The present invention relates to optical transmission systems. In particular, the present invention relates to the generation of a pulsed laser beam used in optical transmission systems.
With advances in technology, there is a continuous demand to increase data transmission rates and the volume of data transmission. Traditional communication lines, such as copper wires, have been used to meet this continuous demand. However, traditional communication lines are subject to many disadvantages including limited bandwidth and high signal attenuation, which imposes distance limitations. In addition, traditional communication lines are susceptible to interference during the transmission of data. An example of interference includes, but is not limited to, electromagnetic interference.
Optical transmission systems using optical fibers overcome many shortcomings of traditional communication lines. Communication via optical fibers is characterized by immunity to electromagnetic interference, long transmission range, and high bandwidth. In fact, telecommunication networks that use optical fibers typically have several Terahertz (THz) of bandwidth available for data transmission.
Pulsed laser beams are often used in optical transmission systems. In many optical transmission system applications, it is desirable that the pulsed laser beam has a high repetition rate. The repetition rate may be defined as the rate at which a laser delivers pulses. For example, some optical systems such as those that utilize high speed optical time division multiplexing (OTDM) may require pulsed laser beams with a repetition rate in the Terahertz range.
However, many pulsed laser beam sources are incapable of emitting a pulsed laser beam with such a high repetition rate. The limitation in their repetition rates is primarily due to optical pulse power restrictions and the speed of optical modulators. Fabry-Perot cavities and optoelectronic pulse shapers have been used to externally increase the repetition rate. However, these techniques involve the use of complex hardware and/or are sensitive to frequency drift.
Another technique known as optical pulse interleaving has also been used to multiply the repetition rate of a pulsed laser beam. Optical pulse interleaving divides an input pulse train into two, and then recombines the two pulse trains with a delay. However, pulse interleaving requires the use of interferometric stabilization of the interleaving delay such that the phase coherence between the pulses is lost.
In one of many possible embodiments, the present invention provides a system and method for increasing a repetition rate of an optical pulse train. The system includes a pulsed source configured to generate the optical pulse train and a cyclic demultiplexer configured to process the optical pulse train and output an output optical pulse train on each of a number of output ports. Each of the output optical pulse trains has a final repetition rate that is a multiple of the repetition rate corresponding to the optical pulse train generated by the pulsed source.
The accompanying drawings illustrate various embodiments of the present invention and are a part of the specification. The illustrated embodiments are merely examples of the present invention and do not limit the scope of the invention.
Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements.
An system and method for multiplying the repetition rate of a pulsed laser beam are explained herein. A pulsed source is configured to generate the pulsed laser beam. The pulsed laser beam is also referred to as an optical pulse train. A cyclic demultiplexer is configured to process the optical pulse train and output an output optical pulse train on each of a number of output ports. Each of the output optical pulse trains has a final repetition rate that is a multiple of the repetition rate corresponding to the optical pulse train generated by the pulsed source.
In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present system and method. It will be apparent, however, to one skilled in the art that the present system and method may be practiced without these specific details. Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearance of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
As used herein and in the appended claims, the terms “pulsed laser beam” and “optical pulse train” will be used interchangeably to refer to a pulsed laser or light beam generated by a pulsed source. The pulsed source may be a passively mode-locked Er-fiber laser or any other device configured to output a pulsed laser beam or a pulsed light beam, for example. The optical characteristics of the optical pulse train may vary as best serves a particular application. For example, in some applications, the optical pulse train generated by the pulsed source may have a spectral full width at half maximum (FWHM) of 50 nanometers, a temporal FWHM of 160 femptoseconds (fs), an initial repetition rate of 40 megahertz (MHz), and an average output power in free space of 50 milliwatts.
The pulsed laser beam, as will be recognized by one of ordinary skill in the art, is made up of a number of channels, or frequencies. Each frequency has a corresponding wavelength. These wavelengths, as will be explained below, may be separated by a wavelength division multiplexer (WDM) or by a cyclic demultiplexer. In other words, a WDM or a cyclic demultiplexer may demultiplex a pulsed laser beam into a number of separate light beams each having a different wavelength.
A filter (104) is used in the example of
As shown in
The second WDM (131) recombines, or multiplexes, the separated light beams that have been allowed to pass through the attenuator (132). The second WDM (131) then outputs an output optical pulse train (105) comprising only the wavelengths (λ1, λ4) that have been allowed to pass through the attenuator (132). In this case, because the output optical pulse train (105) includes light having only two (λ1, λ4) of the six wavelengths (λ1-λ6) output by the first WDM (130), the output optical pulse train (105) has a repetition rate that is three times the repetition rate of the input optical pulse train (100).
A system that uses two WDMs (130, 131) to multiply the repetition rate of a pulsed laser beam, as described in connection with
As shown in
As shown in
For example, the cyclic demultiplexer (140) of
The individual wavelengths that are output on a particular output port make up an output optical pulse train (142). Thus, each of the sixteen output ports (145) of the cyclic demultiplexer (140) outputs a separate optical pulse train (142). For example, the first output port (146) outputs an optical pulse train (142) that is made up of the wavelengths λ1, λ17, and 33, the second output port (147) outputs an optical pulse train (142) that is made up of the wavelengths λ2, λ18, and λ34, and so on. As will be described below, each output optical pulse train (142) has a faster repetition rate than the repetition rate of the input optical pulse train (141).
The individual wavelengths that are output on a particular output port are evenly spaced by a frequency spacing, or channel spacing, that is determined by the configuration of the cyclic demultiplexer (140). In one exemplary embodiment, the frequency spacing between each channel (i.e. between λ1 and λ2) is 100 gigahertz (GHz). However, the frequency spacing between each channel may be 10 GHz, 50 GHz, or any other frequency spacing that the cyclic demultiplexer (140) is configured to produce. Hence, the final frequency spacing, or the final repetition rate, of the output optical pulse train (142), as shown by the frequency comb (144) in
The multiplication factor will vary depending on the frequency spacing of the input optical pulse train (141) and on the configuration of the cyclic demultiplexer (140). For example, if the input optical pulse train (141) has a frequency spacing of 1 GHz and the cyclic demultiplexer (140) is configured as explained in connection with
In one exemplary embodiment, an equalization device, such as a threshold detector, and/or a saturable device, such as a semiconductor optical amplifier (SOA), may be used to compensate for, or equalize, unequal output peak amplitudes of the output optical pulse train (142).
The cyclic demultiplexer (140) of
Furthermore, as mentioned above, a cyclic demultiplexer (140) outputs on each output port (145) an optical pulse train (142) with a repetition rate that has been multiplied by the same multiplication factor. On the other hand, in a system using multiple WDMs (e.g. 130, 131;
The preceding description has been presented only to illustrate and describe embodiments of invention. It is not intended to be exhaustive or to limit the invention to any precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the following claims.