicle-specific air pressure ρnom is determined. This can be stored, for example, in a memory known per se. Furthermore, in step S2 a parameter K1 is determined which depends on a measured ambient air pressure ρair, momentary. This measured ambient air pressure can, for example, be placed in a relationship with a nominal air pressure ρair, nom (for example 1024 mbar), so that for the parameter K1 it is true that K1=ρair, momentary−ρair, nom.
[0026] Likewise, in step S2, a further parameter K2 is determined which according to the preferred exemplary embodiment, depends on the vehicle speed. In step S2, a third parameter K3 is also determined, which depends on the vehicle loading. Likewise, in step S2 according to the preferred exemplary embodiment, a fourth parameter K4 is determined, which takes into account a tire inflation pressure read off from an external tire inflation instrument during inflation of the tire to be monitored.
[0027] The abovementioned parameter K4 is used, for example, to take account of the fact that the driver of a vehicle provides the tire from the start with an air pressure which, for example, is 0.2 bar above the tire air pressure recommended by the manufacturer.
[0028] Of course, fewer or else more parameters which can influence the optimum tire air pressure can also be taken into account.
[0029] A current tire air pressure, likewise determined in step S2, is then compared with, for example, permanently predefined threshold values in step S3. If these threshold values are violated, then the driver of the vehicle is warned immediately in step S4. These permanently predefined threshold values are used to warn the driver in good time in the event of a sudden tire air pressure drop.
[0030] If, in step S3, the permanently predefined threshold values are not violated by the tire air pressure currently measured in step S2, then the instantaneous optimum tire air pressure is calculated in step S5. According to the preferred exemplary embodiment of the invention, this is carried out by using the following formula:
ρopt=ρnom+K1+K2+K3+K4.
[0031] In step S6, a tolerance band is then calculated, the optimum tire air pressure determined in step S5 lying within the tolerance band. According to the preferred exemplary embodiment, the upper and the lower limits of the tolerance band are permanently predefined. Alternatively, however, the upper and lower limit of the tolerance band could also depend on one or more of the abovementioned parameters that influence the tire air pressure.
[0032] In step S7, a check is made as to whether the currently determined tire air pressure lies within the tolerance band. If this is so, then in step S8 an internal counter is reduced by a predetermined value. According to the preferred exemplary embodiment of the method, this predetermined value is permanently predefined and always the same. Alternatively, however, it is also possible to reduce the counter appropriately on the basis of the distance of the current tire air pressure from the upper and/or the lower limit of the tolerance band. The method is then continued with step S2.
[0033] If the currently determined tire air pressure does not lie within the tolerance band, then the counter is increased in step S9. According to the preferred exemplary embodiment, the value by which the counter is increased in step S9 is variable. In order to determine the value by which the counter is to be increased, the distance Δp of the current tire air pressure from the tolerance band is determined in step S10. In step S11, on the basis of the distance Δp calculated in step S10, a counter incremental value ΔL is then calculated, ΔL=f(Δp). In step S12, a corresponding counter increment determined in step 11 is then made.
[0034] The value of the counter reached on the basis of the counter increment carried out in step S12 is then compared with a fixed or variable threshold value in accordance with the preferred exemplary embodiment of the method, see step S13 in FIG. 2. If the predetermined threshold value is not reached in step S13, the method according to the invention is continued with the aforementioned steps at step S2. On the other hand, if the threshold value is reached, the driver is informed appropriately in step S14.
[0035] According to the preferred exemplary embodiment, the driver is not informed immediately but, in step S15, the information is held back until the gas-tank cover is opened or until it is detected that the vehicle tank is being filled. Only then, in step S16, is the information already present at step 14 output to the driver, and the driver is, for example, informed about a pressure drop in a tire.
[0036] Alternatively, it is possible for the driver to be informed about a pressure drop in a tire when starting the vehicle. It may be possible for this information to be called up at any time, for example also via pressure on a knob.
Claims
- 1. A method of monitoring a tire pressure, comprising the steps:
measuring at least one parameter that influences the tire pressure; calculating an optimum tire pressure on the basis of the at least one measured parameter; comparing a measured tire pressure with the optimum tire pressure in order to generate a deviation signal in the event of a predetermined deviation, the predetermined deviation being defined by an upper and lower limit and, in each case when the deviation signal generated exceeds the upper limit or falls below the lower limit, a deviation value is increased in order to generate an alarm signal when the deviation value reaches a predetermined threshold value, and the deviation value is reduced when no deviation signal is present.
- 2. The method as claimed in claim 1, wherein the optimum tire pressure includes a vehicle-specific parameter.
- 3. The method as claimed in claim 1, wherein the optimum tire pressure depends on a first parameter, which changes as a function of the ambient air pressure.
- 4. The method as claimed in claim 1, wherein the optimum tire pressure depending on a second parameter, which changes as a function of the speed of a vehicle which has at least one tire whose tire pressure is to be monitored.
- 5. The method as claimed in claim 1, wherein the optimum tire pressure depending on a third parameter, which changes as a function of the loading of a vehicle which has at least one tire whose tire pressure is to be monitored.
- 6. The method as claimed in claim 1, wherein the optimum tire pressure depending on a fourth parameter, which changes as a function of the inflation of the tire.
- 7. The method as claimed in claim 1, wherein the upper and/or lower limit of the predetermined deviation depends on at least an ambient air pressure, a vehicle speed, a vehicle loading and/or a tire inflation.
- 8. The method as claimed in claim 1, wherein the alarm signal generated will be output only when the gas tank cover of a vehicle is opened.
- 9. The method as claimed in claim 1, wherein the alarm signal generated being output only when refilling the vehicle having at least one tire whose tire pressure is to be monitored is detected.
- 10. The method as claimed in claim 1, also comprising a step for calculating a still permissible loading of a vehicle having at least one tire whose tire pressure is to be monitored, from a predetermined value and the currently measured tire air pressure, and for displaying the still permissible loading of the vehicle.
- 11. The method as claimed in claim 10, wherein the predetermined value is the calculated optimum tire pressure.
- 12. A system for monitoring a tire pressure, comprising
at least one tire to be monitored; at least one sensor for measuring at least one parameter of the at least one tire that influences the air pressure; an air pressure sensor for measuring a current tire air pressure; and an evaluation unit, which receives the at least one parameter measured by the sensor and measured data from the air pressure sensor and wherein the evaluation unit calculates an optimum tire pressure on the basis of the at least one measured parameter and compares the measured tire pressure with the optimum tire pressure in order to generate a deviation signal in the event of a predetermined deviation, wherein the predetermined deviation is defined by an upper and lower limit and, in each case when the deviation signal generated exceeds the upper limit and falls below the lower limit, a deviation value is increased in order to generate an alarm signal when the deviation value reaches a predetermined threshold value, and the deviation value is reduced when no deviation signal is present.
- 13. The system as claimed in claim 12, wherein the evaluation unit receives at least one parameter out of a plurality of parameters consisting of a vehicle-specific parameter, the ambient air pressure, the speed of a vehicle, the loading of a vehicle, the inflation of the tire.
- 14. The system as claimed in claim 12, further comprising a sensor for detecting when the gas tank cover of a vehicle is opened, wherein the evaluation unit only generates the alarm signal upon detection of said opening.
Priority Claims (1)
Number |
Date |
Country |
Kind |
DE10144326.9 |
Sep 2001 |
DE |
|