This invention relates generally to autonomous vehicles or robots, and more specifically to methods and mobile robotic devices for covering a specific area as might be required of, or used as, robotic cleaners or lawn mowers.
For purposes of this description, examples will focus on the problems faced in the prior art as related to robotic cleaning (e.g., dusting, buffing, sweeping, scrubbing, dry mopping or vacuuming). The claimed invention, however, is limited only by the claims themselves, and one of skill in the art will recognize the myriad of uses for the present invention beyond indoor, domestic cleaning.
Robotic engineers have long worked on developing an effective method of autonomous cleaning. By way of introduction, the performance of cleaning robots should concentrate on three measures of success: coverage, cleaning rate and perceived effectiveness. Coverage is the percentage of the available space visited by the robot during a fixed cleaning time, and ideally, a robot cleaner would provide 100 percent coverage given an infinite run time. Unfortunately, designs in the prior art often leave portions of the area uncovered regardless of the amount of time the device is allowed to complete its tasks. Failure to achieve complete coverage can result from mechanical limitations—e.g., the size and shape of the robot may prevent it from reaching certain areas—or the robot may become trapped, unable to vary its control to escape. Failure to achieve complete coverage can also result from an inadequate coverage algorithm. The coverage algorithm is the set of instructions used by the robot to control its movement. For the purposes of the present invention, coverage is discussed as a percentage of the available area visited by the robot during a finite cleaning time. Due to mechanical and/or algorithmic limitations, certain areas within the available space may be systematically neglected. Such systematic neglect is a significant limitation in the prior art.
A second measure of a cleaning robot's performance is the cleaning rate given in units of area cleaned per unit time. Cleaning rate refers to the rate at which the area of cleaned floor increases; coverage rate refers to the rate at which the robot covers the floor regardless of whether the floor was previously clean or dirty. If the velocity of the robot is v and the width of the robot's cleaning mechanism (also called work width) is w then the robot's coverage rate is simply wv, but its cleaning rate may be drastically lower.
A robot that moves in a purely randomly fashion in a closed environment has a cleaning rate that decreases relative to the robot's coverage rate as a function of time. This is because the longer the robot operates the more likely it is to revisit already cleaned areas. The optimal design has a cleaning rate equivalent to the coverage rate, thus minimizing unnecessary repeated cleanings of the same spot. In other words, the ratio of cleaning rate to coverage rate is a measure of efficiency and an optimal cleaning rate would mean coverage of the greatest percentage of the designated area with the minimum number of cumulative or redundant passes over an area already cleaned.
A third metric of cleaning robot performance is the perceived effectiveness of the robot. This measure is ignored in the prior art. Deliberate movement and certain patterned movement is favored as users will perceive a robot that contains deliberate movement as more effective.
While coverage, cleaning rate and perceived effectiveness are the performance criteria discussed herein, a preferred embodiment of the present invention also takes into account the ease of use in rooms of a variety of shapes and sizes (containing a variety of unknown obstacles) and the cost of the robotic components. Other design criteria may also influence the design, for example the need for collision avoidance and appropriate response to other hazards.
As described in detail in Jones, Flynn & Seiger, Mobile Robots: Inspiration to Implementation second edition, 1999, A K Peters, Ltd., and elsewhere, numerous attempts have been made to build vacuuming and cleaning robots. Each of these robots has faced a similar challenge: how to efficiently cover the designated area given limited energy reserves.
We refer to maximally efficient cleaning, where the cleaning rate equals the coverage rate, as deterministic cleaning. As shown in
One example of using highly sophisticated (and expensive) sensor technologies to create deterministic cleaning is the RoboScrub device built by Denning Mobile Robotics and Windsor Industries, which used sonar, infrared detectors, bump sensors and high-precision laser navigation. RoboScrub's navigation system required attaching large bar code targets at various positions in the room. The requirement that RoboScrub be able to see at least four targets simultaneously was a significant operational problem. RoboScrub, therefore, was limited to cleaning large open areas.
Another example, RoboKent, a robot built by the Kent Corporation, follows a global positioning strategy similar to RobotScrub. RoboKent dispenses with RobotScrub's more expensive laser positioning system but having done so RoboKent must restrict itself only to areas with a simple rectangular geometry, e.g. long hallways. In these more constrained regions, position correction by sonar ranging measurements is sufficient. Other deterministic cleaning systems are described, for example, in U.S. Pat. No. 4,119,900 (Kremnitz), U.S. Pat. No. 4,700,427 (Knepper), U.S. Pat. No. 5,353,224 (Lee et al.), U.S. Pat. No. 5,537,017 (Feiten et al.), U.S. Pat. No. 5,548,511 (Bancroft), U.S. Pat. No. 5,650,702 (Azumi).
Because of the limitations and difficulties of deterministic cleaning, some robots have relied on pseudo-deterministic schemes. One method of providing pseudo-deterministic cleaning is an autonomous navigation method known as dead reckoning. Dead reckoning consists of measuring the precise rotation of each robot drive wheel (using for example optical shaft encoders). The robot can then calculate its expected position in the environment given a known starting point and orientation. One problem with this technique is wheel slippage. If slippage occurs, the encoder on that wheel registers a wheel rotation even though that wheel is not driving the robot relative to the ground. As shown in
One example of a pseudo-deterministic a system is the Cye robot from Probotics, Inc. Cye depends exclusively on dead reckoning and therefore takes heroic measures to maximize the performance of its dead reckoning system. Cye must begin at a user-installed physical registration spot in a known location where the robot fixes its position and orientation. Cye then keeps track of position as it moves away from that spot. As Cye moves, uncertainty in its position and orientation increase. Cye must make certain to return to a calibration spot before this error grows so large that it will be unlikely to locate a calibration spot. If a calibration spot is moved or blocked or if excessive wheel slippage occurs then Cye can become lost (possibly without realizing that it is lost). Thus Cye is suitable for use only in relatively small benign environments. Other examples of this approach are disclosed in U.S. Pat. No. 5,109,566 (Kobayashi et al.) and U.S. Pat. No. 6,255,793 (Peless et al.).
Another approach to robotic cleaning is purely random motion. As shown in
The coverage limitations of a random algorithm can be seen in
As discussed, the commercially available prior art has not been able to produce an effective coverage algorithm for an area of unknown geometry. As noted above, the prior art either has relied on sophisticated systems of markers or beacons or has limited the utility of the robot to rooms with simple rectangular geometries. Attempts to use pseudo-deterministic control algorithms can leave areas of the space systematically neglected.
It is an object of the present invention to provide a system and method to allow a mobile robot to operate in a plurality of modes in order to effectively cover an area.
It is an object of the present invention to provide a mobile robot, with at least one sensor, to operate in a number of modes including spot-coverage, obstacle following and bounce.
It is a further object of the invention to provide a mobile robot that alternates between obstacle following and bounce mode to ensure coverage.
It is an object of the invention to return to spot-coverage after the robot has traveled a pre-determined distance.
It is an object of the invention to provide a mobile robot able to track the average distance between obstacles and use the average distance as an input to alternate between operational modes.
It is yet another object of the invention to optimize the distance the robot travels in an obstacle following mode as a function of the frequency of obstacle following and the work width of the robot, and to provide a minimum and maximum distance for operating in obstacle following mode.
It is an object of a preferred embodiment of the invention to use a control system for a mobile robot with an operational system program able to run a plurality of behaviors and using an arbiter to select which behavior is given control over the robot.
It is still another object of the invention to incorporate various escape programs or behavior to allow the robot to avoid becoming stuck.
Finally, it is an object of the invention to provide one or more methods for controlling a mobile robot to benefit from the various objects and advantages disclosed herein.
These and further features of the present invention will be apparent with reference to the accompanying drawings, wherein:
In the present invention, a mobile robot is designed to provide maximum coverage at an effective coverage rate in a room of unknown geometry. In addition, the perceived effectiveness of the robot is enhanced by the inclusion of patterned or deliberate motion. In addition, in a preferred embodiment, effective coverage requires a control system able to prevent the robot from becoming immobilized in an unknown environment.
While the physical structures of mobile robots are known in the art, the components of a preferred, exemplary embodiment of the present invention is described herein. A preferred embodiment of the present invention is a substantially circular robotic sweeper containing certain features. As shown in
A preferred embodiment of the robot also contains two wheels 20, motors 21 for driving the wheels independently, an inexpensive low-end microcontroller 22, and a rechargeable battery 23 or other power source known in the art. These components are well known in the art and are not discussed in detail herein. The robotic cleaning device 10 further includes one or more cleaning heads 30. The cleaning head might contain a vacuum cleaner, various brushes, sponges, mops, electrostatic cloths or a combination of various cleaning elements. The embodiment shown in
As mentioned above, a preferred embodiment of the robotic cleaning device 10 comprises an outer shell 15 defining a dominant side, non-dominant side, and a front portion of the robot 10. The dominant side of the robot is the side that is kept near or in contact with an object (or obstacle) when the robot cleans the area adjacent to that object (or obstacle). In a preferred embodiment, as shown in
In a preferred embodiment, two bump sensors 12 & 13 are located forward of the wheels 20 relative to the direction of forward movement, shown by arrow 40. One bump sensor 13 is located on the dominant side of the robot 10 and the other bump sensor 12 is located on the non-dominant side of the robot 10. When both of these bump sensors 12 & 13 are activated simultaneously, the robot 10 recognizes an obstacle in the front position. In other embodiments, more or fewer individual bump sensors can be used. Likewise, any number of bump sensors can be used to divide the device into any number of radial segments. While in a preferred embodiment the bump sensors 12 & 13 are IR break beam sensors activated by contact between the robot 10 and an obstacle, other types of sensors can be used, including mechanical switches and capacitive sensors that detect the capacitance of objects touching the robot or between two metal plates in the bumper that are compressed on contact. Non-contact sensors, which allow the robot to sense proximity to objects without physically touching the object, such as capacitive sensors or a curtain of IR light, can also be used.
It is useful to have a sensor or sensors that are not only able to tell if a surface has been contacted (or is nearby), but also the angle relative to the robot at which the contact was made. In the case of a preferred embodiment, the robot is able to calculate the time between the activation of the right and left bump switches 12 & 13, if both are activated. The robot is then able to estimate the angle at which contact was made. In a preferred embodiment shown in
For example, in
A preferred embodiment also contains a wall-following or wall-detecting sensor 16 mounted on the dominant side of the robot 10. In a preferred embodiment, the wall following sensor is an IR sensor composed of an emitter and detector pair collimated so that a finite volume of intersection occurs at the expected position of the wall. This focus point is approximately three inches ahead of the drive wheel in the direction of robot forward motion. The radial range of wall detection is about 0.75 inches.
A preferred embodiment also contains any number of IR cliff sensors 14 that prevent the device from tumbling over stairs or other vertical drops. These cliff sensors are of a construction similar to that of the wall following sensor but directed to observe the floor rather than a wall. As an additional safety and sensing measure, the robot 10 includes a wheel-drop sensor that is able to detect if one or more wheels is unsupported by the floor. This wheel-drop sensor can therefore detect not only cliffs but also various obstacles upon which the robot is able to drive, such as lamps bases, high floor transitions, piles of cords, etc.
Other embodiments may use other known sensors or combinations of sensors.
The I/O ports of the microprocessor are connected to the sensors and motors of the robot and are the interface connecting it to the internal state of the robot and its environment. For example, the wheel drop sensors are connected to an input port and the brush motor PWM signal is generated on an output port. The ROM on the microprocessor is used to store the coverage and control program for the robot. This includes the behaviors (discussed below), sensor processing algorithms and signal generation. The RAM is used to store the active state of the robot, such as the average bump distance, run time and distance, and the ID of the behavior in control and its current motor commands.
For purposes of understanding the movement of the robotic device,
Also, in certain embodiments, the robot may include one or more user inputs. For example, as shown in
As mentioned above, the exemplary robot is a preferred embodiment for practicing the instant invention, and one of skill in the art is able to choose from elements known in the art to design a robot for a particular purpose. Examples of suitable designs include those described in the following U.S. Pat. No. 4,306,329 (Yokoi), U.S. Pat. No. 5,109,566 (Kobayashi et al.), U.S. Pat. No. 5,293,955 (Lee), U.S. Pat. No. 5,369,347 (Yoo), U.S. Pat. No. 5,440,216 (Kim), U.S. Pat. No. 5,534,762 (Kim), U.S. Pat. No. 5,613,261 (Kawakami et al), U.S. Pat. No. 5,634,237 (Paranjpe), U.S. Pat. No. 5,781,960 (Kilstrom et al.), U.S. Pat. No. 5,787,545 (Colens), U.S. Pat. No. 5,815,880 (Nakanishi), U.S. Pat. No. 5,839,156 (Park et al.), U.S. Pat. No. 5,926,909 (McGee), U.S. Pat. No. 6,038,501 (Kawakami), U.S. Pat. No. 6,076,226 (Reed), all of which are hereby incorporated by reference.
The coverage robot of the instant invention uses these various operational modes to effectively cover the area. While one of skill in the art may implement these various operational modes in a variety of known architectures, a preferred embodiment relies on behavior control. Here, behaviors are simply layers of control systems that all run in parallel. The microcontroller 22 then runs a prioritized arbitration scheme to resolve the dominant behavior for a given scenario. A description of behavior control can be found in Mobile Robots, supra, the text of which is hereby incorporated by reference.
In other words, in a preferred embodiment, the robot's microprocessor and control software run a number of behaviors simultaneously. Depending on the situation, control of the robot will be given to one or more various behaviors. For purposes of detailing the preferred operation of the present invention, the behaviors will be described as (1) coverage behaviors, (2) escape behaviors or (3) user/safety behaviors. Coverage behaviors are primarily designed to allow the robot to perform its coverage operation in an efficient manner. Escape behaviors are special behaviors that are given priority when one or more sensor inputs suggest that the robot may not be operating freely. As a convention for this specification, behaviors discussed below are written in all capital letters.
1. Coverage Behaviors
Operational Mode: Spot Coverage
Spot coverage or, for example, spot cleaning allows the user to clean an isolated dirty area. The user places the robot 10 on the floor near the center of the area (see reference numeral 40 in
In a preferred embodiment, the method of achieving spot cleaning is a control algorithm providing outward spiral movement, or SPIRAL behavior, as shown in
The method of spot cleaning used in a preferred embodiment—outward spiraling—is set forth in
where d is the distance between two consecutive passes of the spiral. For effective cleaning, a value for d should be chosen that is less than the width of the cleaning mechanism 30. In a preferred embodiment, a value of d is selected that is between one-half and two-thirds of the width of the cleaning head 30.
In other embodiments, the robot tracks its total distance traveled in spiral mode. The spiral will deteriorate after some distance, i.e. the centerpoint of the spiral motion will tend to drift over time due to surface dependant wheel slippage and/or inaccuracies in the spiral approximation algorithm and calculation precision. In certain embodiments, therefore, the robot may exit spiral mode after the robot has traveled a specific distance (“maximum spiral distance”), such as 6.3 or 18.5 meters (step 240). In a preferred embodiment, the robot uses multiple maximum spiral distances depending on whether the robot is performing an initial spiral or a later spiral. If the maximum spiral distance is reached without a bump, the robot gives control to a different behavior, and the robot, for example, then continues to move in a predominately straight line. (In a preferred embodiment, a STRAIGHT LINE behavior is a low priority, default behavior that propels the robot in an approximate straight line at a preset velocity of approximately 0.306 m/s when no other behaviors are active.
In spiral mode, various actions can be taken when an obstacle is encountered. For example, the robot could (a) seek to avoid the obstacle and continue the spiral in the counter-clockwise direction, (b) seek to avoid the obstacle and continue the spiral in the opposite direction (e.g. changing from counter-clockwise to clockwise), or (c) change operational modes. Continuing the spiral in the opposite direction is known as reflective spiraling and is represented in
While a preferred embodiment describes a spiral motion for spot coverage, any self-bounded area can be used, including but not limited to regular polygon shapes such as squares, hexagons, ellipses, etc.
Operational Mode: Wall/Obstacle Following
Wall following or, in the case of a cleaning robot, edge cleaning, allows the user to clean only the edges of a room or the edges of objects within a room. The user places the robot 10 on the floor near an edge to be cleaned and selects the edge-cleaning operational mode. The robot 10 then moves in such a way that it follows the edge and cleans all areas brought into contact with the cleaning head 30 of the robot.
The movement of the robot 10 in a room 110 is shown in
In a preferred embodiment, in the wall-following mode, the robot uses the wall-following sensor 16 to position itself a set distance from the wall. The robot then proceeds to travel along the perimeter of the wall. As shown in
The method used in a preferred embodiment for following the wall is detailed in
Once the wall-following operational mode, or WALL FOLLOWING behavior of a preferred embodiment, is initiated (step 301), the robot first sets its initial value for the steering at r0. The WALL-FOLLOWING behavior then initiates the emit-detect routine in the wall-follower sensor 16 (step 310). The existence of a reflection for the IR transmitter portion of the sensor 16 translates into the existence of an object within a predetermined distance from the sensor 16. The WALL-FOLLOWING behavior then determines whether there has been a transition from a reflection (object within range) to a non-reflection (object outside of range) (step 320). If there has been a transition (in other words, the wall is now out of range), the value of r is set to its most negative value and the robot will veer slightly to the right (step 325). The robot then begins the emit-detect sequence again (step 310). If there has not been a transition from a reflection to a non-reflection, the wall-following behavior then determines whether there has been a transition from non-reflection to reflection (step 330). If there has been such a transition, the value of r is set to its most positive value and the robot will veer slightly left (step 335).
In the absence of either type of transition event, the wall-following behavior reduces the absolute value of r (step 340) and begins the emit-detect sequence (step 310) anew. By decreasing the absolute value of r, the robot 10 begins to turn more sharply in whatever direction it is currently heading. In a preferred embodiment, the rate of decreasing the absolute value of r is a constant rate dependant on the distance traveled.
The wall follower mode can be continued for a predetermined or random time, a predetermined or random distance or until some additional criteria are met (e.g. bump sensor is activated, etc.). In one embodiment, the robot continues to follow the wall indefinitely. In a preferred embodiment, as shown in
Theoretically, the optimal distance for the robot to travel in WALL-FOLLOWING behavior is a function of room size and configuration and robot size. In a preferred embodiment, the minimum and maximum distances to remain in WALL-FOLLOWING are set based upon the approximate room size, the robots width and a random component, where by the average minimum travel distance is 2w/p, where w is the width of the work element of the robot and p is the probability that the robot will enter WALL-FOLLOWING behavior in a given interaction with an obstacle. By way of example, in a preferred embodiment, w is approximately between 15 cm and 25 cm, and p is 0.095 (where the robot encounters 6 to 15 obstacles, or an average of 10.5 obstacles, before entering an obstacle following mode). The minimum distance is then set randomly as a distance between approximately 115 cm and 350 cm; the maximum distance is then set randomly as a distance between approximately 170 cm and 520 cm. In certain embodiments the ratio between the minimum distance to the maximum distance is 2:3. For the sake of perceived efficiency, the robot's initial operation in a obstacle following mode can be set to be longer than its later operations in obstacle following mode. In addition, users may place the robot along the longest wall when starting the robot, which improves actual as well as perceived coverage.
The distance that the robot travels in wall following mode can also be set by the robot depending on the number and frequency of objects encountered (as determined by other sensors), which is a measure of room “clutter”. If more objects are encountered, the robot would wall follow for a greater distance in order to get into all the areas of the floor. Conversely, if few obstacles are encountered, the robot would wall follow less in order to not over-cover the edges of the space in favor of passes through the center of the space. An initial wall-following distance can also be included to allow the robot to follow the wall a longer or shorter distance during its initial period where the WALL-FOLLOWING behavior has control.
In a preferred embodiment, the robot may also leave wall-following mode if the robot turns more than, for example, 270 degrees and is unable to locate the wall (or object) or if the robot has turned a total of 360 degrees since entering wall-following mode.
In certain embodiments, when the WALL-FOLLOWING behavior is active and there is a bump, the ALIGN behavior becomes active. The ALIGN behavior turns the robot counter-clockwise to align the robot with the wall. The robot always turns a minimum angle to avoid getting the robot into cycles of many small turns. After it has turned through its minimum angle, the robot monitors its wall sensor and if it detects a wall and then the wall detection goes away, the robot stops turning. This is because at the end of the wall follower range, the robot is well aligned to start WALL-FOLLOWING. If the robot has not seen its wall detector go on and then off by the time it reaches its maximum angle, it stops anyway. This prevents the robot from turning around in circles when the wall is out of range of its wall sensor. When the most recent bump is within the side 60 degrees of the bumper on the dominant side, the minimum angle is set to 14 degrees and the maximum angle is 19 degrees. Otherwise, if the bump is within 30 degrees of the front of the bumper on the dominant side or on the non-dominant side, the minimum angle is 20 degrees and the maximum angle is 44 degrees. When the ALIGN behavior has completed turning, it cedes control to the WALL-FOLLOWING behavior.
Operational Mode: Room Coverage
The third operational mode is here called room-coverage or room cleaning mode, which allows the user to clean any area bounded by walls, stairs, obstacles or other barriers. To exercise this option, the user places the robot on the floor and selects room-cleaning mode. The robot them moves about the room cleaning all areas that it is able to reach.
In a preferred embodiment, the method of performing the room cleaning behavior is a BOUNCE behavior in combination with the STRAIGHT LINE behavior. As shown in
The algorithm for random bounce behavior is set forth in
The statistics of the heading choice made by the robot can be distributed uniformly across the allowed headings, i.e. there is an equivalent chance for any heading within the acceptable range. Alternately we can choose statistics based on a Gaussian or other distribution designed to preferentially drive the robot perpendicularly away from a wall.
In other embodiments, the robot could change directions at random or predetermined times and not based upon external sensor activity. Alternatively, the robot could continuously make small angle corrections based on long range sensors to avoid even contacting an object and, thereby cover the surface area with curved paths
In a preferred embodiment, the robot stays in room-cleaning mode until a certain number of bounce interactions are reached, usually between 6 and 13.
2. Escape Behaviors
There are several situations the robot may encounter while trying to cover an area that prevent or impede it from covering all of the area efficiently. A general class of sensors and behaviors called escape behaviors are designed to get the robot out of these situations, or in extreme cases to shut the robot off if it is determined it cannot escape. In order to decide whether to give an escape behavior priority among the various behaviors on the robot, the robot determines the following: (1) is an escape behavior needed; (2) if yes, which escape behavior is warranted?
By way of example, the following situations illustrate situations where an escape behavior is needed for an indoor cleaning robot and an appropriate behavior to run:
In order to detect the need for each escape situation, various sensors are used. For example:
As a descriptive example,
If, however, the rate is above 2400 (step 410) and the slope is positive (step 412), the robot will run a special set of escape behaviors, shown in
A preferred embodiment of the robot has four escape behaviors: TURN, EDGE, WHEEL DROP and SLOW.
In addition to the coverage behaviors and the escape behaviors, the robot also might contain additional behaviors related to safety or usability. For example, if a cliff is detected for more than a predetermined amount of time, the robot may shut off. When a cliff is first detected, a cliff avoidance response behavior takes immediate precedence over all other behaviors, rotating the robot away from the cliff until the robot no longer senses the cliff. In a preferred embodiment, the cliff detection event does not cause a change in operational modes. In other embodiments, the robot could use an algorithm similar to the wall-following behavior to allow for cliff following.
The individual operation of the three operational modes has been described above; we now turn to the preferred mode of switching between the various modes.
In order to achieve the optimal coverage and cleaning efficiency, a preferred embodiment uses a control program that gives priority to various coverage behaviors. (Escape behaviors, if needed, are always given a higher priority.) For example, the robot 10 may use the wall following mode for a specified or random time period and then switch operational modes to the room cleaning. By switching between operational modes, the robotic device of the present invention is able to increase coverage, cleaning efficiency and perceived effectiveness.
By way of example,
Finally, a preferred embodiment of the present invention is detailed in
In a preferred embodiment, the device then switches between wall following mode (movement lines 51) and random bounce modes (movement lines 48) based on bump sensor events or the completion of the wall following algorithm. In one embodiment, the device does not return to spiral mode; in other embodiments, however, the device can enter spiral mode based on a predetermined or random event.
In a preferred embodiment, the robot keeps a record of the average distance traveled between bumps. The robot then calculates an average bump distance (ABD) using the following formula: (¾×ABD)+(¼×most recent distance between bumps). If the ABD is a above a predetermined threshold, the robot will again give priority to the SPIRAL behavior. In still other embodiments, the robot may have a minimum number of bump events before the SPIRAL behavior will again be given priority. In other embodiments, the robot may enter SPIRAL behavior if it travels a maximum distance, for example 20 feet, without a bump event.
In addition, the robot can also have conditions upon which to stop all operations. For example, for a given room size, which can be manually selected, a minimum and maximum run time are set and a minimum total distance is selected. When the minimum time and the minimum distance have been reached the robot shuts off. Likewise, if the maximum time has been reached, the robot shuts off.
Of course, a manual control for selecting between operational modes can also be used. For example, a remote control could be used to change or influence operational modes or behaviors. Likewise, a switch mounted on the shell itself could be used to set the operation mode or the switching between modes. For instance, a switch could be used to set the level of clutter in a room to allow the robot a more appropriate coverage algorithm with limited sensing ability.
One of skill in the art will recognize that portions of the instant invention can be used in autonomous vehicles for a variety of purposes besides cleaning. The scope of the invention should be determined by the appended claims and their legal equivalents, rather than by the examples given.
This U.S. patent application is a continuation of, and claims priority under 35 U.S.C. §120 from, U.S. patent application Ser. No. 11/671,305, filed on Feb. 5, 2007, which is a continuation of U.S. patent application Ser. No. 10/839,374, filed on May 5, 2004 now U.S. Pat. No. 7,173,391, which is a continuation of U.S. patent application Ser. No. 10/167,851, filed on Jun. 12, 2002 now U.S. Pat. No. 6,809,490, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application 60/297,718, filed on Jun. 12, 2001. The disclosures of these prior applications are considered part of the disclosure of this application and are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1755054 | Darst | Apr 1930 | A |
1780221 | Buchmann | Nov 1930 | A |
1970302 | Gerhardt | Aug 1934 | A |
2136324 | John | Nov 1938 | A |
2302111 | Dow et al. | Nov 1942 | A |
2353621 | Sav et al. | Jul 1944 | A |
2770825 | Pullen | Nov 1956 | A |
3119369 | Harland et al. | Jan 1964 | A |
3166138 | Dunn | Jan 1965 | A |
3333564 | Waters | Aug 1967 | A |
3375375 | Robert et al. | Mar 1968 | A |
3381652 | Schaefer et al. | May 1968 | A |
3457575 | Bienek | Jul 1969 | A |
3550714 | Bellinger | Dec 1970 | A |
3569727 | Aggarwal et al. | Mar 1971 | A |
3674316 | De Brey | Jul 1972 | A |
3678882 | Kinsella | Jul 1972 | A |
3744586 | Leinauer | Jul 1973 | A |
3756667 | Bombardier et al. | Sep 1973 | A |
3809004 | Leonheart | May 1974 | A |
3816004 | Bignardi | Jun 1974 | A |
3845831 | James | Nov 1974 | A |
RE28268 | Autrand | Dec 1974 | E |
3853086 | Asplund | Dec 1974 | A |
3863285 | Hukuba | Feb 1975 | A |
3888181 | Kups | Jun 1975 | A |
3937174 | Haaga | Feb 1976 | A |
3952361 | Wilkins | Apr 1976 | A |
3989311 | Debrey | Nov 1976 | A |
3989931 | Phillips | Nov 1976 | A |
4004313 | Capra | Jan 1977 | A |
4012681 | Finger et al. | Mar 1977 | A |
4070170 | Leinfelt | Jan 1978 | A |
4099284 | Shinozaki et al. | Jul 1978 | A |
4119900 | Kremnitz | Oct 1978 | A |
4175589 | Nakamura et al. | Nov 1979 | A |
4175892 | De brey | Nov 1979 | A |
4196727 | Verkaart et al. | Apr 1980 | A |
4198727 | Farmer | Apr 1980 | A |
4199838 | Simonsson | Apr 1980 | A |
4209254 | Reymond et al. | Jun 1980 | A |
D258901 | Keyworth | Apr 1981 | S |
4297578 | Carter | Oct 1981 | A |
4306329 | Yokoi | Dec 1981 | A |
4309758 | Halsall et al. | Jan 1982 | A |
4328545 | Halsall et al. | May 1982 | A |
4367403 | Miller | Jan 1983 | A |
4369543 | Chen et al. | Jan 1983 | A |
4401909 | Gorsek | Aug 1983 | A |
4416033 | Specht | Nov 1983 | A |
4445245 | Lu | May 1984 | A |
4465370 | Yuasa et al. | Aug 1984 | A |
4477998 | You | Oct 1984 | A |
4481692 | Kurz | Nov 1984 | A |
4482960 | Pryor | Nov 1984 | A |
4492058 | Goldfarb et al. | Jan 1985 | A |
4513469 | Godfrey et al. | Apr 1985 | A |
D278732 | Ohkado | May 1985 | S |
4518437 | Sommer | May 1985 | A |
4534637 | Suzuki et al. | Aug 1985 | A |
4556313 | Miller et al. | Dec 1985 | A |
4575211 | Matsumura et al. | Mar 1986 | A |
4580311 | Kurz | Apr 1986 | A |
4601082 | Kurz | Jul 1986 | A |
4618213 | Chen | Oct 1986 | A |
4620285 | Perdue | Oct 1986 | A |
4624026 | Olson et al. | Nov 1986 | A |
4626995 | Lofgren et al. | Dec 1986 | A |
4628454 | Ito | Dec 1986 | A |
4638445 | Mattaboni | Jan 1987 | A |
4644156 | Takahashi et al. | Feb 1987 | A |
4649504 | Krouglicof et al. | Mar 1987 | A |
4652917 | Miller | Mar 1987 | A |
4654492 | Koerner et al. | Mar 1987 | A |
4654924 | Getz et al. | Apr 1987 | A |
4660969 | Sorimachi et al. | Apr 1987 | A |
4662854 | Fang | May 1987 | A |
4674048 | Okumura | Jun 1987 | A |
4679152 | Perdue | Jul 1987 | A |
4680827 | Hummel | Jul 1987 | A |
4696074 | Cavalli | Sep 1987 | A |
D292223 | Trumbull | Oct 1987 | S |
4700301 | Dyke | Oct 1987 | A |
4700427 | Knepper | Oct 1987 | A |
4703820 | Reinaud | Nov 1987 | A |
4710020 | Maddox et al. | Dec 1987 | A |
4716621 | Zoni | Jan 1988 | A |
4728801 | O'Connor | Mar 1988 | A |
4733343 | Yoneda et al. | Mar 1988 | A |
4733430 | Westergren | Mar 1988 | A |
4733431 | Martin | Mar 1988 | A |
4735136 | Lee et al. | Apr 1988 | A |
4735138 | Gawler et al. | Apr 1988 | A |
4748336 | Fujie et al. | May 1988 | A |
4748833 | Nagasawa | Jun 1988 | A |
4756049 | Uehara | Jul 1988 | A |
4767213 | Hummel | Aug 1988 | A |
4769700 | Pryor | Sep 1988 | A |
4777416 | George et al. | Oct 1988 | A |
D298766 | Tanno et al. | Nov 1988 | S |
4782550 | Jacobs | Nov 1988 | A |
4796198 | Boultinghouse et al. | Jan 1989 | A |
4806751 | Abe et al. | Feb 1989 | A |
4811228 | Hyyppa | Mar 1989 | A |
4813906 | Matsuyama et al. | Mar 1989 | A |
4815157 | Tsuchiya | Mar 1989 | A |
4817000 | Eberhardt | Mar 1989 | A |
4818875 | Weiner | Apr 1989 | A |
4829442 | Kadonoff et al. | May 1989 | A |
4829626 | Harkonen et al. | May 1989 | A |
4832098 | Palinkas et al. | May 1989 | A |
4851661 | Everett | Jul 1989 | A |
4854000 | Takimoto | Aug 1989 | A |
4854006 | Nishimura et al. | Aug 1989 | A |
4855915 | Dallaire | Aug 1989 | A |
4857912 | Everett et al. | Aug 1989 | A |
4858132 | Holmquist | Aug 1989 | A |
4867570 | Sorimachi et al. | Sep 1989 | A |
4880474 | Koharagi et al. | Nov 1989 | A |
4887415 | Martin | Dec 1989 | A |
4891762 | Chotiros | Jan 1990 | A |
4893025 | Lee | Jan 1990 | A |
4901394 | Nakamura et al. | Feb 1990 | A |
4905151 | Weiman et al. | Feb 1990 | A |
4912643 | Beirne | Mar 1990 | A |
4913441 | Bohman | Apr 1990 | A |
4918441 | Bohman | Apr 1990 | A |
4919224 | Shyu et al. | Apr 1990 | A |
4919489 | Kopsco | Apr 1990 | A |
4920060 | Parrent et al. | Apr 1990 | A |
4920605 | Takashima | May 1990 | A |
4933864 | Evans et al. | Jun 1990 | A |
4937912 | Kurz | Jul 1990 | A |
4953253 | Fukuda et al. | Sep 1990 | A |
4954962 | Evans et al. | Sep 1990 | A |
4955714 | Stotler et al. | Sep 1990 | A |
4956891 | Wulff | Sep 1990 | A |
4961303 | McCarty et al. | Oct 1990 | A |
4961304 | Ovsborn et al. | Oct 1990 | A |
4962453 | Pong et al. | Oct 1990 | A |
4971591 | Raviv et al. | Nov 1990 | A |
4973912 | Kaminski et al. | Nov 1990 | A |
4974283 | Holsten et al. | Dec 1990 | A |
4977618 | Allen | Dec 1990 | A |
4977639 | Takahashi et al. | Dec 1990 | A |
4986663 | Cecchi et al. | Jan 1991 | A |
5001635 | Yasutomi et al. | Mar 1991 | A |
5002145 | Wakaumi et al. | Mar 1991 | A |
5012886 | Jonas et al. | May 1991 | A |
5018240 | Holman | May 1991 | A |
5020186 | Lessig et al. | Jun 1991 | A |
5022812 | Coughlan et al. | Jun 1991 | A |
5023788 | Kitazume | Jun 1991 | A |
5024529 | Svetkoff et al. | Jun 1991 | A |
D318500 | Malewicki et al. | Jul 1991 | S |
5032775 | Mizuno et al. | Jul 1991 | A |
5033151 | Kraft et al. | Jul 1991 | A |
5033291 | Podoloff et al. | Jul 1991 | A |
5040116 | Evans et al. | Aug 1991 | A |
5045769 | Everett | Sep 1991 | A |
5049802 | Mintus et al. | Sep 1991 | A |
5051906 | Evans et al. | Sep 1991 | A |
5062819 | Mallory | Nov 1991 | A |
5070567 | Holland | Dec 1991 | A |
5084934 | Lessig et al. | Feb 1992 | A |
5086535 | Grossmeyer et al. | Feb 1992 | A |
5090321 | Abouav | Feb 1992 | A |
5093955 | Blehert et al. | Mar 1992 | A |
5094311 | Akeel | Mar 1992 | A |
5105502 | Takashima | Apr 1992 | A |
5105550 | Shenoha | Apr 1992 | A |
5109566 | Kobayashi et al. | May 1992 | A |
5115538 | Cochran et al. | May 1992 | A |
5127128 | Lee | Jul 1992 | A |
5136675 | Hodson | Aug 1992 | A |
5136750 | Takashima et al. | Aug 1992 | A |
5142985 | Stearns et al. | Sep 1992 | A |
5144471 | Takanashi et al. | Sep 1992 | A |
5144714 | Mori et al. | Sep 1992 | A |
5144715 | Matsuyo et al. | Sep 1992 | A |
5152028 | Hirano | Oct 1992 | A |
5152202 | Strauss | Oct 1992 | A |
5155684 | Burke et al. | Oct 1992 | A |
5163202 | Kawakami et al. | Nov 1992 | A |
5163320 | Goshima et al. | Nov 1992 | A |
5164579 | Pryor et al. | Nov 1992 | A |
5165064 | Mattaboni | Nov 1992 | A |
5170352 | McTamaney et al. | Dec 1992 | A |
5173881 | Sindle | Dec 1992 | A |
5182833 | Yamaguchi et al. | Feb 1993 | A |
5202742 | Frank et al. | Apr 1993 | A |
5204814 | Noonan et al. | Apr 1993 | A |
5206500 | Decker et al. | Apr 1993 | A |
5208521 | Aoyama | May 1993 | A |
5216777 | Moro et al. | Jun 1993 | A |
5227985 | DeMenthon | Jul 1993 | A |
5233682 | Abe et al. | Aug 1993 | A |
5239720 | Wood et al. | Aug 1993 | A |
5251358 | Moro et al. | Oct 1993 | A |
5261139 | Lewis | Nov 1993 | A |
5276618 | Everett | Jan 1994 | A |
5276939 | Uenishi | Jan 1994 | A |
5277064 | Knigga et al. | Jan 1994 | A |
5279672 | Belker, Jr., et al. | Jan 1994 | A |
5284452 | Corona | Feb 1994 | A |
5284522 | Kobayashi et al. | Feb 1994 | A |
5293955 | Lee | Mar 1994 | A |
D345707 | Alister | Apr 1994 | S |
5303448 | Hennessey et al. | Apr 1994 | A |
5307273 | Oh et al. | Apr 1994 | A |
5309592 | Hiratsuka | May 1994 | A |
5310379 | Hippely et al. | May 1994 | A |
5315227 | Pierson et al. | May 1994 | A |
5319827 | Yang | Jun 1994 | A |
5319828 | Waldhauser et al. | Jun 1994 | A |
5321614 | Ashworth | Jun 1994 | A |
5323483 | Baeg | Jun 1994 | A |
5324948 | Dudar et al. | Jun 1994 | A |
5341186 | Kato | Aug 1994 | A |
5341540 | Soupert et al. | Aug 1994 | A |
5341549 | Wirtz et al. | Aug 1994 | A |
5345649 | Whitlow | Sep 1994 | A |
5353224 | Lee et al. | Oct 1994 | A |
5363305 | Cox et al. | Nov 1994 | A |
5363935 | Schempf et al. | Nov 1994 | A |
5369347 | Yoo | Nov 1994 | A |
5369838 | Wood et al. | Dec 1994 | A |
5386862 | Glover et al. | Feb 1995 | A |
5399951 | Lavallee | Mar 1995 | A |
5400244 | Watanabe et al. | Mar 1995 | A |
5404612 | Ishikawa | Apr 1995 | A |
5410479 | Coker | Apr 1995 | A |
5435405 | Schempf et al. | Jul 1995 | A |
5440216 | Kim | Aug 1995 | A |
5442358 | Keeler et al. | Aug 1995 | A |
5444965 | Colens | Aug 1995 | A |
5446356 | Kim | Aug 1995 | A |
5446445 | Bloomfield et al. | Aug 1995 | A |
5451135 | Schempf et al. | Sep 1995 | A |
5454129 | Kell | Oct 1995 | A |
5455982 | Armstrong et al. | Oct 1995 | A |
5465525 | Mifune et al. | Nov 1995 | A |
5465619 | Sotack et al. | Nov 1995 | A |
5467273 | Faibish et al. | Nov 1995 | A |
5471560 | Allard et al. | Nov 1995 | A |
5491670 | Weber | Feb 1996 | A |
5497529 | Boesi | Mar 1996 | A |
5498948 | Bruni et al. | Mar 1996 | A |
5502638 | Takenaka | Mar 1996 | A |
5505072 | Oreper | Apr 1996 | A |
5507067 | Hoekstra et al. | Apr 1996 | A |
5510893 | Suzuki | Apr 1996 | A |
5511147 | Abdel | Apr 1996 | A |
5515572 | Hoekstra et al. | May 1996 | A |
5534762 | Kim | Jul 1996 | A |
5537017 | Feiten et al. | Jul 1996 | A |
5537711 | Tseng | Jul 1996 | A |
5539953 | Kurz | Jul 1996 | A |
5542146 | Hoekstra et al. | Aug 1996 | A |
5542148 | Young | Aug 1996 | A |
5546631 | Chambon | Aug 1996 | A |
5548511 | Bancroft | Aug 1996 | A |
5551525 | Pack et al. | Sep 1996 | A |
5553349 | Kilstrom et al. | Sep 1996 | A |
5555587 | Guha | Sep 1996 | A |
5560077 | Crotchett | Oct 1996 | A |
5568589 | Hwang | Oct 1996 | A |
D375592 | Ljunggren | Nov 1996 | S |
5608306 | Rybeck et al. | Mar 1997 | A |
5608894 | Kawakami et al. | Mar 1997 | A |
5608944 | Gordon | Mar 1997 | A |
5610488 | Miyazawa | Mar 1997 | A |
5611106 | Wulff | Mar 1997 | A |
5611108 | Knowlton et al. | Mar 1997 | A |
5613261 | Kawakami et al. | Mar 1997 | A |
5613269 | Miwa | Mar 1997 | A |
5621291 | Lee | Apr 1997 | A |
5622236 | Azumi et al. | Apr 1997 | A |
5634237 | Paranjpe | Jun 1997 | A |
5634239 | Tuvin et al. | Jun 1997 | A |
5636402 | Kubo et al. | Jun 1997 | A |
5642299 | Hardin et al. | Jun 1997 | A |
5646494 | Han | Jul 1997 | A |
5647554 | Ikegami et al. | Jul 1997 | A |
5650702 | Azumi | Jul 1997 | A |
5652489 | Kawakami | Jul 1997 | A |
5682313 | Edlund et al. | Oct 1997 | A |
5682839 | Grimsley et al. | Nov 1997 | A |
5696675 | Nakamura et al. | Dec 1997 | A |
5698861 | Oh | Dec 1997 | A |
5709007 | Chiang | Jan 1998 | A |
5710506 | Broell et al. | Jan 1998 | A |
5714119 | Kawagoe et al. | Feb 1998 | A |
5717169 | Liang et al. | Feb 1998 | A |
5717484 | Hamaguchi et al. | Feb 1998 | A |
5720077 | Nakamura et al. | Feb 1998 | A |
5732401 | Conway | Mar 1998 | A |
5735959 | Kubo et al. | Apr 1998 | A |
5745235 | Vercammen et al. | Apr 1998 | A |
5752871 | Tsuzuki | May 1998 | A |
5756904 | Oreper et al. | May 1998 | A |
5761762 | Kubo et al. | Jun 1998 | A |
5764888 | Bolan et al. | Jun 1998 | A |
5767437 | Rogers | Jun 1998 | A |
5767960 | Orman | Jun 1998 | A |
5777596 | Herbert | Jul 1998 | A |
5778486 | Kim | Jul 1998 | A |
5781697 | Jeong | Jul 1998 | A |
5781960 | Kilstrom et al. | Jul 1998 | A |
5786602 | Pryor et al. | Jul 1998 | A |
5787545 | Colens | Aug 1998 | A |
5793900 | Nourbakhsh et al. | Aug 1998 | A |
5794297 | Muta | Aug 1998 | A |
5812267 | Everett, Jr. et al. | Sep 1998 | A |
5814808 | Takada et al. | Sep 1998 | A |
5815880 | Nakanishi | Oct 1998 | A |
5815884 | Imamura et al. | Oct 1998 | A |
5819008 | Asama et al. | Oct 1998 | A |
5819360 | Fujii | Oct 1998 | A |
5819936 | Saveliev et al. | Oct 1998 | A |
5820821 | Kawagoe et al. | Oct 1998 | A |
5821730 | Drapkin | Oct 1998 | A |
5825981 | Matsuda | Oct 1998 | A |
5828770 | Leis et al. | Oct 1998 | A |
5831597 | West et al. | Nov 1998 | A |
5839156 | Park et al. | Nov 1998 | A |
5839532 | Yoshiji et al. | Nov 1998 | A |
5841259 | Kim et al. | Nov 1998 | A |
5867800 | Leif | Feb 1999 | A |
5869910 | Colens | Feb 1999 | A |
5896611 | Haaga | Apr 1999 | A |
5903124 | Kawakami | May 1999 | A |
5905209 | Oreper | May 1999 | A |
5907886 | Buscher | Jun 1999 | A |
5910700 | Crotzer | Jun 1999 | A |
5911260 | Suzuki | Jun 1999 | A |
5916008 | Wong | Jun 1999 | A |
5924167 | Wright et al. | Jul 1999 | A |
5926909 | McGee | Jul 1999 | A |
5933102 | Miller et al. | Aug 1999 | A |
5933913 | Wright et al. | Aug 1999 | A |
5935179 | Kleiner et al. | Aug 1999 | A |
5940346 | Sadowsky et al. | Aug 1999 | A |
5940927 | Haegermarck et al. | Aug 1999 | A |
5940930 | Oh et al. | Aug 1999 | A |
5942869 | Katou et al. | Aug 1999 | A |
5943730 | Boomgaarden | Aug 1999 | A |
5943733 | Tagliaferri | Aug 1999 | A |
5947225 | Kawakami et al. | Sep 1999 | A |
5950408 | Schaedler | Sep 1999 | A |
5959423 | Nakanishi et al. | Sep 1999 | A |
5968281 | Wright et al. | Oct 1999 | A |
5974348 | Rocks | Oct 1999 | A |
5974365 | Mitchell | Oct 1999 | A |
5983448 | Wright et al. | Nov 1999 | A |
5984880 | Lander et al. | Nov 1999 | A |
5987383 | Keller | Nov 1999 | A |
5989700 | Krivopal | Nov 1999 | A |
5991951 | Kubo et al. | Nov 1999 | A |
5995883 | Nishikado | Nov 1999 | A |
5995884 | Allen | Nov 1999 | A |
5996167 | Close | Dec 1999 | A |
5998953 | Nakamura et al. | Dec 1999 | A |
5998971 | Corbridge | Dec 1999 | A |
6000088 | Wright et al. | Dec 1999 | A |
6009358 | Angott et al. | Dec 1999 | A |
6021545 | Delgado et al. | Feb 2000 | A |
6023813 | Thatcher et al. | Feb 2000 | A |
6023814 | Imamura | Feb 2000 | A |
6025687 | Himeda et al. | Feb 2000 | A |
6026539 | Mouw et al. | Feb 2000 | A |
6030464 | Azevedo | Feb 2000 | A |
6030465 | Marcussen et al. | Feb 2000 | A |
6032542 | Warnick et al. | Mar 2000 | A |
6036572 | Sze | Mar 2000 | A |
6038501 | Kawakami | Mar 2000 | A |
6040669 | Hog | Mar 2000 | A |
6041471 | Charkey et al. | Mar 2000 | A |
6041472 | Kasen et al. | Mar 2000 | A |
6046800 | Ohtomo et al. | Apr 2000 | A |
6049620 | Dickinson et al. | Apr 2000 | A |
6052821 | Chouly et al. | Apr 2000 | A |
6055042 | Sarangapani | Apr 2000 | A |
6055702 | Imamura et al. | May 2000 | A |
6061868 | Moritsch et al. | May 2000 | A |
6065182 | Wright et al. | May 2000 | A |
6073432 | Schaedler | Jun 2000 | A |
6076025 | Ueno et al. | Jun 2000 | A |
6076026 | Jambhekar et al. | Jun 2000 | A |
6076226 | Reed | Jun 2000 | A |
6076227 | Schallig et al. | Jun 2000 | A |
6081257 | Zeller | Jun 2000 | A |
6088020 | Mor | Jul 2000 | A |
6094775 | Behmer | Aug 2000 | A |
6099091 | Campbell | Aug 2000 | A |
6101671 | Wright et al. | Aug 2000 | A |
6108031 | King et al. | Aug 2000 | A |
6108067 | Okamoto | Aug 2000 | A |
6108076 | Hanseder | Aug 2000 | A |
6108269 | Kabel | Aug 2000 | A |
6108597 | Kirchner et al. | Aug 2000 | A |
6112143 | Allen et al. | Aug 2000 | A |
6112996 | Matsuo | Sep 2000 | A |
6119057 | Kawagoe | Sep 2000 | A |
6122798 | Kobayashi et al. | Sep 2000 | A |
6124694 | Bancroft et al. | Sep 2000 | A |
6125498 | Roberts et al. | Oct 2000 | A |
6131237 | Kasper et al. | Oct 2000 | A |
6138063 | Himeda | Oct 2000 | A |
6142252 | Kinto et al. | Nov 2000 | A |
6146278 | Kobayashi | Nov 2000 | A |
6154279 | Thayer | Nov 2000 | A |
6154694 | Aoki et al. | Nov 2000 | A |
6160479 | åhlen et al. | Dec 2000 | A |
6167332 | Kurtzberg et al. | Dec 2000 | A |
6167587 | Kasper et al. | Jan 2001 | B1 |
6192548 | Huffman | Feb 2001 | B1 |
6216307 | Kaleta et al. | Apr 2001 | B1 |
6220865 | Macri et al. | Apr 2001 | B1 |
6226830 | Hendriks et al. | May 2001 | B1 |
6230362 | Kasper et al. | May 2001 | B1 |
6237741 | Guidetti | May 2001 | B1 |
6240342 | Fiegert et al. | May 2001 | B1 |
6243913 | Frank et al. | Jun 2001 | B1 |
6255793 | Peless et al. | Jul 2001 | B1 |
6259979 | Holmquist | Jul 2001 | B1 |
6261379 | Conrad et al. | Jul 2001 | B1 |
6263539 | Baig | Jul 2001 | B1 |
6263989 | Won | Jul 2001 | B1 |
6272936 | Oreper et al. | Aug 2001 | B1 |
6276478 | Hopkins et al. | Aug 2001 | B1 |
6278918 | Dickson et al. | Aug 2001 | B1 |
6282526 | Ganesh | Aug 2001 | B1 |
6283034 | Miles | Sep 2001 | B1 |
6285778 | Nakajima et al. | Sep 2001 | B1 |
6285930 | Dickson et al. | Sep 2001 | B1 |
6300737 | Begvall et al. | Oct 2001 | B1 |
6321337 | Reshef et al. | Nov 2001 | B1 |
6321515 | Colens | Nov 2001 | B1 |
6323570 | Nishimura et al. | Nov 2001 | B1 |
6324714 | Walz et al. | Dec 2001 | B1 |
6327741 | Reed | Dec 2001 | B1 |
6332400 | Meyer | Dec 2001 | B1 |
6338013 | Ruffner | Jan 2002 | B1 |
6339735 | Peless et al. | Jan 2002 | B1 |
6362875 | Burkley | Mar 2002 | B1 |
6370453 | Sommer | Apr 2002 | B2 |
6374155 | Wallach et al. | Apr 2002 | B1 |
6374157 | Takamura | Apr 2002 | B1 |
6381802 | Park | May 2002 | B2 |
6385515 | Dickson et al. | May 2002 | B1 |
6389329 | Colens | May 2002 | B1 |
6400048 | Nishimura et al. | Jun 2002 | B1 |
6401294 | Kasper | Jun 2002 | B2 |
6408226 | Byrne et al. | Jun 2002 | B1 |
6412141 | Kasper et al. | Jul 2002 | B2 |
6415203 | Inoue et al. | Jul 2002 | B1 |
6421870 | Basham et al. | Jul 2002 | B1 |
6427285 | Legatt et al. | Aug 2002 | B1 |
6430471 | Kintou et al. | Aug 2002 | B1 |
6431296 | Won | Aug 2002 | B1 |
6437227 | Theimer | Aug 2002 | B1 |
6437465 | Nishimura et al. | Aug 2002 | B1 |
6438456 | Feddema et al. | Aug 2002 | B1 |
6438793 | Miner et al. | Aug 2002 | B1 |
6442476 | Poropat | Aug 2002 | B1 |
6443509 | Levin et al. | Sep 2002 | B1 |
6444003 | Sutcliffe | Sep 2002 | B1 |
6446302 | Kasper et al. | Sep 2002 | B1 |
6454036 | Airey et al. | Sep 2002 | B1 |
D464091 | Christianson | Oct 2002 | S |
6457206 | Judson | Oct 2002 | B1 |
6459955 | Bartsch | Oct 2002 | B1 |
6463368 | Feiten et al. | Oct 2002 | B1 |
6465982 | Bergvall et al. | Oct 2002 | B1 |
6473167 | Odell | Oct 2002 | B1 |
6480762 | Uchikubo et al. | Nov 2002 | B1 |
6481515 | Kirkpatrick | Nov 2002 | B1 |
6490539 | Dickson et al. | Dec 2002 | B1 |
6491127 | Holmberg et al. | Dec 2002 | B1 |
6493612 | Bisset et al. | Dec 2002 | B1 |
6493613 | Peless et al. | Dec 2002 | B2 |
6496754 | Song et al. | Dec 2002 | B2 |
6496755 | Wallach et al. | Dec 2002 | B2 |
6502657 | Kerrebrock et al. | Jan 2003 | B2 |
6504610 | Bauer et al. | Jan 2003 | B1 |
6507773 | Parker et al. | Jan 2003 | B2 |
6525509 | Petersson et al. | Feb 2003 | B1 |
D471243 | Cioffi et al. | Mar 2003 | S |
6532404 | Colens | Mar 2003 | B2 |
6535793 | Allard | Mar 2003 | B2 |
6540607 | Mokris et al. | Apr 2003 | B2 |
6548982 | Papanikolopoulos et al. | Apr 2003 | B1 |
6553612 | Dyson et al. | Apr 2003 | B1 |
6556722 | Russell et al. | Apr 2003 | B1 |
6556892 | Kuroki et al. | Apr 2003 | B2 |
6557104 | Vu et al. | Apr 2003 | B2 |
D474312 | Stephens et al. | May 2003 | S |
6563130 | Dworkowski et al. | May 2003 | B2 |
6571415 | Gerber et al. | Jun 2003 | B2 |
6571422 | Gordon et al. | Jun 2003 | B1 |
6572711 | Sclafani et al. | Jun 2003 | B2 |
6574536 | Kawagoe et al. | Jun 2003 | B1 |
6580246 | Jacobs | Jun 2003 | B2 |
6584376 | Kommer | Jun 2003 | B1 |
6586908 | Petersson et al. | Jul 2003 | B2 |
6587573 | Stam et al. | Jul 2003 | B1 |
6590222 | Bisset et al. | Jul 2003 | B1 |
6594551 | McKinney et al. | Jul 2003 | B2 |
6594844 | Jones | Jul 2003 | B2 |
D478884 | Slipy et al. | Aug 2003 | S |
6601265 | Burlington | Aug 2003 | B1 |
6604021 | Imai et al. | Aug 2003 | B2 |
6604022 | Parker et al. | Aug 2003 | B2 |
6605156 | Clark et al. | Aug 2003 | B1 |
6611120 | Song et al. | Aug 2003 | B2 |
6611734 | Parker et al. | Aug 2003 | B2 |
6611738 | Raffner | Aug 2003 | B2 |
6615108 | Peless et al. | Sep 2003 | B1 |
6615885 | Ohm | Sep 2003 | B1 |
6622465 | Jerome et al. | Sep 2003 | B2 |
6624744 | Wilson et al. | Sep 2003 | B1 |
6625843 | Kim et al. | Sep 2003 | B2 |
6629028 | Paromtchik et al. | Sep 2003 | B2 |
6639659 | Granger | Oct 2003 | B2 |
6658325 | Zweig | Dec 2003 | B2 |
6658354 | Lin | Dec 2003 | B2 |
6658692 | Lenkiewicz et al. | Dec 2003 | B2 |
6658693 | Reed, Jr. | Dec 2003 | B1 |
6661239 | Ozik | Dec 2003 | B1 |
6662889 | De Fazio et al. | Dec 2003 | B2 |
6668951 | Won | Dec 2003 | B2 |
6670817 | Fournier et al. | Dec 2003 | B2 |
6671592 | Bisset et al. | Dec 2003 | B1 |
6687571 | Byrne et al. | Feb 2004 | B1 |
6690134 | Jones et al. | Feb 2004 | B1 |
6690993 | Foulke et al. | Feb 2004 | B2 |
6697147 | Ko et al. | Feb 2004 | B2 |
6711280 | Stafsudd et al. | Mar 2004 | B2 |
6732826 | Song et al. | May 2004 | B2 |
6737591 | Lapstun et al. | May 2004 | B1 |
6741054 | Koselka et al. | May 2004 | B2 |
6741364 | Lange et al. | May 2004 | B2 |
6748297 | Song et al. | Jun 2004 | B2 |
6756703 | Chang | Jun 2004 | B2 |
6760647 | Nourbakhsh et al. | Jul 2004 | B2 |
6764373 | Osawa et al. | Jul 2004 | B1 |
6769004 | Barrett | Jul 2004 | B2 |
6774596 | Bisset | Aug 2004 | B1 |
6779380 | Nieuwkamp | Aug 2004 | B1 |
6781338 | Jones et al. | Aug 2004 | B2 |
6809490 | Jones et al. | Oct 2004 | B2 |
6810305 | Kirkpatrick | Oct 2004 | B2 |
6830120 | Yashima et al. | Dec 2004 | B1 |
6832407 | Salem et al. | Dec 2004 | B2 |
6836701 | McKee | Dec 2004 | B2 |
6841963 | Song et al. | Jan 2005 | B2 |
6845297 | Allard | Jan 2005 | B2 |
6856811 | Burdue et al. | Feb 2005 | B2 |
6859010 | Jeon et al. | Feb 2005 | B2 |
6859682 | Naka et al. | Feb 2005 | B2 |
6860206 | Rudakevych et al. | Mar 2005 | B1 |
6865447 | Lau et al. | Mar 2005 | B2 |
6870792 | Chiappetta | Mar 2005 | B2 |
6871115 | Huang et al. | Mar 2005 | B2 |
6883201 | Jones et al. | Apr 2005 | B2 |
6886651 | Slocum et al. | May 2005 | B1 |
6888333 | Laby | May 2005 | B2 |
6901624 | Mori et al. | Jun 2005 | B2 |
6906702 | Tanaka et al. | Jun 2005 | B1 |
6914403 | Tsurumi | Jul 2005 | B2 |
6917854 | Bayer | Jul 2005 | B2 |
6101670 | Song | Aug 2005 | A1 |
6925357 | Wang et al. | Aug 2005 | B2 |
6925679 | Wallach et al. | Aug 2005 | B2 |
6929548 | Wang | Aug 2005 | B2 |
D510066 | Hickey et al. | Sep 2005 | S |
6938298 | Aasen | Sep 2005 | B2 |
6940291 | Ozik | Sep 2005 | B1 |
6941199 | Bottomley et al. | Sep 2005 | B1 |
6956348 | Landry et al. | Oct 2005 | B2 |
6957712 | Song et al. | Oct 2005 | B2 |
6960986 | Asama et al. | Nov 2005 | B2 |
6965209 | Jones et al. | Nov 2005 | B2 |
6965211 | Tsurumi | Nov 2005 | B2 |
6968592 | Takeuchi et al. | Nov 2005 | B2 |
6971140 | Kim | Dec 2005 | B2 |
6975246 | Trudeau | Dec 2005 | B1 |
6980229 | Ebersole | Dec 2005 | B1 |
6985556 | Shanmugavel et al. | Jan 2006 | B2 |
6993954 | George et al. | Feb 2006 | B1 |
6999850 | McDonald | Feb 2006 | B2 |
7013527 | Thomas et al. | Mar 2006 | B2 |
7024278 | Chiapetta et al. | Apr 2006 | B2 |
7024280 | Parker et al. | Apr 2006 | B2 |
7027893 | Perry et al. | Apr 2006 | B2 |
7030768 | Wanie | Apr 2006 | B2 |
7031805 | Lee et al. | Apr 2006 | B2 |
7032469 | Bailey | Apr 2006 | B2 |
7053578 | Diehl et al. | May 2006 | B2 |
7054716 | McKee et al. | May 2006 | B2 |
7055210 | Keppler et al. | Jun 2006 | B2 |
7057120 | Ma et al. | Jun 2006 | B2 |
7057643 | Iida et al. | Jun 2006 | B2 |
7065430 | Naka et al. | Jun 2006 | B2 |
7066291 | Martins et al. | Jun 2006 | B2 |
7069124 | Whittaker et al. | Jun 2006 | B1 |
7079923 | Abramson et al. | Jul 2006 | B2 |
7085623 | Siegers | Aug 2006 | B2 |
7085624 | Aldred et al. | Aug 2006 | B2 |
7113847 | Chmura et al. | Sep 2006 | B2 |
7133746 | Abramson et al. | Nov 2006 | B2 |
7142198 | Lee | Nov 2006 | B2 |
7148458 | Schell et al. | Dec 2006 | B2 |
7155308 | Jones | Dec 2006 | B2 |
7167775 | Abramson et al. | Jan 2007 | B2 |
7171285 | Kim et al. | Jan 2007 | B2 |
7173391 | Jones et al. | Feb 2007 | B2 |
7174238 | Zweig | Feb 2007 | B1 |
7188000 | Chiappetta et al. | Mar 2007 | B2 |
7193384 | Norman et al. | Mar 2007 | B1 |
7196487 | Jones et al. | Mar 2007 | B2 |
7201786 | Wegelin et al. | Apr 2007 | B2 |
7206677 | Hulden | Apr 2007 | B2 |
7211980 | Bruemmer et al. | May 2007 | B1 |
7225500 | Diehl et al. | Jun 2007 | B2 |
7246405 | Yan | Jul 2007 | B2 |
7248951 | Hulden | Jul 2007 | B2 |
7275280 | Haegermarck et al. | Oct 2007 | B2 |
7283892 | Boillot et al. | Oct 2007 | B1 |
7288912 | Landry et al. | Oct 2007 | B2 |
7318248 | Yan | Jan 2008 | B1 |
7320149 | Huffman et al. | Jan 2008 | B1 |
7324870 | Lee | Jan 2008 | B2 |
7328196 | Peters | Feb 2008 | B2 |
7332890 | Cohen et al. | Feb 2008 | B2 |
7352153 | Yan | Apr 2008 | B2 |
7359766 | Jeon et al. | Apr 2008 | B2 |
7360277 | Moshenrose et al. | Apr 2008 | B2 |
7363108 | Noda et al. | Apr 2008 | B2 |
7388879 | Sabe et al. | Jun 2008 | B2 |
7389166 | Harwig et al. | Jun 2008 | B2 |
7408157 | Yan | Aug 2008 | B2 |
7418762 | Arai et al. | Sep 2008 | B2 |
7430455 | Casey et al. | Sep 2008 | B2 |
7430462 | Chiu et al. | Sep 2008 | B2 |
7441298 | Svendsen et al. | Oct 2008 | B2 |
7444206 | Abramson et al. | Oct 2008 | B2 |
7448113 | Jones et al. | Nov 2008 | B2 |
7459871 | Landry et al. | Dec 2008 | B2 |
7467026 | Sakagami et al. | Dec 2008 | B2 |
7474941 | Kim et al. | Jan 2009 | B2 |
7503096 | Lin | Mar 2009 | B2 |
7515991 | Egawa et al. | Apr 2009 | B2 |
7555363 | Augenbraun et al. | Jun 2009 | B2 |
7557703 | Yamada et al. | Jul 2009 | B2 |
7568259 | Yan | Aug 2009 | B2 |
7571511 | Jones et al. | Aug 2009 | B2 |
7578020 | Jaworski et al. | Aug 2009 | B2 |
7600521 | Woo | Oct 2009 | B2 |
7603744 | Reindle | Oct 2009 | B2 |
7617557 | Reindle | Nov 2009 | B2 |
7620476 | Morse et al. | Nov 2009 | B2 |
7636982 | Jones et al. | Dec 2009 | B2 |
7647144 | Haegermarck | Jan 2010 | B2 |
7650666 | Jang | Jan 2010 | B2 |
7660650 | Kawagoe et al. | Feb 2010 | B2 |
7663333 | Jones et al. | Feb 2010 | B2 |
7693605 | Park | Apr 2010 | B2 |
7706917 | Chiappetta et al. | Apr 2010 | B1 |
7765635 | Park | Aug 2010 | B2 |
7801645 | Taylor et al. | Sep 2010 | B2 |
7805220 | Taylor et al. | Sep 2010 | B2 |
7809944 | Kawamoto | Oct 2010 | B2 |
7849555 | Hahm et al. | Dec 2010 | B2 |
7853645 | Brown et al. | Dec 2010 | B2 |
7920941 | Park et al. | Apr 2011 | B2 |
7937800 | Yan | May 2011 | B2 |
7957836 | Myeong et al. | Jun 2011 | B2 |
20010004719 | Sommer | Jun 2001 | A1 |
20010013929 | Torsten | Aug 2001 | A1 |
20010020200 | Das et al. | Sep 2001 | A1 |
20010025183 | Shahidi | Sep 2001 | A1 |
20010037163 | Allard | Nov 2001 | A1 |
20010043509 | Green et al. | Nov 2001 | A1 |
20010045883 | Holdaway et al. | Nov 2001 | A1 |
20010047231 | Peless et al. | Nov 2001 | A1 |
20010047895 | De et al. | Dec 2001 | A1 |
20020011367 | Kolesnik | Jan 2002 | A1 |
20020011813 | Koselka et al. | Jan 2002 | A1 |
20020016649 | Jones | Feb 2002 | A1 |
20020021219 | Edwards | Feb 2002 | A1 |
20020027652 | Paromtchik et al. | Mar 2002 | A1 |
20020036779 | Kiyoi et al. | Mar 2002 | A1 |
20020081937 | Yamada et al. | Jun 2002 | A1 |
20020095239 | Wallach et al. | Jul 2002 | A1 |
20020097400 | Jung et al. | Jul 2002 | A1 |
20020104963 | Mancevski | Aug 2002 | A1 |
20020108209 | Peterson | Aug 2002 | A1 |
20020112742 | Bredo et al. | Aug 2002 | A1 |
20020113973 | Ge | Aug 2002 | A1 |
20020116089 | Kirkpatrick | Aug 2002 | A1 |
20020120364 | Colens | Aug 2002 | A1 |
20020124343 | Reed | Sep 2002 | A1 |
20020153185 | Song et al. | Oct 2002 | A1 |
20020156556 | Ruffner | Oct 2002 | A1 |
20020159051 | Guo | Oct 2002 | A1 |
20020166193 | Kasper | Nov 2002 | A1 |
20020169521 | Goodman et al. | Nov 2002 | A1 |
20020173877 | Zweig | Nov 2002 | A1 |
20020189871 | Won | Dec 2002 | A1 |
20030009259 | Hattori et al. | Jan 2003 | A1 |
20030019071 | Field et al. | Jan 2003 | A1 |
20030023356 | Keable | Jan 2003 | A1 |
20030024986 | Mazz et al. | Feb 2003 | A1 |
20030025472 | Jones et al. | Feb 2003 | A1 |
20030028286 | Glenn et al. | Feb 2003 | A1 |
20030030399 | Jacobs | Feb 2003 | A1 |
20030058262 | Sato et al. | Mar 2003 | A1 |
20030060928 | Abramson et al. | Mar 2003 | A1 |
20030067451 | Tagg et al. | Apr 2003 | A1 |
20030097875 | Lentz et al. | May 2003 | A1 |
20030120389 | Abramson et al. | Jun 2003 | A1 |
20030124312 | Autumn | Jul 2003 | A1 |
20030126352 | Barrett | Jul 2003 | A1 |
20030137268 | Papanikolopoulos et al. | Jul 2003 | A1 |
20030146384 | Logsdon et al. | Aug 2003 | A1 |
20030192144 | Song et al. | Oct 2003 | A1 |
20030193657 | Uomori et al. | Oct 2003 | A1 |
20030216834 | Allard | Nov 2003 | A1 |
20030221114 | Hino et al. | Nov 2003 | A1 |
20030229421 | Chmura et al. | Dec 2003 | A1 |
20030229474 | Suzuki et al. | Dec 2003 | A1 |
20030233171 | Heiligensetzer | Dec 2003 | A1 |
20030233177 | Johnson et al. | Dec 2003 | A1 |
20030233870 | Mancevski | Dec 2003 | A1 |
20030233930 | Ozick | Dec 2003 | A1 |
20040016077 | Song et al. | Jan 2004 | A1 |
20040020000 | Jones | Feb 2004 | A1 |
20040030448 | Solomon | Feb 2004 | A1 |
20040030449 | Solomon | Feb 2004 | A1 |
20040030450 | Solomon | Feb 2004 | A1 |
20040030451 | Solomon | Feb 2004 | A1 |
20040030570 | Solomon | Feb 2004 | A1 |
20040030571 | Solomon | Feb 2004 | A1 |
20040031113 | Wosewick et al. | Feb 2004 | A1 |
20040049877 | Jones et al. | Mar 2004 | A1 |
20040055163 | McCambridge et al. | Mar 2004 | A1 |
20040068351 | Solomon | Apr 2004 | A1 |
20040068415 | Solomon | Apr 2004 | A1 |
20040068416 | Solomon | Apr 2004 | A1 |
20040074038 | Im et al. | Apr 2004 | A1 |
20040074044 | Diehl et al. | Apr 2004 | A1 |
20040076324 | Burl et al. | Apr 2004 | A1 |
20040083570 | Song et al. | May 2004 | A1 |
20040085037 | Jones et al. | May 2004 | A1 |
20040088079 | Lavarec et al. | May 2004 | A1 |
20040093122 | Galibraith | May 2004 | A1 |
20040098167 | Yi et al. | May 2004 | A1 |
20040111184 | Chiappetta et al. | Jun 2004 | A1 |
20040111821 | Lenkiewicz et al. | Jun 2004 | A1 |
20040113777 | Matsuhira et al. | Jun 2004 | A1 |
20040117064 | McDonald | Jun 2004 | A1 |
20040117846 | Karaoguz et al. | Jun 2004 | A1 |
20040118998 | Wingett et al. | Jun 2004 | A1 |
20040128028 | Miyamoto et al. | Jul 2004 | A1 |
20040133316 | Dean | Jul 2004 | A1 |
20040134336 | Solomon | Jul 2004 | A1 |
20040134337 | Solomon | Jul 2004 | A1 |
20040143919 | Wilder | Jul 2004 | A1 |
20040148419 | Chen et al. | Jul 2004 | A1 |
20040148731 | Damman et al. | Aug 2004 | A1 |
20040153212 | Profio et al. | Aug 2004 | A1 |
20040156541 | Jeon et al. | Aug 2004 | A1 |
20040158357 | Lee et al. | Aug 2004 | A1 |
20040181706 | Chen et al. | Sep 2004 | A1 |
20040187249 | Jones et al. | Sep 2004 | A1 |
20040187457 | Colens | Sep 2004 | A1 |
20040196451 | Aoyama | Oct 2004 | A1 |
20040200505 | Taylor et al. | Oct 2004 | A1 |
20040204792 | Taylor et al. | Oct 2004 | A1 |
20040210345 | Noda et al. | Oct 2004 | A1 |
20040210347 | Sawada et al. | Oct 2004 | A1 |
20040211444 | Taylor et al. | Oct 2004 | A1 |
20040221790 | Sinclair et al. | Nov 2004 | A1 |
20040236468 | Taylor et al. | Nov 2004 | A1 |
20040244138 | Taylor et al. | Dec 2004 | A1 |
20040255425 | Arai et al. | Dec 2004 | A1 |
20050000543 | Taylor et al. | Jan 2005 | A1 |
20050010330 | Abramson et al. | Jan 2005 | A1 |
20050010331 | Taylor et al. | Jan 2005 | A1 |
20050021181 | Kim et al. | Jan 2005 | A1 |
20050067994 | Jones et al. | Mar 2005 | A1 |
20050085947 | Aldred et al. | Apr 2005 | A1 |
20050137749 | Jeon et al. | Jun 2005 | A1 |
20050144751 | Kegg et al. | Jul 2005 | A1 |
20050150074 | Diehl et al. | Jul 2005 | A1 |
20050150519 | Keppler et al. | Jul 2005 | A1 |
20050154795 | Kuz et al. | Jul 2005 | A1 |
20050156562 | Cohen et al. | Jul 2005 | A1 |
20050165508 | Kanda et al. | Jul 2005 | A1 |
20050166354 | Uehigashi | Aug 2005 | A1 |
20050166355 | Tani | Aug 2005 | A1 |
20050172445 | Diehl et al. | Aug 2005 | A1 |
20050183229 | Uehigashi | Aug 2005 | A1 |
20050183230 | Uehigashi | Aug 2005 | A1 |
20050187678 | Myeong et al. | Aug 2005 | A1 |
20050192707 | Park et al. | Sep 2005 | A1 |
20050204717 | Colens | Sep 2005 | A1 |
20050209736 | Kawagoe | Sep 2005 | A1 |
20050211880 | Schell et al. | Sep 2005 | A1 |
20050212929 | Schell et al. | Sep 2005 | A1 |
20050213082 | DiBernardo et al. | Sep 2005 | A1 |
20050213109 | Schell et al. | Sep 2005 | A1 |
20050217042 | Reindle | Oct 2005 | A1 |
20050218852 | Landry et al. | Oct 2005 | A1 |
20050222933 | Wesby | Oct 2005 | A1 |
20050229340 | Sawalski et al. | Oct 2005 | A1 |
20050229355 | Crouch et al. | Oct 2005 | A1 |
20050235451 | Yan | Oct 2005 | A1 |
20050251292 | Casey et al. | Nov 2005 | A1 |
20050255425 | Pierson | Nov 2005 | A1 |
20050258154 | Blankenship et al. | Nov 2005 | A1 |
20050273967 | Taylor et al. | Dec 2005 | A1 |
20050288819 | de | Dec 2005 | A1 |
20060000050 | Cipolla et al. | Jan 2006 | A1 |
20060010638 | Shimizu et al. | Jan 2006 | A1 |
20060020369 | Taylor et al. | Jan 2006 | A1 |
20060020370 | Abramson | Jan 2006 | A1 |
20060021168 | Nishikawa | Feb 2006 | A1 |
20060025134 | Cho et al. | Feb 2006 | A1 |
20060037170 | Shimizu | Feb 2006 | A1 |
20060042042 | Mertes et al. | Mar 2006 | A1 |
20060044546 | Lewin et al. | Mar 2006 | A1 |
20060060216 | Woo | Mar 2006 | A1 |
20060061657 | Rew et al. | Mar 2006 | A1 |
20060064828 | Stein et al. | Mar 2006 | A1 |
20060087273 | Ko et al. | Apr 2006 | A1 |
20060089765 | Pack et al. | Apr 2006 | A1 |
20060100741 | Jung | May 2006 | A1 |
20060119839 | Bertin et al. | Jun 2006 | A1 |
20060143295 | Costa et al. | Jun 2006 | A1 |
20060146776 | Kim | Jul 2006 | A1 |
20060190133 | Konandreas et al. | Aug 2006 | A1 |
20060190146 | Morse et al. | Aug 2006 | A1 |
20060196003 | Song et al. | Sep 2006 | A1 |
20060220900 | Ceskutti et al. | Oct 2006 | A1 |
20060259194 | Chiu | Nov 2006 | A1 |
20060259419 | Monsen et al. | Nov 2006 | A1 |
20060259494 | Watson et al. | Nov 2006 | A1 |
20060288519 | Jaworski et al. | Dec 2006 | A1 |
20060293787 | Kanda et al. | Dec 2006 | A1 |
20070006404 | Cheng et al. | Jan 2007 | A1 |
20070017061 | Yan | Jan 2007 | A1 |
20070028574 | Yan | Feb 2007 | A1 |
20070032904 | Kawagoe | Feb 2007 | A1 |
20070042716 | Goodall et al. | Feb 2007 | A1 |
20070043459 | Abbott et al. | Feb 2007 | A1 |
20070061041 | Zweig | Mar 2007 | A1 |
20070114975 | Cohen et al. | May 2007 | A1 |
20070150096 | Yeh et al. | Jun 2007 | A1 |
20070157415 | Lee et al. | Jul 2007 | A1 |
20070157420 | Lee et al. | Jul 2007 | A1 |
20070179670 | Chiappetta et al. | Aug 2007 | A1 |
20070226949 | Hahm et al. | Oct 2007 | A1 |
20070234492 | Svendsen et al. | Oct 2007 | A1 |
20070244610 | Ozick et al. | Oct 2007 | A1 |
20070250212 | Halloran et al. | Oct 2007 | A1 |
20070266508 | Jones et al. | Nov 2007 | A1 |
20080007203 | Cohen et al. | Jan 2008 | A1 |
20080039974 | Sandin et al. | Feb 2008 | A1 |
20080052846 | Kapoor et al. | Mar 2008 | A1 |
20080091304 | Ozick et al. | Apr 2008 | A1 |
20080184518 | Taylor | Aug 2008 | A1 |
20080276407 | Schnittman et al. | Nov 2008 | A1 |
20080281470 | Gilbert et al. | Nov 2008 | A1 |
20080282494 | Won et al. | Nov 2008 | A1 |
20080294288 | Yamauchi | Nov 2008 | A1 |
20080302586 | Yan | Dec 2008 | A1 |
20080307590 | Jones et al. | Dec 2008 | A1 |
20090007366 | Svendsen et al. | Jan 2009 | A1 |
20090038089 | Landry et al. | Feb 2009 | A1 |
20090049640 | Lee et al. | Feb 2009 | A1 |
20090055022 | Casey et al. | Feb 2009 | A1 |
20090102296 | Greene et al. | Apr 2009 | A1 |
20090292393 | Casey et al. | Nov 2009 | A1 |
20100011529 | Won et al. | Jan 2010 | A1 |
20100049365 | Jones et al. | Feb 2010 | A1 |
20100063628 | Landry et al. | Mar 2010 | A1 |
20100107355 | Won et al. | May 2010 | A1 |
20100257690 | Jones et al. | Oct 2010 | A1 |
20100257691 | Jones et al. | Oct 2010 | A1 |
20100263158 | Jones et al. | Oct 2010 | A1 |
20100268384 | Jones et al. | Oct 2010 | A1 |
20100312429 | Jones et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
2003275566 | Jun 2004 | AU |
2003275566 | Jun 2004 | AU |
2128842 | Dec 1980 | DE |
3317376 | Nov 1984 | DE |
3536907 | Feb 1989 | DE |
3404202 | Dec 1992 | DE |
199311014 | Oct 1993 | DE |
4414683 | Oct 1995 | DE |
4338841 | Aug 1999 | DE |
198 49 978 | Feb 2001 | DE |
19849978 | Feb 2001 | DE |
19849978 | Feb 2001 | DE |
10242257 | Apr 2003 | DE |
10242257 | Apr 2003 | DE |
102004038074.0 | Jun 2005 | DE |
10357636 | Jul 2005 | DE |
10357636 | Jul 2005 | DE |
102004041021 | Aug 2005 | DE |
102004041021 | Aug 2005 | DE |
102005046813 | Apr 2007 | DE |
102005046913 | Apr 2007 | DE |
338988 | Dec 1988 | DK |
198803389 | Dec 1988 | DK |
265542 | May 1988 | EP |
281085 | Sep 1988 | EP |
307381 | Jul 1990 | EP |
358628 | May 1991 | EP |
437024 | Jul 1991 | EP |
433697 | Dec 1992 | EP |
479273 | May 1993 | EP |
294101 | Dec 1993 | EP |
554978 | Mar 1994 | EP |
615719 | Sep 1994 | EP |
0 792 726 | Sep 1997 | EP |
0 792 726 | Sep 1997 | EP |
861629 | Sep 1998 | EP |
930040 | Oct 1999 | EP |
845237 | Apr 2000 | EP |
1018315 | Jul 2000 | EP |
1172719 | Jan 2002 | EP |
1228734 | Jun 2003 | EP |
1 331 537 | Jul 2003 | EP |
1 331 537 | Jul 2003 | EP |
1 380 245 | Jan 2004 | EP |
1380245 | Jan 2004 | EP |
1380245 | Jan 2004 | EP |
1380246 | Jan 2004 | EP |
1380246 | Mar 2005 | EP |
1553472 | Jul 2005 | EP |
1557730 | Jul 2005 | EP |
1557730 | Jul 2005 | EP |
1642522 | Apr 2006 | EP |
1642522 | Nov 2007 | EP |
2238196 | Nov 2006 | ES |
2601443 | Nov 1991 | FR |
2 828 589 | Aug 2001 | FR |
702426 | Jan 1954 | GB |
2128842 | Apr 1986 | GB |
2213047 | Aug 1989 | GB |
2225221 | May 1990 | GB |
2225221 | May 1990 | GB |
2 283 838 | May 1995 | GB |
2284957 | Jun 1995 | GB |
2267360 | Dec 1995 | GB |
2300082 | Sep 1999 | GB |
2404330 | Jul 2005 | GB |
2417354 | Feb 2006 | GB |
53021869 | Feb 1978 | JP |
53110257 | Sep 1978 | JP |
53110257 | Sep 1978 | JP |
57014726 | Jan 1982 | JP |
57064217 | Apr 1982 | JP |
59005315 | Feb 1984 | JP |
59033511 | Mar 1984 | JP |
59094005 | May 1984 | JP |
59099308 | Jul 1984 | JP |
59112311 | Jul 1984 | JP |
59033511 | Aug 1984 | JP |
59120124 | Aug 1984 | JP |
59131668 | Sep 1984 | JP |
59164973 | Sep 1984 | JP |
59184917 | Oct 1984 | JP |
2283343 | Nov 1984 | JP |
59212924 | Dec 1984 | JP |
59226909 | Dec 1984 | JP |
60089213 | May 1985 | JP |
60089213 | Jun 1985 | JP |
60211510 | Oct 1985 | JP |
60-259895 | Dec 1985 | JP |
60-293095 | Dec 1985 | JP |
60259895 | Dec 1985 | JP |
61023221 | Jan 1986 | JP |
61097712 | May 1986 | JP |
61023221 | Jun 1986 | JP |
62-074018 | Apr 1987 | JP |
62074018 | Apr 1987 | JP |
62070709 | May 1987 | JP |
62-120510 | Jun 1987 | JP |
62-154008 | Jul 1987 | JP |
62164431 | Oct 1987 | JP |
62-263508 | Nov 1987 | JP |
62263507 | Nov 1987 | JP |
62263508 | Nov 1987 | JP |
62189057 | Dec 1987 | JP |
63079623 | Apr 1988 | JP |
63-183032 | Jul 1988 | JP |
63158032 | Jul 1988 | JP |
63-241610 | Oct 1988 | JP |
1162454 | Jun 1989 | JP |
2-6312 | Jan 1990 | JP |
2006312 | Jan 1990 | JP |
2026312 | Jun 1990 | JP |
2283343 | Nov 1990 | JP |
03-051023 | Mar 1991 | JP |
3051023 | Mar 1991 | JP |
3197758 | Aug 1991 | JP |
3201903 | Sep 1991 | JP |
4019586 | Mar 1992 | JP |
4084921 | Mar 1992 | JP |
05-046239 | Feb 1993 | JP |
05-046246 | Feb 1993 | JP |
5023269 | Apr 1993 | JP |
5091604 | Apr 1993 | JP |
5042076 | Jun 1993 | JP |
5046246 | Jun 1993 | JP |
5150827 | Jun 1993 | JP |
5150829 | Jun 1993 | JP |
5046239 | Jul 1993 | JP |
5054620 | Jul 1993 | JP |
5054620 | Jul 1993 | JP |
5040519 | Oct 1993 | JP |
5257527 | Oct 1993 | JP |
5257533 | Oct 1993 | JP |
5285861 | Nov 1993 | JP |
06-3251 | Jan 1994 | JP |
6003251 | Jan 1994 | JP |
6026312 | Apr 1994 | JP |
6137828 | May 1994 | JP |
6293095 | Oct 1994 | JP |
06-327598 | Nov 1994 | JP |
6105781 | Dec 1994 | JP |
7059702 | Mar 1995 | JP |
07-129239 | May 1995 | JP |
7059702 | Jun 1995 | JP |
07-222705 | Aug 1995 | JP |
7222705 | Aug 1995 | JP |
7222705 | Aug 1995 | JP |
7270518 | Oct 1995 | JP |
7281742 | Oct 1995 | JP |
7281752 | Oct 1995 | JP |
7-295636 | Nov 1995 | JP |
7311041 | Nov 1995 | JP |
7-338573 | Dec 1995 | JP |
7313417 | Dec 1995 | JP |
7313417 | Dec 1995 | JP |
7319542 | Dec 1995 | JP |
8-16776 | Jan 1996 | JP |
8000393 | Jan 1996 | JP |
8000393 | Jan 1996 | JP |
8016241 | Jan 1996 | JP |
80000393 | Jan 1996 | JP |
8016776 | Feb 1996 | JP |
8063229 | Mar 1996 | JP |
8083125 | Mar 1996 | JP |
8083125 | Mar 1996 | JP |
08-089451 | Apr 1996 | JP |
8084696 | Apr 1996 | JP |
8089449 | Apr 1996 | JP |
2520732 | May 1996 | JP |
8123548 | May 1996 | JP |
8123548 | May 1996 | JP |
08-152916 | Jun 1996 | JP |
8152916 | Jun 1996 | JP |
08-000393 | Oct 1996 | JP |
8256960 | Oct 1996 | JP |
8263137 | Oct 1996 | JP |
8263137 | Oct 1996 | JP |
8286741 | Nov 1996 | JP |
8286744 | Nov 1996 | JP |
8322774 | Dec 1996 | JP |
8322774 | Dec 1996 | JP |
8335112 | Dec 1996 | JP |
8335112 | Dec 1996 | JP |
9043901 | Feb 1997 | JP |
9044240 | Feb 1997 | JP |
9047413 | Feb 1997 | JP |
09-062354 | Mar 1997 | JP |
09062354 | Mar 1997 | JP |
9066855 | Mar 1997 | JP |
9066855 | Mar 1997 | JP |
09-160644 | Jun 1997 | JP |
9145309 | Jun 1997 | JP |
9160644 | Jun 1997 | JP |
9160644 | Jun 1997 | JP |
9-179625 | Jul 1997 | JP |
09-179625 | Jul 1997 | JP |
9-185410 | Jul 1997 | JP |
9179625 | Jul 1997 | JP |
9179685 | Jul 1997 | JP |
9192069 | Jul 1997 | JP |
2555263 | Aug 1997 | JP |
9204223 | Aug 1997 | JP |
9206258 | Aug 1997 | JP |
9206258 | Aug 1997 | JP |
9233712 | Sep 1997 | JP |
09251318 | Sep 1997 | JP |
9251318 | Sep 1997 | JP |
9265319 | Oct 1997 | JP |
9265319 | Oct 1997 | JP |
9269807 | Oct 1997 | JP |
9269807 | Oct 1997 | JP |
9269810 | Oct 1997 | JP |
9269810 | Oct 1997 | JP |
02555263 | Nov 1997 | JP |
9319431 | Dec 1997 | JP |
9319431 | Dec 1997 | JP |
9319432 | Dec 1997 | JP |
9319432 | Dec 1997 | JP |
9319434 | Dec 1997 | JP |
9319434 | Dec 1997 | JP |
9325812 | Dec 1997 | JP |
9325812 | Dec 1997 | JP |
10055215 | Feb 1998 | JP |
10055215 | Feb 1998 | JP |
10117973 | May 1998 | JP |
10117973 | May 1998 | JP |
10117973 | May 1998 | JP |
10118963 | May 1998 | JP |
10118963 | May 1998 | JP |
10177414 | Jun 1998 | JP |
10214114 | Aug 1998 | JP |
10214114 | Aug 1998 | JP |
10228316 | Aug 1998 | JP |
09-043901 | Sep 1998 | JP |
10240342 | Sep 1998 | JP |
10260727 | Sep 1998 | JP |
10-214114 | Nov 1998 | JP |
10295595 | Nov 1998 | JP |
10295595 | Nov 1998 | JP |
11015941 | Jan 1999 | JP |
11015941 | Jan 1999 | JP |
11065655 | Mar 1999 | JP |
11085269 | Mar 1999 | JP |
11102219 | Apr 1999 | JP |
11102220 | Apr 1999 | JP |
11102220 | Apr 1999 | JP |
11162454 | Jun 1999 | JP |
11-178764 | Jul 1999 | JP |
11-178765 | Jul 1999 | JP |
11174145 | Jul 1999 | JP |
11174145 | Jul 1999 | JP |
11175149 | Jul 1999 | JP |
11175149 | Jul 1999 | JP |
11178764 | Jul 1999 | JP |
11178765 | Jul 1999 | JP |
11-212642 | Aug 1999 | JP |
11-508810 | Aug 1999 | JP |
11212642 | Aug 1999 | JP |
11212642 | Aug 1999 | JP |
11213157 | Aug 1999 | JP |
11213157 | Aug 1999 | JP |
11-510935 | Sep 1999 | JP |
11248806 | Sep 1999 | JP |
11-282532 | Oct 1999 | JP |
11282532 | Oct 1999 | JP |
11282533 | Oct 1999 | JP |
11295412 | Oct 1999 | JP |
11295412 | Oct 1999 | JP |
11346964 | Dec 1999 | JP |
2000047728 | Feb 2000 | JP |
2000056006 | Feb 2000 | JP |
2000056006 | Feb 2000 | JP |
2000056831 | Feb 2000 | JP |
2000056831 | Feb 2000 | JP |
2000066722 | Mar 2000 | JP |
2000066722 | Mar 2000 | JP |
2000075925 | Mar 2000 | JP |
2000075925 | Mar 2000 | JP |
10240343 | May 2000 | JP |
20000275321 | Oct 2000 | JP |
11-162454 | Dec 2000 | JP |
2000-353014 | Dec 2000 | JP |
2000353014 | Dec 2000 | JP |
20000353014 | Dec 2000 | JP |
200122443 | Jan 2001 | JP |
2001022443 | Jan 2001 | JP |
2001067588 | Mar 2001 | JP |
2001087182 | Apr 2001 | JP |
2001087182 | Apr 2001 | JP |
2001121455 | May 2001 | JP |
2001125641 | May 2001 | JP |
2001216482 | Aug 2001 | JP |
2001-258807 | Sep 2001 | JP |
2001265437 | Sep 2001 | JP |
2001265437 | Sep 2001 | JP |
2001-275908 | Oct 2001 | JP |
2001289939 | Oct 2001 | JP |
2001306170 | Nov 2001 | JP |
2001320781 | Nov 2001 | JP |
2001-525567 | Dec 2001 | JP |
2002-78650 | Mar 2002 | JP |
2002-204768 | Jul 2002 | JP |
2002204769 | Jul 2002 | JP |
2002247510 | Aug 2002 | JP |
2002-532178 | Oct 2002 | JP |
3356170 | Oct 2002 | JP |
2002-323925 | Nov 2002 | JP |
3375843 | Nov 2002 | JP |
2002333920 | Nov 2002 | JP |
2002333920 | Nov 2002 | JP |
2002-355206 | Dec 2002 | JP |
2002-360471 | Dec 2002 | JP |
2002-360479 | Dec 2002 | JP |
2002-360482 | Dec 2002 | JP |
2002360479 | Dec 2002 | JP |
2002366227 | Dec 2002 | JP |
2002369778 | Dec 2002 | JP |
2002369778 | Dec 2002 | JP |
2003-10076 | Jan 2003 | JP |
2003010076 | Jan 2003 | JP |
2003010076 | Jan 2003 | JP |
2003010088 | Jan 2003 | JP |
2003010088 | Jan 2003 | JP |
2003015740 | Jan 2003 | JP |
2003015740 | Jan 2003 | JP |
2003028528 | Jan 2003 | JP |
2003-5296 | Feb 2003 | JP |
2003-036116 | Feb 2003 | JP |
2003-38401 | Feb 2003 | JP |
2003-38402 | Feb 2003 | JP |
2003-505127 | Feb 2003 | JP |
2003047579 | Feb 2003 | JP |
2003052596 | Feb 2003 | JP |
2003-061882 | Mar 2003 | JP |
2003061882 | Mar 2003 | JP |
2003084994 | Mar 2003 | JP |
2003167628 | Jun 2003 | JP |
2003167628 | Jun 2003 | JP |
2003180586 | Jul 2003 | JP |
2003180586 | Jul 2003 | JP |
2003180587 | Jul 2003 | JP |
2003186539 | Jul 2003 | JP |
2003190064 | Jul 2003 | JP |
2003190064 | Jul 2003 | JP |
2003241836 | Aug 2003 | JP |
2003262520 | Sep 2003 | JP |
2003262520 | Sep 2003 | JP |
2003285288 | Oct 2003 | JP |
2003304992 | Oct 2003 | JP |
2003304992 | Oct 2003 | JP |
2003-310489 | Nov 2003 | JP |
2003310509 | Nov 2003 | JP |
2003310509 | Nov 2003 | JP |
2003330543 | Nov 2003 | JP |
1004123040 | Apr 2004 | JP |
2004123040 | Apr 2004 | JP |
2004-219185 | May 2004 | JP |
2004148021 | May 2004 | JP |
2004148021 | May 2004 | JP |
2004160102 | Jun 2004 | JP |
2004160102 | Jun 2004 | JP |
2004160102A | Jun 2004 | JP |
2004166968 | Jun 2004 | JP |
2004174228 | Jun 2004 | JP |
2004198330 | Jul 2004 | JP |
2004219185 | Aug 2004 | JP |
2005352707 | Feb 2005 | JP |
2005118354 | May 2005 | JP |
2005135400 | May 2005 | JP |
2005135400 | May 2005 | JP |
2005211360 | Aug 2005 | JP |
2005224265 | Aug 2005 | JP |
200545916 | Sep 2005 | JP |
2005230032 | Sep 2005 | JP |
2005245916 | Sep 2005 | JP |
2005296511 | Oct 2005 | JP |
2005346700 | Dec 2005 | JP |
2005352707 | Dec 2005 | JP |
2006043071 | Feb 2006 | JP |
2006043071 | Feb 2006 | JP |
2006155274 | Jun 2006 | JP |
2006155274 | Jun 2006 | JP |
2006164223 | Jun 2006 | JP |
2006227673 | Aug 2006 | JP |
2006247467 | Sep 2006 | JP |
2006247467 | Sep 2006 | JP |
2006260161 | Sep 2006 | JP |
2006260161 | Sep 2006 | JP |
2006293662 | Oct 2006 | JP |
2006293662 | Oct 2006 | JP |
2006296697 | Nov 2006 | JP |
2006296697 | Nov 2006 | JP |
2007034866 | Feb 2007 | JP |
2007034866 | Feb 2007 | JP |
2007213180 | Aug 2007 | JP |
2007213180 | Aug 2007 | JP |
04074285 | Apr 2008 | JP |
2009015611 | Jan 2009 | JP |
2009015611 | Jan 2009 | JP |
2010198552 | Sep 2010 | JP |
2010198552 | Sep 2010 | JP |
WO9526512 | Oct 1995 | WO |
WO9530887 | Nov 1995 | WO |
943901 | Feb 1997 | WO |
WO9617258 | Feb 1997 | WO |
WO9715224 | May 1997 | WO |
WO9740734 | Nov 1997 | WO |
WO9741451 | Nov 1997 | WO |
WO9853456 | Nov 1998 | WO |
WO9905580 | Feb 1999 | WO |
WO9916078 | Apr 1999 | WO |
WO9928800 | Jun 1999 | WO |
WO9938056 | Jul 1999 | WO |
WO9938237 | Jul 1999 | WO |
WO9943250 | Sep 1999 | WO |
WO9959042 | Nov 1999 | WO |
WO0004430 | Jan 2000 | WO |
WO0036962 | Jun 2000 | WO |
WO0038026 | Jun 2000 | WO |
WO0038029 | Jun 2000 | WO |
WO0038028 | Jun 2000 | WO |
WO0038028 | Jun 2000 | WO |
WO0078410 | Dec 2000 | WO |
WO0106904 | Feb 2001 | WO |
WO0106905 | Feb 2001 | WO |
WO0180703 | Nov 2001 | WO |
WO0191623 | Dec 2001 | WO |
WO0239864 | May 2002 | WO |
WO0239868 | May 2002 | WO |
WO02058527 | Aug 2002 | WO |
WO02062194 | Aug 2002 | WO |
WO02067744 | Sep 2002 | WO |
WO02067745 | Sep 2002 | WO |
WO 02071175 | Sep 2002 | WO |
WO02074150 | Sep 2002 | WO |
WO02075356 | Sep 2002 | WO |
WO02075469 | Sep 2002 | WO |
WO02075470 | Sep 2002 | WO |
WO0267752 | Sep 2002 | WO |
WO0269775 | Sep 2002 | WO |
WO02067752 | Sep 2002 | WO |
WO02069774 | Sep 2002 | WO |
WO02069775 | Sep 2002 | WO |
WO02071175 | Sep 2002 | WO |
WO02075350 | Sep 2002 | WO |
WO02081074 | Oct 2002 | WO |
WO02101477 | Dec 2002 | WO |
WO03015220 | Feb 2003 | WO |
WO03024292 | Mar 2003 | WO |
WO03026474 | Apr 2003 | WO |
WO03040845 | May 2003 | WO |
WO03040846 | May 2003 | WO |
WO0269775 | May 2003 | WO |
WO02069775 | May 2003 | WO |
WO03040546 | May 2003 | WO |
WO03062850 | Jul 2003 | WO |
WO03062852 | Jul 2003 | WO |
WO2004004533 | Jan 2004 | WO |
WO2004006034 | Jan 2004 | WO |
WO2005077244 | Jan 2004 | WO |
WO2006068403 | Jan 2004 | WO |
WO2004004534 | Jan 2004 | WO |
WO2004005956 | Jan 2004 | WO |
W02004025947 | May 2004 | WO |
WO2004043215 | May 2004 | WO |
WO2004043215 | May 2004 | WO |
WO 2004058028 | Jul 2004 | WO |
WO 2004059409 | Jul 2004 | WO |
WO2004058028 | Jul 2004 | WO |
WO2004059409 | Jul 2004 | WO |
WO2005006935 | Jan 2005 | WO |
WO2005006935 | Jan 2005 | WO |
WO2005036292 | Apr 2005 | WO |
WO2005036292 | Apr 2005 | WO |
WO2005055795 | Jun 2005 | WO |
WO2005055795 | Jun 2005 | WO |
WO2005055796 | Jun 2005 | WO |
WO2005055796 | Jun 2005 | WO |
WO2005076545 | Aug 2005 | WO |
WO2005077243 | Aug 2005 | WO |
W02005083541 | Sep 2005 | WO |
WO2005081074 | Sep 2005 | WO |
WO2005082223 | Sep 2005 | WO |
WO2005082223 | Sep 2005 | WO |
WO2005098475 | Oct 2005 | WO |
WO2005098476 | Oct 2005 | WO |
WO2006046400 | May 2006 | WO |
WO 2006061133 | Jun 2006 | WO |
WO2006061133 | Jun 2006 | WO |
WO2006068403 | Jun 2006 | WO |
WO2006007328 | Jul 2006 | WO |
WO2006073248 | Jul 2006 | WO |
WO2006073248 | Jul 2006 | WO |
WO2007036490 | Apr 2007 | WO |
WO2007036490 | May 2007 | WO |
WO2007065033 | Jun 2007 | WO |
WO2007137234 | Nov 2007 | WO |
Entry |
---|
Braunsting et al. “Fuzzy Logic Wall Following of a Mobile Robot Based on the Concept of General Perception” Sep. 1995, ICAR 95, 7th Itn'l Con on Advanced Robotics pp. 367-376. |
Cameron Morland, Autonomous Lawn Mower Control, Jul. 24, 2002. |
Doty, Keith L et al, “Sweep Strategies for a Sensory-Driven, Behavior-Based Vacuum Cleaning Agent” AAAI 1993 Fall Symposium Series Instantiating Real-World Agents Research Triangle Park, Raleigh, NC, Oct. 22-24, 1993. |
Electrolux designed for the well-lived home, website: http://www.electroluxusa.com/node57.as[?currentURL=node142.asp%3F, acessed Mar. 18, 2005. |
eVac Robotic Vacuum S1727 Instruction Manual, Sharper Image Corp, Copyright 2004. |
Everyday Robots, website: http://www.everydayrobots.com/index.php?option=content&task=view&id=9, accessed Apr. 20, 2005. |
Examination report dated Mar. 14, 2008 for U.S. Appl. No. 11/771,356. |
Examination report dated Mar. 27, 2006 for U.S. Appl. No. 10/839,374. |
Examination report dated Apr. 11, 2004 for corresponding EP application No. 02734767.3. |
Examination report dated Apr. 29, 2005 for corresponding EP application No. 02734767.3. |
Examination report dated May 4, 2005 for U.S. Appl. No. 10/839,374. |
Examination report dated May 14, 2009 for U.S. Appl. No. 11/771,433. |
Examination report dated Jul. 24, 2009 for U.S. Appl. No. 11/771,433. |
Examination report dated Aug. 9, 2004 for U.S. Appl. No. 10/839,374. |
Examination report dated Sep. 3, 2003 for U.S. Appl. No. 10/167,851. |
Examination report dated Oct. 1, 2010 for U.S. Appl. No. 12/609,124. |
Examination report dated Nov. 8, 2005 for corresponding EP application No. 02734767.3. |
Examination report dated Nov. 30, 2010 for U.S. Appl. No. 12/826,909. |
Examination report dated Dec. 29, 2003 for U.S. Appl. No. 10/167,851. |
Examination report dated Jun. 14, 2011 for corresponding application JP 2008-246310. |
Facts on the Trilobite webpage: “http://trilobiteelectroluxse/presskit—en/node11335asp?print=yes&pressID=” accessed Dec. 12, 2003. |
Friendly Robotics Robotic Vacuum RV400—The Robot Store website: http://www.therobotstore.com/s.nl/sc.9/category,-109/it.A/id.43/.f, accessed Apr. 20, 2005. |
Gat, Erann, Robust Low-computation Sensor-driven Control for Task-Directed Navigation, Proceedings of the 1991 IEEE, International Conference on Robotics and Automation, Sacramento, California, Apr. 1991, pp. 2484-2489. |
koolvac Robotic Vacuum Cleaner Owner's Manual, Koolatron, Undated. |
NorthStar Low-Cost, Indoor Localization, Evolution robotics, Powering Intelligent Products. |
Robot Review Samsung Robot Vacuum (VC-RP30W), website: http://www.onrobo.com/reviews/At—Home/Vacuun—Cleaners/on00vcrp30rosam/index.htm, accessed Mar. 18, 2005. |
Yata et al “Wall Following Using Angle Information Measured by a Single Ultrasonic Transducer” IEEE, May 1998. |
Zoombot Remote Controlled Vaccum-RV-500 New Roomba 2, website: http://cgi.ebay.com/ws/eBayISAPI.dll?ViewItem&category=43526&item=4373497618&rd=1, accessed Apr. 20, 2005. |
U.S. Appl. No. 60/605,066, filed Aug. 27, 2004, Taylor. |
U.S. Appl. No. 60/605,181, filed Aug. 27, 2004, Taylor. |
Euroflex Intellegente Monstre Mauele (English only except). |
Roboking—not just a vacuum cleaner, a robot! |
SVET Computers—New Technologies—Robot vacuum claeaner. |
http://www.gizmag.com/go/1282/. |
http://www.electrolux-ui.com:8080/2002%5C822%5C833102EN.pdf. |
http//www.robotsandrelax.com/PDFs/RV400Manual.pdf. |
http//www.hitachi.co.jp/New/cnews/hl—030529—hl—030529.pdf. |
http://robotbg.com/news/2003/04/22/lg—announces—the—first—robotic—vacuum—cleaner—of—korea. |
www.metapo.com/support/user—manual.pdf. |
http://us.aving.net/news/view.php?articleId=23031. |
http://www.taipeitimes.com/News/worldbiz/archives/2002/03/26/000129338. |
http://ascii.jp/elem/000/000/330/330024/. |
http://us.aving.net/news/view.php?articleId=7257. |
Examination report dated Oct. 18, 2011 for corresponding application No. 101.83338.2. |
Examination report dated Oct. 18, 2011. For corresponding application No. 10183321.8. |
Wolf et al. “Robust Vision-based Localization for Mobile Robots Using an Image Retrieval System Based on Invariant Features”, Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, D.C. pp. 359-365, May, 2002. |
Wolf et al. “Robust Vision-Based Localization by Combining an Image-Retrieval System with Monte Carol Localization”, IEEE Transactions on Robotics, vol. 21, No. 2, pp. 208-216, Apr. 2005. |
Wong “EIED Online>> Robot Business”, ED Online ID# 13114, 17 pages, Jul. 2006. |
Yun, et al. “Robust Positioning a Mobile Robot with Active Beacon Sensors”, Lecture Notes in Computer Science, 2006, vol. 4251, pp. 890-897, 2006. |
Yuta, et al. “Implementation of an Active Optical Range sensor Using Laser Slit for In-Door Intelligent Mobite Robot”, IEE/RSJ International workshop on Intelligent Robots and systems (IROS 91) vol. 1, Osaka, Japan, pp. 415-420. Nov. 3-5, 1991. |
Zha et al. “Mobile Robot Localization Using Incomplete Maps for Change Detection in a Dynamic Environment”, Advanced Intelligent Mechatronics '97. Final Program and Abstacts., IEEE/ASME International Conference, pp. 11, Jun. 16-20, 1997. |
Zhang, et al. “A Novel Mobile Robot Localization Based on Vision”, SPIE vol. 6279, 6 pages, Jan. 29, 2007. |
SVET Computers—New Technologies—Robot vacuum cleaner, 1 page, Oct. 1999. |
Electrolux Trilobite, http://www.electrolux-ui.com:8080/2002%5C822%5C833102EN.pdf 10 pages, Jan. 12, 2001. |
Electrolux Trilobite, Time to enjoy life, 38 pages http://www.robocon.co.kr/trilobite/Presentation—Trilobite—Kor—030104. ppt accessed Dec. 22, 2011. |
FloorBotics, VR-8 Floor Cleaning Robot, Product Description for Manuafacturers, http://www.consensus.com.au/SoftwareAwards/CSAarchive/CSA2004/CSAart04/FloorBot/F, 2004. |
Robot Buying Guide, LG announces the first robotic vacuum cleaner for Korea, Apr. 21, 2003 http://robotbg.com/news/2003/04/22/lg—announces—the—first—robotics—vacu. |
CleanMate 365, Intelligent Automatic Vacuum Cleaner, Model No. QQ-1, User Manual www.metapo.com/support/user—manual.pdf 11 pages. |
http://ascii.jp/elem/000/000/330/330024/, 11/1/20111. |
Special Reports, Vacuum Cleaner Robot Operated in Conjunction with 3G Celluar Phone vol. 59, No. 9 (2004) 3 pages http://www.toshiba.co.jp/tech/review/2004/09/59—0. |
McLurkin “The Ants: A community of Microrobots”, Paper submitted for requirements of BSEE at MIT, May 12, 1995. |
Hitachi “Feature”, http://kadenfan.hitachi.co.jp/robot/feature.html , 1 page Nov. 19, 2008. |
Home Robot—UBOT; Microbotusa.com, retrieved from the WWW at www.microrobotusa.com, accedded Dec. 2, 2008. |
Jarosiewicz et al. “Final Report—Lucid”, University of Florida, Departmetn of Electrical and Computer Engineering, EEL 5666—Intelligent Machines Design Laboratory, 50 pages, Aug. 4, 1999. |
Jensfelt, et al. “Active Global Localization for a mobile robot using multiple hypothesis tracking”, IEEE Transactions on Robots and Automation vol. 17, No. 5, pp. 748-760, Oct. 2001. |
Karlsson, et al Core Technologies for service Robotics, IEEE/RSJ International Conference on intelligent Robots and Systems (IROS 2004), vol. 3, pp. 2979-2984, Sep. 28-Oct. 2. 2004. |
Knight, et al., “Lovalization and Identification of Visual Landmarks”, Journal of Computing Sciences in Colleges, vol. 16, Issue 4, 2001 pp. 312-313, May 2001. |
Kolodko et al. “Experimental System for Real-Time Motion Estimation”, Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), pp. 981-986, 2003. |
Koolatron “KOOLVAC—Owner's Manual”, 13 pages. |
Krotov, et al. “Digital Sextant”, Downloaded from the internet at: http://www.cs.cmu.edu/˜epl/, 1 page, 1995. |
Kurth, “Range-Only Robot Localization and SLAM with Radio”, http://www.ri.cmu.edu/pub—files/pub4/kurth—derek—2004—1/kurth—derek—2004—1.pdf. 60 pages, May, 2004. |
Lambrinos, et al. “A mobile robot employing insect strategies for navigation”, http://www8.cs.umu.se/kurser/TDBD17/VT04/dl/Assignment%20Papers/lambrinos-RAS-2000.pdf. 38 pages, Feb. 19, 1999. |
LaValle et al. “Robot Motion Planning in a Changing, Partially Predictable Environment”, 1994 IEEE International Symposium on Intelligent Control, Columbus, OH, pp. 261-266, Aug. 16-18, 1994. |
Lee, et al. “Development of Indoor Navigation system for Humanoid Robot Using Multi-sensors Integration”, ION NTM, San Diego, CA pp. 798-805, Jan. 22-24, 2007. |
Leonard, et al. “Mobile Robot Localization by tracking Geometric Beacons”, IEEE Transaction on Robotics and Automation, vol. 7, No. 3 pp. 376-382, Jun. 1991. |
Li et al. “Robost Statistical Methods for Securing Wireless Localization in Sensor Networks”, Wireless Information Network Laboratory, Rutgers University, 20051. |
Li et al. “Making a Local Map of Indoor Environments by Swiveling a Camera and a Sonar”, Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 954-959, 1999. |
Lin, et al., “Mobile Robot Navigation Using Artificial Landmarks”, Journal of robotics System 14(2). pp. 93-106, 1997. |
Linde “Dissertation, “On Aspects of Indoor Localization”” https://eldorado.tu-dortmund.de/handle/2003/22854, University of Dortmund, 138 pages, Aug. 28, 2006. |
Luo et al., “Real-time Area-Covering Operations with Obstacle Avoidance for Cleaning Robots,” 2002, IEeE, pp. 2359-2364. |
Madsen, et al. “Optimal landmark selection for triangulation of robot position”, Journal of Robotics and Autonomous Systems vol. 13 pp. 277-292, 1998. |
Martishevcky, “The Accuracy of point light target coordinate determination by dissectoral tracking system”, SPIE vol. 2591 pp. 25-30. |
Matsutek Enterprises Co. Ltd “Automatic Rechargeable Vacuum Cleaner”, http://matsutek.manufacturer.globalsources.com/si/6008801427181/pdtl/Home-Vacuum/10 . . . , Apr. 23, 2007. |
McGillem, et al. “Infra-red Lacation System for Navigation and Autonomous Vehicles”, 1988 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1236-1238, Apr. 24-29, 1988. |
McGillem, et al. “A Beacon Navigation Method for Autonomous Vehicles”, IEEE Transactions on Vehicular Technology, vol. 38, No. 3, pp. 132-139, Aug. 1989. |
Michelson “Autonomous Navigation”, 2000 Yearbook of Science & Technology, McGraw-Hill, New York. ISBN 0-07-052771-7, pp. 28-30, 1999. |
On Robo “Robot Reviews Samsung Robot Vacuum (VC-RP30W)”, www.onrobo.com/reviews/AT—Home/vacuum—cleaners/on00vcrb30rosam/index.htm. 2 pages, 2005. |
InMach “Intelligent Machines”, www.inmach.de/inside.html, 1 page, Nov. 19, 2008. |
Borges et al. “Optimal Mobile Robot Pose Estimation Using Geometrical Maps”, IEEE Transactions on Robotics and Automation, vol. 18, No. 1, pp. 87-94, Feb. 2002. |
Braunstingl et al. “Fuzzy Logic Wall Following of a Mobile Robot Based on the Concept of General Perception” ICAR '95, 7th International Conference on Advanced Robotics, Sant Feliu De Guixols, Spain, pp. 367-376, Sep. 1995. |
Bulusu, et al. “Self Configuring Localization systems: Design and Experimental Evaluation”, ACM Transactions on Embedded Computing Systems vol. 3 No. 1 pp. 24-60, 2003. |
Caccia, et al. “Bottom-Following for Remotely Operated Vehicles”, 5th IFAC conference, Alaborg, Denmark, pp. 245-250 Aug. 1, 2000. |
Chae, et al. “StarLITE: A new artificial landmark for the navigation of mobile robots”, http://www.irc.atr.jp/jk-nrs2005/pdf/Starlite.pdf, 4 pages, 2005. |
Chamberlin et al. “Team 1: Robot Locator Beacon System” NASA Goddard SFC, Design Proposal, 15 pages, Feb. 17, 2006. |
Champy “Physical management of IT assets in Data Centers using RFID technologies”, RFID 2005 University, Oct. 12-14, 2005. |
Chiri “Joystick Control for Tiny OS Robot”, http://www.eecs.berkeley.edu/Programs/ugrad/superb/papers2002/chiri.pdf. 12 pages, Aug. 8, 2002. |
Christensen et al. “Theoretical Methods for Planning and Control in Mobile Robotics” 1997 First International Conference on Knowledge-Based Intelligent Electronic Systems, Adelaide, Australia, pp. 81-86, May 21-27, 1997. |
Andersen et al., “Landmark based navigation strategies”, SPIE Conference on Mobile Robots XIII, SPIE vol. 3525, pp. |
Clerentin, et al. “A localization method based on two omnidirectional perception systems cooperation” Proc of IEEE International Conference on Robotics & Automation, San Francisco, CA vol. 2, pp. 1219-1224, Apr. 2000. |
Corke “High Performance Visual serving for robots end-point control”. SPIE vol. 2056 Intelligent robots and computer vision 1993. |
Cozman et al. “Robot Localization using a Computer Vision Sextant”, IEEE International Midwest Conference on Robotics and Automation, pp. 106-111, 1995. |
D'Orazio, et al. “Model based Vision System for mobile robot position estimation”, SPIE vol. 2058 Mobile Robots VIII, pp. 38-49, 1992. |
De Bakker, et al. “Smart PSD—array for sheet of light range imaging”, Proc. Of SPIE vol. 3965. pp. 1-12, May 15, 2000. |
Desaulniers, et al. “An Efficient Algorithm to find a shortest path for a car-like Robot”, IEEE Transactions on robotics and Automation vol. 11 No. 6, pp. 819-828, Dec. 1995. |
Dorfmüller-Ulhaas “Optical Tracking From User Motion to 3D Interaction”, http://www.cg.tuwien.ac.at/research/publications/2002/Dorfrnueller-Ulhaas-thesis, 182 pages, 2002. |
Dorsch, et al. “Laser Triangulation: Fundamental uncertainty in distance measurement”, Applied Optics, vol. 33 No. 7, pp. 1306-1314, Mar. 1, 1994. |
Dudek, et al. “Localizing A Robot with Minimum Travel”Proceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms, vol. 27 No. 2 pp. 583-604, Apr. 1998. |
Dulimarta, et al. “Mobile Robot Localization in Indoor Environment”, Pattern Recognition, vol. 30, No. 1, pp. 99-111, 1997. |
EBay “Roomba Timer -> Timed Cleaning—Floorvac Robotic Vacuum”, Cgi.ebay.com/ws/eBay|SAP|.dll?viewitem&category=43526&item=4375198387&rd=1, 5 pages, Apr. 20, 2005. |
Electrolux “Welcome to the Electrolux trilobite” www.electroluxusa.com/node57.asp?currentURL=node142.asp%3F, 2 pages, Mar. 18, 2005. |
Barker, “Navigation by the Stars—Ben Barker 4th Year Project” Power point pp. 1-20. |
Facchinetti, Claudio et al. “Using and Learning Vision-Based Self-Positioning for Autonomous Robot Navigation” ICARCV '94, vol. 3 pp. 1694-1698, 1994. |
Fayman “Exploiting Process Integration and Composition in the contexl of Active Vision”, IEEE Transactions on Systems, Man, and Cybernetics—Part C: Application and reviews, vol. 29 No. 1, pp. 73-86, Feb. 1999. |
Florbot GE Plastics Image (1989-1990). |
Franz, et al. “Biomimetric robot navigation”, Robotics and Autonomous Systems vol. 30 pp. 133-153, 2000. |
Friendly Robotics “Friendly Robotics—Friendly Vac, Robotic Vacuum Cleaner”, www.friendlyrobotics.com/vac.htm. 5 pages Apr. 20, 2005. |
Fuentes, et al. “Mobile Robotics 1994”, University of Rochester. Computer Science Department, TR 588, 44 pages, Dec. 7, 1994. |
Bison, P et al., “Using a structured beacon for cooperative position estimation” Robotics ad Autonomous Systems vol. 29, No. 1, pp. 33-40, Oct. 1999. |
Fukuda, et al. “Navigation System based on Ceiling Landmark Recognition for Autonomous mobile robot”, 1995 IEEE/RSJ Internationai Conference on Intelligent Robots and Systems 95. ‘Human Robot Interaction and Cooperative Robots’, Pittsburgh, PA, pp. 1466/1471, Aug. 5-9, 1995. |
Gionis “A hand-held optical surface scanner for environmental Modeling and Virtual Reality”, Virtual Reality World, 16 pages 1996. |
Goncalves et al “A Visual Front-End for Simultaneous Localization and Mapping”, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 44-49, Apr. 2005. |
Gregg et al. “Autonomous Lawn Care Applications”, 2006 Florida Conference on Recent Advances in Robotics, FCRAR 2006, pp. 1-5, May 25-26, 2006. |
Hamamatsu “SI PIN Diode S5980, S5981 S5870—Multi-element photodiodes for surface mounting”, Hamatsu Photonics, 2 pages Apr. 2004. |
Hammacher Schlemmer “Electrolux Trilobite Robotic Vacuum” www.hammacher.com/publish/71579.asp?promo=xsells, 3 pages, Mar. 18, 2005. |
Haralick et al. “Pose Estimation from Corresponding Point Data”, IEEE Transactions on systems, Man, and Cybernetics, vol. 19, No. 6, pp. 1426-1446, Nov. 1989. |
Hauser “About the Scaling Behaviour of Optical Range Sensors” Fringe '97 Proceedings of the 3rd International Workshop on Automatic Processing of Fringe Patterns, Bremen, Germany, pp. 147-155, Sep. 15-17, 1997. |
Blaasvaer, et al. “AMOR—An Autonomous Mobile Robot Navigation System”, Proceedings of the IEEE International Conference on Systems, and Cybernetics, pp. 2266-2271, 1994. |
Hoag, et al. “Navigation and Guidance in interstellar space”, ACTA Astronautica vol. 2, pp. 513-533, Feb. 14, 1975. |
Huntsberger et al. “CAMPOUT: A Control Architecture for Tightly Coupled Coordination of Multirobot Systems for Planetary Surface Exploration”, IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, vol. 33, No. 5, pp. 550-559, Sep. 2003. |
Iirobotics.com “Samsung Unveils Its Multifunction Robot Vacuum”, www.iirobotics.com/webpages/hotstuff.php?ubre=111, 3 pages, Mar. 18, 2005. |
Pages et al. “Optimizing Plane-to-Plane Positioning Tasks by Image-Based Visual Servoing and Structured Light”, IEEE Transactions on Robotics, vol. 22, No. 5, pp. 1000-1010, Oct. 2006. |
Pages, et al. “Robust decoupled visual servoing based on stuctured light”, 2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2676-2681, 2005. |
Paromtchik “Toward Optical Guidance of Mobile Robots”. |
Pirjanian “Reliable Reaction”, Proceedings of the 1996 IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for lntelligent Systems, pp. 158-165, 1996. |
Piranian “Challenges for Standards for consumer Robotics”, IEEE Workshop on Advanced Robotics and its Social impacts, pp. 260-264, Jun. 12-15, 2005. |
Pirjanian et al. “Distributed Control for a Modular, Reconfigurable Cliff Robot”, Proceedings of the 2002 IEEE International Conference on Robotics & Automation. Washington, D.C. pp. 4083-4088, May, 2002. |
Pirjanian et al. “Multi-Robot Target Acquisition using Multiple Objective Behavior Coordination”, Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, CA, pp. 2696-2702, Apr. 2000. |
Radio Frequency Identification: Tracking ISS Consumables, Author Unknown, 41 pages (NPL0127). |
Ronnback “On Methods for Assistive Mobile Robots”, http://www.openthesis.org/documents/methods-assistive-mobile-robots-595019.html, 218 pages. Jan. 1, 2006. |
Salomon, et al. “Low-Cost Optical Indoor Localization system for Mobile Objects without Image Processing”, IEEE Conference on Emerging Technologies and Factory Automation, 2006. (ETFA '06), pp. 629-632, Sep. 20-22, 2006. |
Sebastian Thrun, Learning Occupancy Grid Maps With Forward Sensor Models, School of Computer Science, Carnegie Mellon University, pp. 1-28. |
Shimoga et al, “Touch and Force Reflection for Telepresence Surgery”, Engineering in Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International Conference of the IEEE, Baltimore, MD, pp. 1049-1050, 1994. |
The Sharper Image “e-Vac Robotic Vacuum, S1727 Instructions” www.sharperimage.com, 18 pages. |
The Sharper Image “Robotic Vacuum Cleaner —Blue” www.Sharperimage.com, 2 pages, Mar. 18, 2005. |
The Sharper Image “E Vac Robotic Vacuum” www.sharperiamge.com/us/en/templates/products/pipmorework1printable.jhtml, 2 pages, Mar. 18, 2005. |
TheRobotStore.com “Friendly Robotics Robotic Vacuum RV400—The Robot Store”, www.therobotstore.com/s.nl/sc.9/category.-109/it.A/id.43/.f, 1 page, Apr. 20, 2005. |
TotaiVac.com RC3000 RoboCleaner website Mar. 18, 2005. |
Tribelhorn et al., “Evaluating the Roomba: A low-cost, ubiquitous platform for robotics research and education,” 2007, IEEE, p. 1393-1399. |
Andersen et al., “Landmark based navigation strategies”, SPIE Conference on Mobile Robots XIII, SPIE vol. 3525, pp. 170-181, Jan. 8, 1999. |
Ascii, Mar. 25, 2002, http://ascii.jp/elem/000/000/330/330024/ accessed Nov. 1, 2011. |
Li et al. “Robust Statistical Methods for Securing Wireless Localization in Sensor Networks,” Information Procesing in Sensor Networks, 2005, Fourth International Symposium on, pp. 91-98, Apr. 2005. |
Martishevcky, “The Accuracy of point light target coordinate determination by dissectoral tracking system”, SPIE vol. 2591, pp. 25-30, Oct. 23, 2005. |
Maschinemarkt Würzburg 105, Nr. 27, pp. 3, Jul. 5, 1999. |
Paromtchik “Toward Optical Guidance of Mobile Robots,” Proceedings of the Fourth World Multiconference on Systemics, Cybermetics and Informatics, Orlando, FL, USA, Jul. 23, 2000, vol. IX, pp. 44-49, available at http://emotion.inrialpes.fr/˜paromt/infos/papers/paromtchik:asama:sci:2000.ps.gz, accessed Jul. 3, 2012. |
Roboking—not just a vacuum cleaner, a robot!, Jan. 21, 2004, infocom.uz/2004/01/21/robokingne-prosto-pyilesos-a-robot/, accessed Oct. 10, 2011, 7 pages. |
Sebastian Thrun, “Learning Occupancy Grid Maps With Forward Sensor Models,” Autonomous Robots 15, 111-127, Sep. 1, 2003. |
SVET Computers—New Technologies—Robot Vacuum Cleaner, Oct. 1999, available at http://www.sk.rs/1999/10/sknt01.html, accessed Nov. 1, 2011. |
Hitachi, http://www.hitachi.co.jp/New/cnews/hi—030529—hi 030529.pdf, 8 pages, May 29, 2003. |
Hitachi ‘Feature’, http://kadenfan.hitachi.co.jp/robot/feature/feature.html, 1 page, Nov. 19, 2008. |
Jarosiewicz et al. “Final Report—Lucid”, University of Florida, Departmetn of Electrical and Computer Engineering, EEL 5666—Intelligent Machine Design Laboratory, 50 pages, Aug. 4, 1999. |
Jensfelt, et al. “Active Global Localization for a mobile robot using multiple hypothesis tracking”, IEEE Transactions on Robots and Automation vol. 17. No. 5, pp. 748-760, Oct. 2001. |
Jeong, et al. “An intelligent map-building system for indoor mobile robot using low cost photo sensors”, SPIE vol. 6042 6 pages, 2005. |
Kahney, “Robot Vacs are in the House,” www.wired.com/news/technology/o,1282,59237,00.html, 6 pages, Jun. 18, 2003. |
Karcher “Product Manual Download Karch”, www.karcher.com, 17 pages, 2004. |
Karcher “Karcher RoboCleaner RC 3000”, www.robocleaner.de/english/screen3.html, 4 pages, Dec. 12, 2003. |
Karcher USA “RC 3000 Robotics cleaner”, www.karcher-usa.com, 3 pages, Mar. 18, 2005. |
Karlsson et al., The vSLAM Algorithm for Robust Localization and Mapping, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 24-29, Apr. 2005. |
Karlsson, et al Core Technologies for service Robotics, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), vol. 3, pp. 2979-2984, Sep. 28-Oct. 2, 2004. |
King “Heplmate-TM-Autonomous mobile Robots Navigation Systems”, SPIE vol. 1388 Mobile Robots pp. 190-198, 1990. |
Kleinberg, The Localization Problem for Mobile Robots, Laboratory for Computer Science, Massachusetts Institute of Technology, 1994 IEEE, pp. 521-531, 1994. |
Knight et al., “Localization and Identification of Visual Landmarks”, Journal of Computing Sciences in Colleges, vol. 16 Issue 4, 2001 pp. 312-313, May 2001. |
Kolodko et al. “Experimental System for Real-Time Estimation”, Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), pp. 981-986, 2003. |
Komoriya et al., Planning of Landmark Measurement for the Navigation of a Mobile Robot, Proceedings of the 1992 IEEE/RSJ International Cofnerence on Intelligent Robots and Systems, Raleigh, NC pp. 1476-1481, Jul. 7-10, 1992. |
Krotov, et al. “Digital Sextant”, Downloaded from the internet at: http://www.cs.cmu.edu/˜epk/, 1 page, 1995. |
Krupa et al. “Autonomous 3-D Positioning of Surgical Instruments in Robotized Laparoscopic Surgery Using Visual Servoing”, IEEE Transactions on Robotics and Automation, vol. 19, No. 5, pp. 842-853, Oct. 5, 2003. |
Kuhl, et al. “Self Localization in Environments using Visual Angles”, VRCAI '04 Proceedings of the 2004 ACM SIGGRAPH international conference on Virtual Reality continuum and its applications in industry, pp. 472-475, 2004. |
Kurth, “Range-Only Robot Localization and SLAM with Radio”, http://www.ri.cmu.edu/pub—files/pub4/kurth—derek—2004—1/kurth—derek—2004—1.pdf. 60 pages, May 2004. |
Lambrinos, et al. “A mobile robot employing insect strategies for navigation”, http://www8.cs.umu.se/kurser/TDBD17/VT04/dl/Assignment%20Papers/lambrinos-RAS-2000.pdf, 38 pages, Feb. 19, 1999. |
Lang et al. “Visual Measurement of Orientation Using Ceiling Features”, 1994 IEEE, pp. 552-555, 1994. |
Lapin, “Adaptive position estimation for an automated guided vehicle”, SPIE vol. 1831 Mobile Robots VII, pp. 82-94, 1992. |
LaValle et al. “Robot Motion Planning in a Changing, Padially Predictable Environment”, 1994 IEEE International Symposium on Intelligent Control, Columbus, OH, pp. 261-266, Aug. 16-18, 1994. |
Lee, et al. “Localization of a Mobile Robot Using the Image of a Moving Object”, lEEE Transaction on Industrial Electronics, vol. 50, No. 3 pp. 612-619, Jun. 2003. |
Lee, et al. “Development of Indoor Navigation system for Humanoid Robot Using Multi-sensors Integration”, ION NTM, San Diego, CA pp. 798-805, Jan 22-24, 2007. |
Leonard et al. “Mobile Robot Localization by tracking Geometric Beacons”, IEEE Transaction on Robotics and Automation, vol. 7, No. 3 pp. 376-382, Jun. 1991. |
Li et al “Making a Local Map of Indoor Environments by Swiveling a Camera and a Sonar”, Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 954-959, 1999. |
Lin, et al.. “Mobile Robot Navigation Using Artificial Landmarks”, Journal of robotics System 14(2). pp. 93-106, 1997. |
Linde “Dissertation, On Aspects of Indoor Localization” https://eldorado.tu-dortmund.de/handle/2003/22854, University of Dortmund, 138 pages, Aug. 28, 2006. |
Lumelsky, et al. “An Algorithm for Maze Searching with Azimuth Input”, 1994 IEEE International Conference on Robotics and Automation, San Diego, CA vol. 1, pp. 111-116, 1994. |
Luo et al., “Real-time Area-Covering Operations with Obstacle Avoidance for Cleaning Robots,” 2002, IEeE, p. 2359-2364. |
Ma “Thesis: Documentation on Northstar”, California Institute of Technology, 14 pages, May 17, 2006. |
Madsen et al. “Optimal landmark selection for triangulation of robot position”, Journal of Robotics and Autonomous Systems vol. 13 pp. 277-292, 1998. |
Matsutek Enterprises Co. Ltd “Automatic Rechargeable Vacuum Cleaner”, http://matsutek.manufacturer.globalsources.com/si/6008801427181/pdtl/Home-vaccum/10 . . . , Apr. 23, 2007. |
McGillem, et al. “Infra-red Lacation System for Navigation and Autonomous Vehicles”, 1998 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1236-1238, Apr. 24-29, 1988. |
McGillem,et al. “A Beacon Navigation Method for Autonomous Vehicles”, IEEE Transactions on Vehicular Technology, vol. 38, No. 3, pp. 132-139, Aug. 1989. |
Michelson “Autonomous Navigation”, 2000 Yearbook of Science & Technology, McGraw-Hill, New York, ISBN 0-07-052771-7, pp. 28-30, 1999. |
Miro, et al. “Towards Vision Based Navigation in Large Indoor Environments”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 2096-2102, Oct. 9-15, 2006. |
MobileMag “Samsung Unveils High-tech Robot Vacuum Cleaner”, http://www.mobilemag.com/content/100/102/C2261/, 4 pages, Mar. 18, 2005. |
Monteiro, et al. “Visual Servoing for Fast Mobile Robot: Adaptive Estimation of Kinematic Parameters”, Proceedings of the IECON '93., International Conference on Industrial Electronics, Maui, HI, pp. 1588-1593, Nov. 15-19, 1993. |
Moore, et al. A simple Map-bases Localization strategy using range measurements, SPIE vol. 5804 pp. 612-620, 2005. |
Munich et al. “SIFT-ing Through Features with ViPR”, IEEE Robotics & Automation Magazine, pp. 72-77, Sep. 2006. |
Munich et al. “ERSP: A Software Platform and Architecture for the Service Robotics Industry”, Intelligent Robots and Systems, 2005. (IROS 2005), pp. 460-467, Aug. 2-6, 2005. |
Nam, et al. “Real-Time Dynamic Visual Tracking Using PSD Sensors and extended Trapezoidal Motion Planning”, Applied Intelligence 10, pp. 53-70, 1999. |
Nitu et al. “Optomechatronic System for Position Detection of a Mobile Mini-Robot”, IEEE Ttransactions on Industrial Electronics, vol. 52, No. 4, pp. 969-973, Aug. 2005. |
On Robo “Robot Reviews Samsung Robot Vacuum (VC-RP30W)”, www.onrobo.com/reviews/AT—Home/vacuum—cleaners/on00vcrb30rosam/index.htm.. 2 pages, 2005. |
InMach “lntelligent Machines”, www.inmach.de/inside.html, 1 page, Nov. 19, 2008. |
Innovation First “2004 EDU Robot Controller Reference Guide”, http://www.ifirobotics.com, 13 pgs., Mar. 1, 2004. |
OnRobo “Samsung Unveils Its Multifunction Robot Vacuum”, www.onrobo.com/enews/0210/samsung—vacuum.shtml, 3 pages, Mar. 18, 2005. |
Pages et al. “Optimizing Plane-to-Plane Positioning Tasks by Image-Based Visual Servoing and Structured Light”, IEEE Transactions on Robotics, vol. 22, No. 5. pp. 1000-1010, Oct. 2006. |
Pages et al. “A camera-projector system for robot positioning by visual servoing”, Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW06), 8 pages, Jun. 17-22, 2006. |
Pages, et al. “Robust decoupled visual servoing based on structured light”, 2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2676-2681, 2005. |
Park et al. “A Neural Network Based Real-Time Robot Tracking Controller Using Position Sensitive Detectors,” IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on Neutral Networks, Orlando, Florida pp. 2754-2758, Jun. 27-Jul. 2, 1994. |
Park, et al. “Dynamic Visual Servo Control of Robot Manipulators using Neutral Networks”, The Korean Institute Telematics and Electronics, vol. 29-B, No. 10. pp. 771-779, Oct. 1992. |
Paromtchik, et al. “Optical Guidance System for Multiple mobile Robots”, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, vol. 3, pp. 2935-2940 (May 21-26, 2001). |
Penna, et al. “Models for Map Building and Navigation”, IEEE Transactions on Systems. Man. And Cybernetics, vol. 23 No. 5, pp. 1276-1301. Sep./Oct. 1993. |
Pirjanian “Reliable Reaction”, Proceedings of the 1996 IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 158-165, 1996. |
Pirjanian “Challenges for Standards for consumer Robotics”, IEEE Workshop on Advanced Robotics and its Social impacts, pp. 260-264, Jun. 12-15, 2005. |
Pirjanian et al. “Distributed Control for a Modular, Reconfigurable Cliff Robot”, Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, D.C. pp. 4083-4088, May 2002. |
Pirjanian et al. “Representation and Execution of Plan Sequences for Multi-Agent Systems”, Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii, pp. 2117-2123, Oct. 29-Nov. 3, 2001. |
Pirjanian et al. “Multi-Robot Target Acquisition using Multiple Objective Behavior Coordination”, Proceedings of the 2000 lEEE International Conference on Robotics & Automation, San Francisco, CA, pp. 2696-2702, Apr. 2000. |
Pirjanian et al. “A decision-theoretic approach to fuzzy behavior coordination”, 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation, 1999. CIRA '99., Monterey, CA, pp. 101-106. Nov. 8-9, 1999. |
Pirjanian et al. “Improving Task Reliability by Fusion of Redundant Homogeneous Modules Using Voting Schemes”, Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, NM, pp. 425-430, Apr. 1997. |
Prassler et al., “A Short History of Cleaning Robots”, Autonomous Robots 9, 211-226, 2000, 16 pages. |
Remazeilles, et al. “Image based robot navigation in 3D environments”, Proc. of SPIE, vol. 6052, pp. 1-14, Dec. 6, 2005. |
Rives, et al. “Visual servoing based on ellipse features”, SPIE vol. 2056 Intelligent Robots and Computer Vision pp. 356-367, 1993. |
Robotics World Jan. 2001: “A Clean Sweep” (Jan. 2001). |
Ronnback “On Methods for Assistive Mobile Robots”, http://www.openthesis.org/documents/methods-assistive-mobile-robots-595019.html, 218 pages, Jan. 1, 2006. |
Roth-Tabak, et al. “Environment Model for mobile Robots Indoor Navigation”, SPIE vol. 1388 Mobile Robots pp. 453-463, 1990. |
Sadath M Maiik et al. “Virtual Prototyping for Conceptual Design of a Tracked Mobile Robot”. Electrical and Computer Engineering, Canadian Conference on, IEEE, Pl. May 1, 2006, pp. 2349-2352. |
Sahin, et al. “Development of a Visual Object Localization Module for Mobile Robots”, 1999 Third European Workshop on Advanced Mobile Robots, (Eurobot '99), pp. 65-72, 1999. |
Salomon, et al. “Low-Cost Optical Indoor Localization system for Mobile Objects without Image Processing”, IEEE Conference on Emerging Technologies and Factory Automation, 2006. (ETFA '06). pp. 629-632, Sep. 20-22, 2006. |
Sato “Range Imaging Based on Moving Pattern Light and Spatio-Temporal Matched Filter”, Proceedings International Conference on Image Processing, vol. 1., Lausanne, Switzerland. pp. 33-36, Sep. 16-19, 1996. |
Schenker, et al. “Lightweight rovers for Mars science exploration and sample return”, Intelligent Robots and Computer Vision XVI, SPIE Proc. 3208, pp. 24-36, 1997. |
Shimoga et al. “Touch and Force Reflection for Telepresence Surgery”, Engineering in Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International Conference of the IEEE, Baltimore, MD, pp. 1049-1050, 1994. |
Sim, et al “Learning Visual Landmarks for Pose Estimation”, IEEE International Conference on Robotics and Automation, vol. 3, Detroit, MI, pp. 1972-1978, May 10-15, 1999. |
Sobh et al. “Case Studies in Web-Controlled Devices and Remote Manipulation”, Automation Congress, 2002 Proceedings of the 5th Biannual World, pp. 435-440, Dec. 10, 2002. |
Stella, et al. “Self-Location for Indoor Navigation of Autonomous Vehicles”, Part of the SPIE conference on Enhanced and Synthetic Vision SPIE vol. 3364 pp. 298-302, 1998. |
Summet “Tracking Locations of Moving Hand-held Displays Using Projected Light”, Pervasive 2005, LNCS 3468 pp. 37-46 (2005). |
Svedman et al. “Structure from Stereo Vision using Unsynchronized Cameras for Simultaneous Localization and Mapping”, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2993-2998, 2005. |
Takio et al. “Real-Time Position and Pose Tracking Method of Moving Object Using Visual Servo System”, 47th IEEE International Symposium on Circuits and Systems, pp. 167-170, 2004. |
Teller “Pervasive pose awareness for people, Objects and Robots”, http://www.ai.mit.edu/lab/dangerous-ideas/Spring2003/teller-pose.pdf, 6 pages, Apr. 30, 2003. |
Terada et al. “An Acquisition of the Relation between Vision and Action using Self-Organizing Map and Reinforcement Learning”, 1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems, Adelaide, Australiam pp. 429-434, Apr. 21-23, 1998. |
The Sharper Image “Robotic Vacuum Cleaner—Blue” www.Sharperimage.com, 2 pages, Mar. 18, 2005. |
The Sharper Image “E Vac Robotic Vacuum”, www.sharperiamge.com/us/en/templates/products/pipmorework1printable.jhtml, 2 pages, Mar. 18, 2005. |
TheRobotStore.com “Friendly Robotics Vacuum RV400—The Robot Store”, www.therobotstore.com/s.nl/sc.9/category.-109/it.A/id.43/.f, 1 page, Apr. 20, 2005. |
TotalVac.com RC3000 RoboCleaner website Mar. 18, 2005. |
Trebi-Ollennu et al. “Mars Rover Pair Cooperatively Transporting a Long Payload”, Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, D.C. pp. 3136-3141, May 2002. |
Trbelhorn et al., “Evaluating the Roomba; A low-cost, ubiquitous platform for robotics research and education,” 2007, IEEE, p. 1393-1399. |
Tse et al. “Design of a Navigation System for a Household Mobile Robot Using Neural Networks”, Department of Manufacturing Engg. & Engg. Management, City University of Hong Kong, pp. 2151-2156, 1998. |
UAMA (Asia) Industrial Co., Ltd. “RobotFamily”, 2005. |
Watanabe et al. “Position Estimation of Mobile Robots With Internal and External Sensors Using Uncertainty Evolution Technique”, 1990 IEEE International Conference on Robotics and Automation, Cincinnati, OH, pp. 2011-2016, May 13-18, 1990. |
Watts “Robot, boldly goes where no man can”, The Times—pp. 20, Jan. 1985. |
Wijk et al. “Triangulation-Based Fusion of Sonar Data with Application in Robot Pose Tracking”, IEEE Transactions on Robotics and Automation, vol. 16, No. 6, pp. 740-752, Dec. 2000. |
Wolf et al. “Robust Vision-based Localization for Mobile Robots Using an Image Retrieval System Based on Invariant Features”, Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, D.C. pp. 359-365, May 2002. |
Wolf et al. “Robust Vision-Based Localization by Combining an Image-Retrieval System with Monte Carol Localization”, IEEE Transactions on Robotics, vol. 21, No. 2. pp. 208-216, Apr. 2005. |
Wong “ElED Online>> Robot Business”, ED Online ID# 13114, 17 pages, Jul. 2006. |
Yamamoto et al. “Optical Sensing for Robot Perception and Localization”, 2005 IEEE Workshop on Advanced Robotics and its Social Impacts, pp. 14-17, 2005. |
Yata et al. “Wall Following Using Angle Information Measured by a Single Ultrasonic Transducer”, Proceedings of the 1998 IEEE, International Conference on Robotics & Automation, Leuven, Belgium, pp. 1590-1596, May, 1998. |
Yun, et al. “Image-Based Absolute Positioning System for Mobile Robot Navigation”, IAPR International Workshops SSPR, Hong Kong, pp. 261-269, Aug. 17-19, 2006. |
Yun, et al. “Robust Positioning a Mobile Robot with Active Beacon Sensors”, Lecture Notes in Computer Science, 2006, vol. 4251, pp. 690-897, 2006. |
Yuta, et al. “Implementation of an Active Optical Range sensor Using Laser Slit for In-Door Intelligent Mobile Robot”, IEE/RSJ International workshop on Intelligent Robots and systems (IROS 91) vol. 1, Osaka, Japan, pp. 415-420, Nov. 3-5, 1991. |
Zha et at. “Mobile Robot Localization Using Incomplete Maps for Change Detection in a Dynamic Environment”, Advanced Intelligent Mechatronics '97. Final Program and Abstacts., IEEE/ASME International Conference, pp. 110, Jun. 16-20, 1997. |
Zhang, et at. “A Novel Mobile Robot Localization Based on Vision”, SPIE vol. 6279, 6 pages, Jan. 29, 2007. |
Roboking—not just a vacuum cleaner, a robot! Jan. 21, 2004, 5 pages. |
Popco.net Make your digital life http://www.popco.net/zboard/view.php?id=tr—review no=40 accessed Nov. 1, 2011. |
Matsumura Camera Online Shop http://www.rakuten.co.jp/matsucame/587179/711512/ accessed Nov. 1, 2011. |
Dyson's Robot Vacuum Cleaner—the DC06, May 2, 2004 http://www.gizmag.com/go/1282/ accessed Nov. 11, 2011. |
Electrolux Trilobite, Time to enjoy life, 38 pages http://www.robocon.co.kr/trilobite/Presentation—Trilobite—Kor—030104.ppt accessed Dec. 22, 2011. |
Facts on the Trilobite http://www.frc.ri.cmu.edu/˜hpm/talks/Extras/trilobite.desc.html 2 pages accessed Nov. 1, 2011. |
Euroflex Jan. 1, 2006 http://www.euroflex.tv/novita—dett.php?id=15 1 page accessed Nov. 1, 2011. |
Friendly Robotics, 18 pages http://www.robotsandrelax.com/PDFs/RV400Manual.pdf accessed Dec. 22, 2011. |
It's eye, 2003 www.hitachi.co.jp/rd/pdf/topics/hitac2003—10.pdf 2 pages. |
Hitachi, May 29, 2003 http://www.hitachi.co.jp/New/cnews/hl—030529—hl—030529.pdf 8 pages. |
Robot Buying Guide, LG announces the first robotic vacuum cleaner for Korea, Apr. 21, 2003 http://robotbg.com/news/2003/04/22/lg—announces—the—first—robotic—vacu. |
UBOT, cleaning robot capable of wiping with a wet duster, http://us.aving.net/news/view.php?articleId=23031, 4 pages accessed Nov. 1, 2011. |
Taipei Times, Robotic vacuum by Matsuhita about ot undergo testing, Mar. 26, 2002 http://www.taipeitimes.com/News/worldbiz/archives/2002/03/26/0000129338 accessed. |
Tech-on! http://techon.nikkeibp.co.jp/members/01db/200203/1006501/, 4 pages, accessed Nov. 1, 2011. |
IT media http://www.itmedia.co.jp/news/0111/16/robofesta—m.html accessed Nov. 1, 2011. |
Yujin Robotics, an intelligent cleaning robot ‘iclebo Q’ AVING USA http://us.aving.net/news/view.php?articleId=7257, 8 pages accessed Nov. 4, 2011. |
Special Reports. Vacuum Cleaner Robot Operated in Conjunction with 3G Celluar Phone vol. 59, No. 9 (2004) 3 pages http://www.toshiba.co.jp/tech/review/2004/09/59—0. |
Toshiba Corporation 2003, http://warp.ndl.go.jp/info:ndljp/pid/258151/www.soumu.go.jp/joho—tsusin/policyreports/chousa/netrobot/pdf/030214—1—33—a.pdf 16 pages. |
http://www.karcher.de/versions/intg/assets/video/2—4—robo—en.swf. Accessed Sep. 25, 2009. |
McLurkin “The Ants: A community of Microbots”, Paper submitted for requirements of BSEE at MIT, May 12, 1995. |
Grumet “Robots Clean House”, Popular Mechanics, Nov. 2003. |
McLurkin Stupid Robot Tricks: A Behavior-based Distributed Algorithm Library for Programming Swarms of Robots, Paper submitted for requirements of BSEE at MIT, May 2004. |
Kurs et al, Wireless Power transfer via Strongly Coupled Magnetic Resonances, Downloaded from www.sciencemag.org, Aug. 17, 2007. |
Hitachi “Feature”, http://kadenfan.hitachi.co.jp/robot/feature/feature.html, 1 page Nov. 19, 2008. |
Home Robot—UBOT; Microbotusa.com, retrieved from the WWW at www.microrobotusa.com, accessed Dec. 2, 2008. |
Hitachi: News release: The home cleaning robot of the autonomous movement type (experimental machine) is developed, website: http://www.i4u.com/japanreleases/hitachirobot.htm., accessed Mar. 18, 2005. |
Kärcher Product Manual Download webpage: “http://wwwkarchercom/bta/downloadenshtml?ACTION=SELECTTEILENR&ID=rc3000&submitButtonName=Select+Product+Manual” and associated pdf file “5959-915enpdf (47 MB) English/English” accessed Jan. 21, 2004. |
Karcher RC 3000 Cleaning Robot—user manual Manufacturer: Alfred-Karcher GmbH & Co, Cleaning Systems, Alfred Karcher-Str 28-40, PO Box 160, D-71349 Winnenden, Germany, Dec 2002. |
Kärcher RoboCleaner RC 3000 Product Details webpages: “http://wwwrobocleanerde/english/screen3html” through “ . . . screen6html” accessed Dec. 12, 2003. |
Karcher USA, RC3000 Robotic Cleaner, website: http://www.karcher-usa.com/showproducts.php?op=view—prod¶m1=143¶m2=¶m3=, accessed Mar. 18, 2005. |
Prassler, et al. A Short History of Cleaning Robots, Autonomous Robots 9, 211-226, 2000, 11 pages. |
Put Your Roomba . . . On “Automatic” Roomba Timer> Timed Cleaning-Floorvac Robotic Vacuum webpages: http://cgi.ebay.com/ws/eBayISAPI.dll?ViewItem&category=43575198387&rd=1, accessed Apr. 20, 2005. |
Put Your Roomba . . . On “Automatic” webpages: “http://www.acomputeredge.com/roomba,” accessed Apr. 20, 2005. |
RoboMaid Sweeps Your Floors So You Won't Have to, the Official Site, website: http://www.thereobomaid.com/, acessed Mar. 18, 2005. |
Robot Review Samsung Robot Vacuum (VC-RP3OW), website: http://www.onrobo.com/reviews/At—Home/Vacuun—Cleaners/on00verp30rosam/index.htm, accessed Mar. 18, 2005. |
Robotic Vacuum Cleaner-Blue, website: http://www.sharperimage.com/us/en/catalog/productview.jhtml?sku=S1727BLU, accessed Mar. 18, 2005. |
Schofield, Monica, “Neither Master nor Slave” A Practical Study in the Development and Employment of Cleaning Robots, Emerging Technologies and Factory Automation, 1999 Proceedings EFA'99 1999 7th IEEE International Conference on Barcelona, Spain Oct. 18-21, 1999, pp. 1427-1434. |
Wired News: Robot Vacs Are in the House, website: http://www.wired.com/news/print/0,1294,59237,00.html, accessed Mar. 18, 2005. |
http://robotbg.com/news/2003/04/22lg—announces—the—first—robotic—vacuum—cleaner—of—korea. |
http://www.taipeitimes.com/News/worldbiz/archives/2002/03/26/0000129338. |
http://www.sk.rs/1999/10/sknt01.html. |
Examination report dated Oct. 18, 2011 for corresponding application No. 10183299.6. |
Examination report dated Oct. 18, 2011 for corresponding application No. 10183338.2. |
Examination report dated Oct. 18, 2011 for corresponding application No. 10183328.8. |
EP Search report dated Sep. 5, 2011 for corresponding application 10183299.6. |
EP Search report dated Sep. 5, 2011 for corresponding application 10183338.2. |
EP Search report dated Sep. 5, 2011 for corresponding application 10183328.8. |
Eren, et al. “Accuracy in position estimation of mobile robots based on coded infrared signal transmission”, Proceedings: Integrating Intelligent Instrumentation and Control, Instrumentation and Measurement Technology Conference, 1995. IMTC/95, pp. 548-551, 1995. |
Eren, et al. “Operation of Mobile Robots in a Structured Infrared Environment”, Proceedings. ‘Sensing, Processing, Networking’, IEEE Instrumentation and Measurement Technology Conference, 1997 (IMTC/97), Ottawa, Canada vol. 1, pp. 20-25, May 19-21, 1997. |
Becker, et al. “Reliable Navigation Using Landmarks” IEEE International Conference on Robotics and Automation, 0-7803-1965-6, pp. 401-406, 1995. |
Benayad-Cherif, et al., “Mobile Robot Navigation Sensors” SPIE vol. 1831 Mobile Robots, VII. pp. 378-387, 1992. |
Facchinetti, Claudio et al. “Using and Learning Vision-Based Self-Positioning for Autonomous Robot Navigation”, ICARCV '94, vol. 3 pp. 1694-1698, 1994. |
Betke, et al., “Mobile Robot localization using Landmarks” Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems '94 “Advanced Robotic Systems and the Real World” (IROS '94), vol. |
Facchinetti, Claudio et al, “Self-Positioning Robot Navigation Using Ceiling Images Sequences”, ACCV '95, 5 pages, Dec. 5-8, 1995. |
Fairfield, Nathaniel et al. “Mobile Robot Localization with Sparse Landmarks”, SPIE vol. 4573 pp. 148-155, 2002. |
Favre-Bulle, Bernard “Efficient tracking of 3D—Robot Position by Dynamic Triangulation”, IEEE Instrumentation and Measurement Technology Conference IMTC 98 Session on Instrumentation and Measurement in Robotics, vol. 1, pp. 446-449, May 18-21, 1998. |
Fayman “Exploiting Process Integration and Composition in the context of Active Vision”, IEEE Transactions on Systems, Man, and Cybernetics—Part C: Application and reviews, vol. 29 No. 1, pp. 73-86, Feb. 1999. |
U.S. Appl. No. 60/605,066 as provided to WIPO in PCT/US2005/030422, corresponding to U.S. National Stage Entry U.S. Appl. No. 11/574,290, U.S. publication 2008/0184518, filed Aug. 27, 2004. |
U.S. Appl. No. 60/605,181 as provided to WIPO in PCT/US2005/030422, corresponding to U.S. National Stage Entry U.S. Appl. No. 11/574,290, U.S. publication 2008/0184518, filed Aug. 27, 2004. |
Derek Kurth, “Range-Only Robot Localization and Slam with Radio”, http://www.ri.cmu.edu/pub—files/pub4/kurth—derek—2004—1/kurth—derek—2004—1.pdf. 60 pages, May 2004, accessed Jul. 27, 2012. |
Electrolux Trilobite, Jan. 12, 2001, http://www.electrolux-ui.com:8080/2002%5C822%5C833102EN.pdf, accessed Jul. 2, 2012, 10 pages. |
Florbot GE Plastics, 1989-1990, 2 pages, available at http://www.fuseid.com/, accessed Sep. 27, 2012. |
Gregg et al., “Autonomous Lawn Care Applications,” 2006 Florida Conference on Recent Advances in Robotics, Miami, Florida, May 25-26, 2006, Florida International University, 5 pages. |
King and Weiman, “Helpmate™ Autonomous Mobile Robots Navigation Systems,” SPIE vol. 1388 Mobile Robots, pp. 190-198 (1990). |
Miwako Doi “Using the symbiosis of human and robots from approaching Research and Development Center,” Toshiba Corporation, 16 pages, available at http://warp.ndl.go.jp/info:ndljp/pid/258151/www.soumu.go.jp/joho—tsusin/policyreports/chousa/netrobot/pdf/030214—1—33—a.pdf, Feb. 26, 2003. |
Written Opinion of the International Searching Authority, PCT/US2004/001504, Aug. 20, 2012, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20100049365 A1 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
60297718 | Jun 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11671305 | Feb 2007 | US |
Child | 12609124 | US | |
Parent | 10839374 | May 2004 | US |
Child | 11671305 | US | |
Parent | 10167851 | Jun 2002 | US |
Child | 10839374 | US |