Discriminative segmentation approaches are capable of providing reliable, fully automatic, and fast detection of anatomical landmarks within volumetric (3D) medical images. Discriminative segmentation approaches are also capable of providing accurate determination of organ boundaries, such as boundaries of the inner and outer walls of the heart or a boundary of the liver, in volumetric medical images. Typically, a surface segmented using such discriminative segmentation techniques is represented by a relatively low number of control points, such that the control points can be used in Active Shape Models (ASM).
In addition to restrictions in topology, another disadvantage of such point-cloud based shape representations is the dependence of the local detailedness on the local density of control points. The control points are often non-homogeneously distributed across the shape boundary, and thus yield varying levels of segmentation accuracy. Level set based shape representations, on the other hand, are capable of encoding segmented boundaries at a homogenous resolution, with simple up-sampling and down-sampling schemes, and may provide other advantages over point cloud shape representations as well.
The present invention provides a method and system for fully automatic segmentation of multiple organs in computed tomography (CT) data using learning based segmentation and level set optimization. Embodiments of the present invention combine the advantages of learning-based and level set segmentation approaches and their employed shape representations. In particular, in various embodiments of the present invention, point-to-point correspondences, which are estimated during the learning-based segmentation, are preserved in the level set segmentation. Furthermore, embodiments of the present invention provide novel terms for level set energy minimization which allow region-specific non-overlap, coincidence, and/or shape similarity constraints to be imposed.
In one embodiment, a plurality of meshes are segmented in a 3D medical image, each mesh corresponding to one of a plurality of organs. A level set in initialized by converting each of the plurality of meshes to a respective signed distance map. The level set optimized by refining the signed distance map corresponding to each one of the plurality of organs to minimize an energy function.
These and other advantages of the invention will be apparent to those of ordinary skill in the art by reference to the following detailed description and the accompanying drawings.
The present invention is directed to a method for fully automatic segmentation of multiple organs in a medical image volume, such as a computed tomography (CT) volume. Embodiments of the present invention are described herein to give a visual understanding of the multi-organ segmentation method. A digital image is often composed of digital representations of one or more objects (or shapes). The digital representation of an object is often described herein in terms of identifying and manipulating the objects. Such manipulations are virtual manipulations accomplished in the memory or other circuitry/hardware of a computer system. Accordingly, is to be understood that embodiments of the present invention may be performed within a computer system using data stored within the computer system.
Embodiments of the present invention provide fully automatic multi-organ segmentation in volumetric medical images, such as 3D CT images, using learning-based segmentation and level set optimization. Embodiments of the present invention combine advantages of learning-based segmentation approaches on point cloud-based shape representations, such as speed, robustness, and point correspondences, with advantages of partial differential equation (PDE) optimization based level set approaches, such as high accuracy and straightforward prevention of segment overlaps.
At step 104, multiple organs are segmented in the medical image volume using learning-based segmentation, resulting a segmented mesh for each organ. “Learning-based segmentation” refers to any segmentation technique that utilizes trained machine learning-based classifiers or detectors to detect or segment one or more organs in medical image data. For example, the method described for segmenting boundaries of multiple organs in a full body CT scan in U.S. Pat. No. 2010/0080434, which is incorporated herein by reference, may be used to implement step 104. According to an advantageous aspect of the present invention, explicitly represented boundary surfaces resulting from a learning-based detected framework will be used to initialize a multi-region level set segmentation. Such a learning-based detection framework may include multiple stages, as shown in
At step 204, in a second stage of learning-based segmentation, bounding boxes are estimated each of the target organs using marginal space learning (MSL)-based detectors initialized from a subset of the detected anatomical landmarks. For example, the MSL-based detectors provide reliable estimates of bounding boxes for the liver, the left and right lungs, the heart, the left and right kidneys, as well as other organs such as the spleen, bladder, and prostate. The search space for MSL-based detection of each organ's bounding box may be constrained by the detected anatomical landmarks. MSL is used to estimate the position, orientation, and scale of each organ in the 3D volume using a series of detectors trained using annotated training data. In order to efficiently localize an object using MSL, parameter estimation is performed in a series of marginal spaces with increasing dimensionality. Accordingly, the idea of MSL is not to learn a classifier directly in the full similarity transformation space, but to incrementally learn classifiers in the series of marginal spaces. As the dimensionality increases, the valid space region becomes more restricted by previous marginal space classifiers. A 3D object detection (object pose estimation) is split into three steps: object position estimation, position-orientation estimation, and position-orientation-scale estimation. A separate classifier is trained based on annotated training data for each of these steps. Each classifier may be trained using a PBT. The MSL-based detection results in an estimated transformation (position, orientation, and scale) defining a bounding box for each organ, and a mean shape of each organ (learned from training data) is aligned with the 3D volume using the estimated transformation. MSL-base object detection is described in greater detail in U.S. Pat. No. 7,916,919, issued Mar. 29, 2011, and entitled “System and Method for Segmenting Chambers of a Heart in a Three Dimensional Image”, which is incorporated herein by reference.
At step 206, in third stage of learning-based segmentation, trained organ-specific boundary detectors are used to adjust organ boundaries. In particular, trained organ-specific boundary detectors may be used first at a coarse resolution to correct the organ boundaries and then subsequently at a fine resolution. In addition, principal-component analysis a (PCA)-based statistical shape model can be used for each organ to regularize the boundary shape on the coarse resolution. This step results in the segmented boundaries for each organ being represented by a triangulated mesh, i.e., a connected point cloud, as used in Active Shape Models.
Returning to
At step 108, the level set is optimized by refining the signed distance maps representing the organ boundaries to minimize and energy function. In an advantageous embodiment, the energy function can be a sum of a plurality of energy terms, with each energy term representing a different constraint imposed on the signed distance map representing the organ boundaries. The energy function can be minimized by iteratively adjusting each of the signed distance maps using a gradient descent algorithm.
Once the triangulated boundary meshes {Ci}, resulting from the learning-based detection are converted to level set functions {φi}, detecting and removing local overlaps and gaps between adjacent organ boundaries can be realized much easier. The goal is to find the correct separating boundary between two neighboring organs. To that end, embodiments of the present invention provide a level set segmentation approach that not only refines the segmentation boundary in detailedness and removes local overlaps and gaps, but also finds the true separating boundary given that enough image information is available.
For each organ Oi, this refining level set segmentation is realized by employing gradient descent iterations to converge to a minimum of an associated energy function Ei(φi), given the initial distance maps as starting points. A data dependent energy term of the energy function can be expressed as:
EP(φ)=−α∫ΩH(φ)log pin(I(x)|φ+(1−H(φ))log pout(I(x)|φ)dx, (1)
with H denoting the Heaviside step function, and pin/out referring to the non-parametric probability estimates of the intensities inside and outside of the current segment φ using a Parzen density estimator with a Gaussian kernel, and α being a constant weight that can be set by one skilled in the art based on experimental data. In order to add robustness against noisy data, a boundary smoothness regularization energy term may also be incorporated into the energy function. The boundary smoothness regularization energy term can be expressed as:
which is weighted at various strengths depending on the region of the organ surface. Thereby, the boundary specific weights γl(x) are associated with a set of boundary points p1, . . . , MεR3, which are tracked along with the evolving zero-crossing of the current distance map φ and thus provide shape correspondences. According to an advantageous implementation, these correspondence points are initialized directly by vertices of the segmented organ meshes resulting from the learning-based segmentation, since point-to-point correspondences are estimated in the segmented meshes as well.
Another energy term may be incorporated into the energy function to provide a disjoint constraint to remove overlaps between adjacent organs. Let CA0 and CB0 represent two closed surfaces which are imperfect approximations of the outer boundaries of two adjacent organs, and assume that partial overlaps are present.
EO(φA,φB):=∫ΩH(φA(x))H(φB(x))φB(x)dx (3)
where the first product (of the step functions H for φA and φB) in the integrand is unequal to zero only inside the overlap regions. According to an advantageous implementation, the second distance function φB is also multiplied to the product of step functions, which makes EO smoother at the presence of small overlaps, and thereby decease oscillations during gradient descent. The corresponding energy gradient can be expressed as:
∂φA/∂t=−∂EO/∂φA=−∂ε(φA)Hε(φB(x))φB(x) (4)
Image (b) of
Another energy term may be incorporated into the energy function to provide a local proximity constraint to fill erroneous gaps between adjacent organ boundaries. In particular, the following local proximity energy term can be added to the energy function to remove erroneous gaps:
where D is a constant that can be changed to enforce neighboring boundaries being a certain distance apart. In a possible implementation, D=0 to enforce that no gap exists between the neighboring boundaries. However, the present invention is not limited thereto, and it is possible to enforce the two boundaries to not touch but stay in a predefined distance D>0 from each other. {βi } denotes correspondence points-bound weights with βi=0 at correspondence points where no boundary coincidence ought to be enforced, and some βi>0 at correspondence points where the boundary coincidence with the neighboring region should be enforced. Accordingly, the weight {βi } changes depending on where on the boundary this energy term is being evaluated. This allows the local proximity constraint energy term to only be applied to certain predetermined points on a boundary for which it is known that no gap should exist.
Image (c) of
∂φ/∂t=−∂Ed/∂φ=−βl(x)(φA(x)+φB(x)+D) (6)
which shows that at zero crossings CA of the distance transform φA, the distance map φA is increased and thus CA expands at locations where φB<D, the distance map φA is decreased and thus CA shrinks at locations where φB<D.
A template constraint energy term can also be added to the energy function to enforce similarity of the level set result to an initial shape from the learning-based segmentation. This term ensures that the refined boundary is sought only in the vicinity of its initialization and prevents a region representing an organ from leaking it neighboring organs. The template constraint energy term can be expressed as:
{wiin} and {wiout} are region-specific weights (i.e., weights that vary based on the correspondence points) that are applied the shape dissimilarity measures between the current distance map φ and the template distance map φP (which is the initial distance map generated from segmented organ mesh). {wiin} and {wiout} represent different weights applied for deviations inside of the template shape CP and outside of the template shape CP, respectively.
In equation (7), it can be noted that the first term of the integrand is non-zero only if the zero crossing of φ resides inside the zero crossing of φP; that is, the current boundary C is smaller than the template boundary CP. The second term in the integrand measures local expansions relative to the CP by becoming non-zero only where φ(x)>φP(x). The corresponding energy gradient clearly shows that the proposed energy term has the desired effect:
∂φ/∂t=−∂Esw/∂φ=wl(x)inδε(φP(x)−φ(x))−wl(x)outδε(φ(x)−φP(x)), (8)
as φ is increased at locations where φ<φP and is decreased when φ>φP.
Image (d) of
In an advantageous embodiment, all of the energy terms described above are combined into energy minimizations for each organ Oi=1, . . . N.
which are mutually coupled by the disjoint and proximity terms (Ni denotes the indices of organs adjacent to Oi, and Pi denotes indices of organs with which Oi shares a mutual proximity constraint). Consequently, minimizers {{tilde over (φ)}i} of these individual energies depend on each other. An advantageous implementation utilizes interleaved gradient descent iterations to refine the distance maps of the organs in order to improve the multi-organ segmentation results. In particular, decent is carried out along the negative gradients of the N per-organ energies in lockstep, while using the level set segmentation results {φit−1} of the previous joint iteration to calculate the coupled energy gradients ∂Ei(φi; {φit−1})/∂φi. The descent for a particular energy (i.e., for a particular organ) is terminated if a maximum number of iterations has been reached, or if the maximum norm of its gradient fall below a given threshold, i.e., the segmentation boundary φi changes less than a certain tolerance.
Returning to
In a series of experiments, the present inventors studied the effect of the energy terms described herein qualitatively on a number of data sets, and thereby manually selected parameter values that are advantageous, especially for the correspondence-bound local weights, with respect to the overall segmentation accuracy and robustness.
The benefit of the disjoint constraint is clear, since the true organ boundaries do not overlap. When adding highly-weighted mutual disjoint terms to each organ's energy minimization, overlaps in the initial segments vanish during the first iteration. Thereby, the location of the final joint boundary interface mainly depends ratio between weights of the mutual terms, e.g. those of EO(φA, φB) in EA and EO(φB, φA) in EB, respectively. This ratio may be different from 1 however, in case the initial boundary of one organ is known to be more accurate and robust than that if its neighbor. That, in one example, is the case for the heart and the liver boundaries in image (a) of
Whereas a single weight for EO within each organ's total energy is sufficient, the local proximity term Ed is designed to be active, i.e. its weight unequal zero, at specific boundary locations that are to coincide (or stay in fixed proximity) to that of an adjacent organ. This localization, as described above, is realized by the tracking a discrete set of correspondence points on the border of an organ, to which local energy term weights are associated with (see
As for the employment of template constraints, we found them most useful in constraining the refinement boundary to the initial boundary with locally-varying degrees of strength in addition, deviations inside or outside the initial shape can be constrained separately, which can be seen in the example of image (d) of
The above-described methods for multi-organ segmentation and level set optimization may be implemented on a computer using well-known computer processors, memory units, storage devices, computer software, and other components. A high level block diagram of such a computer is illustrated in
The foregoing Detailed Description is to be understood as being in every respect illustrative and exemplary, but not restrictive, and the scope of the invention disclosed herein is not to be determined from the Detailed Description, but rather from the claims as interpreted according to the full breadth permitted by the patent laws. It is to be understood that the embodiments shown and described herein are only illustrative of the principles of the present invention and that various modifications may be implemented by those skilled in the art without departing from the scope and spirit of the invention. Those skilled in the art could implement various other feature combinations without departing from the scope and spirit of the invention.
This application claims the benefit of U.S. Provisional Application No. 61/451,371, filed Mar. 10, 2011, the disclosure of which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
7277582 | Paragios | Oct 2007 | B2 |
7574247 | Moreau-Gobard et al. | Aug 2009 | B2 |
8064673 | Kirchberg et al. | Nov 2011 | B2 |
8175348 | Van Uitert et al. | May 2012 | B2 |
8218870 | Tieu et al. | Jul 2012 | B2 |
20050105786 | Moreau-Gobard et al. | May 2005 | A1 |
20060093199 | Fram et al. | May 2006 | A1 |
20060173272 | Qing et al. | Aug 2006 | A1 |
20060177133 | Kee | Aug 2006 | A1 |
20090041315 | Fahmi et al. | Feb 2009 | A1 |
20100080434 | Seifert et al. | Apr 2010 | A1 |
20110074780 | Roberts et al. | Mar 2011 | A1 |
20110299745 | Roberts et al. | Dec 2011 | A1 |
Entry |
---|
Hierarchical Parsing and Semantic Navigation of Full Body CT Data S. Seiferta, A. Barbub, K. Zhouc, D. Liuc, J. Feulnera, M. Hubera, M. Suehlingd, A. Cavallaroe and D. Comaniciuc SPIE 2009. |
Number | Date | Country | |
---|---|---|---|
20120230572 A1 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
61451371 | Mar 2011 | US |