1. Technical Field
The present invention relates generally to methods and system for reporting and responding to network security incidents, such as those involving Border Gateway Protocol (BGP).
2. Description of the Related Art
Border Gateway Protocol (BGP) is the most critical, highest-level routing protocol on the Internet. It enables networks to communicate with each other and find appropriate paths across the wide-area Internet. BGP operates between routers that sit on the edges of backbones, ISPs, corporations, and other networks, whereby these routers advertise which routes they can reach through or within their networks. There are several problems with BGP, however, that have not received much attention but that create substantial risk to the online enterprise.
BGP currently has no built-in reporting mechanisms or security enhancements. There are efforts under way to step up security around BGP, but BGP is implemented on thousands of routers built by many vendors with multiple implementations of BGP software—on thousands of different networks. Any security enhancement can only be done on a vendor-specific or implementation-specific level, and must be implemented by each network independently—providing no solid guarantee of BGP security. BGP also incorporates virtually no reporting mechanisms, making troubleshooting and optimizations very difficult. In addition, BGP can be manually manipulated by complex rules on each network's equipment.
Due to its security vulnerabilities, there are many ways to intentionally or unintentionally exploit or break the protocol's operation. Indeed, many major enterprises have experienced incidents as a result of the protocol's lack of security and reporting capabilities, often resulting in hours of downtime for the entire online operations of the enterprise affected. As an example, consider if one network mistakenly advertises a route to an organization's IP addresses from their network using BGP. These advertisements can override the existing BGP paths identified to reach those IP addresses—effectively making those organizations unreachable on the Internet. Due to the propagation and convergence delays in BGP, the problematic advertisement would not be traceable or addressable through troubleshooting for a long period of time—possibly several hours—resulting in complete downtime for the enterprise's IP routing. In such a case, all online services would be disrupted, potentially resulting in millions of dollars of online revenue losses.
Hackers can also exploit BGP to cause severe damage and theft of customer data. Mistakes in network configuration are the root of many mishaps with BGP, causing critical downtime that cannot be traced easily. Outside of network configuration, the opportunity also exists to easily disrupt and steal online traffic by purposely manipulating BGP. Hundreds of routers across the Internet are known to have been compromised on many occasions, and numerous individuals and groups have easy access to BGP route injection. If a malicious individual were to advertise an organization's IP space, it could have terrible local and global implications.
A user falsely advertising a route to an organization's IP space triggers all IP traffic, including Web, e-mail, and all other higher-level protocols, to be routed to their infrastructure. Spammers often use this mechanism to create a false network presence from which to launch massive spam campaigns, after which they disappear and cannot be traced except to the IP address that they “hijacked.” If a determined hacker put up a fake version of an organization's Web portal on some infrastructure and “hijack” customer traffic through BGP manipulations, the hacker could steal user login and password information easily. On top of this, a malicious attacker can send seemingly legitimate e-mails to customers, intercept incoming e-mail transmissions, and disrupt the entire online presence of an organization.
It would be highly desirable to be able to provide techniques to rapidly identify and respond to any BGP-related incident, including misconfigurations by other networks, manually blocked route advertisements or withdrawals, problems with the protocol's proper functioning, and outright malicious theft of network traffic. The present invention addresses this problem.
It is an object of the present invention to detect performance discrepancies and churn in BGP data.
It is yet another object of the invention to identify and prevent BGP-based attacks by which entities can transparently divert all, or a subset, or a site's Internet Protocol (IP) traffic to a given region of the Internet.
A further object of the present invention is to provide a means to detect BGP-based attacks and to provide the ability to respond appropriately, thereby limiting potential damage to an entity's online presence.
It is a further more general object of the present invention to provide an entity having an online business presence with detailed, unique data about the security and health of an Internet Protocol (IP) space.
It is still a further object of the invention to facilitate reporting and analysis of various types of BGP-related incidents that otherwise may be undetectable.
A more specific object is to provide techniques to identify and respond to any BGP-related incident, including misconfigurations by other networks, manually blocked route advertisements or withdrawals, problems with the protocol's proper functioning, and outright malicious theft of network traffic.
In a representative embodiment, a Border Gateway Protocol (BGP) monitoring service is described. The monitoring service receives as input(s) configuration data input from one or more site(s) that desire to obtain the service, as well as BGP feed data received from a set of data collectors positioned at or adjacent BGP peering points. For every origin (IP space) being monitored, a monitoring application monitors a set of allowed or permitted originating Autonomous System (AS) numbers for that space. Thus, for every IP address space being watched (i.e., for each routable block that contains an origin server IP address of interest), the monitoring application continually monitors the set of transit Autonomous Systems for that CIDR block. Using the real-time BGP feeds (and/or the daily updates), the monitoring application looks for updates coming from the routers that impact the CIDR blocks of interest for that particular site(s). When a variance occurs, the monitoring application sends a message to an alerts system, which then issues a notification to the affected user or takes some other control action. Thus, for example, when a route to a network IP range being tracked is advertised from within some other network, the service identifies where the advertisement originates. This enables the site to detect potential BGP-based attacks and to respond accordingly.
The foregoing has outlined some of the more pertinent features of the invention. These features should be construed to be merely illustrative. Many other beneficial results can be attained by applying the disclosed invention in a different manner or by modifying the invention as will be described.
For purposes of illustration, the present invention is implemented in a distributed computer system, preferably a distributed system operated and managed by a given service provider. The service provider may provide the service on its own behalf, or on behalf of third parties. The invention may be implemented as a product, a service, a managed service, or by some combination thereof. It is known in the prior art that a “distributed system” typically refers to a collection of autonomous computers linked by a network or networks, together with the software, systems, protocols and techniques designed to facilitate various services, such as content delivery or the support of outsourced site infrastructure. Again, for purposes of illustration only, it is assumed that the inventive BGP monitoring service is implemented by a service provider that also provides its customers with such services as content delivery and/or outsourced site infrastructure. As used herein, “content delivery” means the storage, caching, or transmission of content, streaming media and applications on behalf of content providers, including ancillary technologies used therewith including, without limitation, request routing, provisioning, data monitoring and reporting, content targeting, personalization, and business intelligence. The term “outsourced site infrastructure” means the distributed systems and associated technologies that enable an entity to operate and/or manage a third party's Web site infrastructure, in whole or in part, on the third party's behalf.
As illustrated in
To facilitate the present invention, given machines in the distributed computer system are positioned at locations at or adjacent given network routers. Preferably, these machines are located where the service provider peers with nearby routers, although this is not a requirement. These routers may be third party routers, or routers that are operated by the service provider. As illustrated in
In particular, the data collector 508 collects and stores in its associated data store continuous incremental (such as once per hour) data feeds from updates to the routing tables that occur in the nearby router. Periodically, e.g., once per day, a complete (or partial) BGP data “dump” is provided to the NOCC. This data may be delivered electronically or in any other convenient manner, and it may occur in an automated fashion or be accomplished under manual or other administrative control. This “dump” represents a current “known good state” of the BGP routing tables in the router for that period (e.g., a particular day). In one embodiment, a given BGP data collector 508 watches incremental data flows through the associated manager application 506. The known good state is exported to the NOCC directly, preferably daily, so that an aggregate (i.e., bulk) configuration for a set of such collectors can be recomputed on a similar frequency. Real-time views of the BGP data are preferably obtained using a distributed data query and collection system 516 that, as noted above, collects the BGP data feeds from the collectors, aggregates that data across a set of collectors (using, for example, aggregators 518), and passes that data to other back-end systems such as an alerts monitoring system 520. If a relatively small number of data collectors are used, the aggregators may be omitted. Thus, a BGP data collector 508 in a given machine collaborates with similar processes running on other similar machines to provide a distributed data collection application that collects and aggregates BGP data from the distributed network and then exports an interface to provide arbitrary views into that data. The interface 522 preferably also allows system administrators and monitoring tools to view the data from the aggregated collectors in arbitrary ways.
In a preferred embodiment, an alerts monitoring system 520 uses queries (run against the query aggregators 518) to monitor the current (real-time) state of the BGP feeds in the distributed network and to compare such data to given “configuration” information that the system expects to see when operating normally. According to the invention, the real-time and/or known good state BGP data is compared with given configuration data input to the service on behalf of those sites that use the BGP monitoring service. When a comparison between the collected BGP data and the configuration data indicates an anomaly, a given control action (e.g., an alert) is taken. An alert provides a warning of a BGP-based attack, such as an attempt to access sensitive data, an attempt by a third party to masquerade as a given entity, an attempt to generate activity that appears to be originating from a given IP space, and the like. In an illustrative embodiment, a malicious user falsely advertises a route to an organization's IP space, which would trigger all IP traffic (including email, Web traffic, and traffic over higher-level protocols) to be routed to the third party's infrastructure. The invention monitors for occurrence of such an event and provides a given action in response (e.g., the issuance of an alert). According to the present invention, the NOCC preferably exports an integrated GUI tool suite to monitor the alerts as will be illustrated in more detail below. Generally, this suite provides the ability to view any BGP alerts firing on the network.
Users preferably access the service through a secure customer portal, such as an extranet application. After a user logs on and selects a link for the watch service, he or she may “Create a new monitor” to identify an IP “space” to monitor for anomalies.
In addition to tracking particular IP ranges for BGP incidents, the watch service may also provide a tool that graphically visualizes historical BGP churn over particular Autonomous System (AS) numbers. This tool enables one to generate a graph of route update activity over time, which is a basic indicator of BGP stability on that section of the Internet.
In addition, preferably the watch service includes a graphical tool that allows one to enter an AS number and identify the Classless Interdomain Routing (CIDR) blocks advertised as originating in that AS, or to enter an IP address and identify which Autonomous Systems connect to it. As is well known, Classless Interdomain Routing is a technique supported by BGP4 and based on route aggregation. CIDR allows routers to group routes together to cut down on the quantity of routing information carried by the core routers. With CIDR, several IP networks appear to networks outside the group as a single, larger entity. With CIDR, IP addresses and their subnet masks are written as 4 octets, separated by periods, followed by a forward slash and a 2-digit number that represents the subnet mask.
This additional display tool is illustrated in
The present invention provides significant advantages. One of ordinary skill in the art may appreciate that the use of a distributed set of collectors, each of which that watch only a portion of a network, an enormous amount of valuable information can be gleaned from the network as a whole. A first data collector peers with a first router to monitor a first IP space, a second data collector peers with a second router to monitor a second IP space, and so forth. Using this approach, a massive amount of BGP feed data is accumulated in a parallel manner, providing for a highly scalable solution. The service further enables individual customers to monitor for BGP discrepancies, churn, performance data changes, quality data changes, cost data changes, and the like, and to provide appropriate alerts when anomalies or other unacceptable behavior occur.
The present invention provides numerous other advantages. At a high level, the inventive technique provides an entity with detailed, unique data about the security and health of an Internet Protocol (IP) space. Organizations may use this data for reporting and analysis to detect several unique types of incidents that are otherwise undetectable. With no comparable source for such security data, the invention helps promote operational continuity, secure online applications, protect an organization's image, and enables more thorough risk assessments.
The data generated by the inventive technique augments security reporting and incident response efforts, improving security and insight amongst various organizational priorities. The technique protects online operations in several ways. For example, it provides significant operational continuity. In particular, BGP attacks can cause serious connectivity issues, resulting in widespread degradations or outages. Early detection using the techniques of the present invention ensures that minimal downtime occurs, if any, and allows for a faster and more targeted response. The invention also provides for significant brand protection for an online presence. As is well known, when communications occur to an audience, including streaming events or mass mailings, there is an opportunity to hijack the valid origin of the content and serve a false, malicious message instead. The present invention identifies when this risk arises and allows for expedient resolution of any incidents.
As another advantage, the invention facilitates secure online applications. In particular, when customers communicate securely over the Internet with an organization, either end of the communication can be legitimately hijacked using BGP exploits. The invention helps identify when such exploits occur, protecting the site customer's experience and security. Further, the invention also facilitates enhanced risk assessment. In particular, individual or large-scale transactions on the Internet carry a certain risk, which amplifies when a BGP attack or other serious issues arise. The inventive technique enables more thorough risk assessments and rapid reporting and response for threats that have materialized.
As previously noted, by using BGP-based attacks, a malicious individual can transparently divert all, or a subset, of a site's IP traffic to another region of the Internet. This traffic can include extremely sensitive data, which may be encrypted, but it can be completely captured and analyzed in depth after the incident. Likewise, with BGP-based attacks, a hacker can generate online activity that appears to be originating from a site's IP space. This allows the attacker to send emails, respond to Web traffic, and engage in any other type of online activity that a site would normally respond. The inventive techniques allow the site operation to know when and where such attacks are occurring, helping it respond effectively with minimal impact to its operations and image.
Providers of secure online services must also be able to trust certain organizations. Some may be merchants, premier customers, or partners, but a site may be blind to various attacks that mimic them. The inventive techniques can be used to provide notice when a specific partner's IP space is hijacked, which can help the site respond to incidents in a timely manner and minimize overall risk.
BGP-based attacks can be used to capture or masquerade traffic, but also have serious implications due to the specifics of BGP and vendor equipment. BGP attacks can render a site's IP space unreachable—effectively stopping any Internet-based activity—causing a loss of continuity of operations. The present invention ameliorates this problem. More generally, the present invention facilitates better overall Internet performance. The Internet has many issues such as inconsistent performance, lack of reliability, and limited security. Although some incidents are not caused by malicious parties, the inventive techniques enable reporting and response to symptoms of degraded performance and reliability.
As has been described, the present invention may be implemented in or in association with a distributed network such as a content delivery network. This is not a limitation, however, as the invention may be practiced in any federated routing infrastructure having a continuous view of BGP data. Implementation within a CDN has many advantages, as such distributed networks typically comprise hundreds if not thousands of servers deployed on over a large number of networks globally. With global deployment across many networks, the CDN service provider may have detailed information about BGP across the entire Internet. Thus, when a route to a network IP range being tracked is advertised from within any network around the world, the present invention can identify where the advertisement originates. BGP alone does not inherently have any reporting or security mechanisms to protect an organization from misuse. With the present invention, there is a means to detect BGP-based attacks and provide the ability to respond appropriately, thereby limiting potential damage.
Finally, the present invention enables insight into a potentially crippling method of Internet attacks—BGP-based IP hijacking. There is no means to effectively track such information without the present invention, leaving any IP-based application at risk for severe exploits. The invention allows a site to protect its online operations and provides a level of insight critical for maintaining the utmost in security.
The present invention provides a set of easy and powerful tools to rapidly detect and respond to BGP incidents. By leveraging a distributed network's insight into the Internet and BGP, the invention can help protect against incidents that could result in theft of customer data, destruction of brand equity, and extended outages for all online activity.
While the present invention has been described in the context of BGP, this is not a limitation. The invention may be implemented in any distributed computer network that is provided as an overlay to a set of heterogenous IP-based networks and where a given routing protocol is used to provide federated routing.